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Unstable periodic orbits and the natural measure of nonhyperbolic chaotic saddles
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Chaotic saddles are nonattracting dynamical invariant sets that physically lead to transient chaos. We ex-
amine the characterization of the natural measure by unstable periodic orbits fornonhyperbolicchaotic saddles
in dissipativedynamical systems. In particular, we compare the natural measure obtained from a long trajectory
on the chaotic saddle to that evaluated from unstable periodic orbits embedded in it. Our systematic compu-
tations indicate that the periodic-orbit theory of the natural measure, previously shown to be valid only for
hyperbolic chaotic sets, is applicable to nonhyperbolic chaotic saddles as well.@S1063-651X~99!08311-7#
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Chaotic saddles are nonattracting dynamical invariant
that arise in many situations of physical interest@1–3#. A
trajectory starting from a random initial condition in a phas
space region containing a chaotic saddle typically stays n
the saddle and exhibits a chaoticlike dynamics for a fin
amount of time before asymptoting to a final state~usually
not chaotic!. Chaos in this case is only transient. Mathema
cally, a chaotic saddle is a closed, bounded, and invarian
with a dense orbit. Chaotic saddles are thesoul of chaotic
dynamics because they can be produced by the horses
type dynamics@4#. It is known that chaotic saddles can lea
to important physical phenomena such as chaotic scatte
@5#, fractal basin boundaries@6#, fractal concentrations o
passive particles advected in open hydrodynamical flows@7#,
and fractal distribution of chemicals in environmental flow
@8#. It is therefore of paramount physical interest to be able
understand and characterize chaotic saddles in terms o
fundamental dynamical quantities. And there is nothing m
fundamental than the infinite number of unstable perio
orbits@9# embedded in the saddle. In this regard, we note
the most physically relevant characteristic associated wi
chaotic saddle is its natural measure because dynamica
variants of the saddle such as the Lyapunov exponents
fractal dimension, and other averages of physical observa
are meaningful only when the measure being considere
the natural one. Thus, it is of primary importance to quan
the natural measure of the chaotic saddle by the infinite se
unstable periodic orbits embedded in it.

In this paper, we focus on nonhyperbolic chaotic sadd
arising in dissipativechaotic systems that can be describ
by two-dimensional noninvertible maps or, equivalent
three-dimensional flows@10#. For such systems, the sourc
of nonhyperbolicity is the set of infinite numbers of tangen
points between the stable and unstable manifolds@11#. As we
will discuss later, in this case, if one distributes a larg
number of initial conditions in a phase-space region conta
ing the chaotic saddle, the number of chaotic trajectorie
the region decreasesexponentiallyin time @12#. There have
been many papers addressing the role of nonhyperbolic
otic saddles in chaotic dynamics@13–18#. The focus of this
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paper is on the period-orbit characterization of the natu
measure of chaotic saddles. An important contribution in t
direction was made by Grebogi, Ott, and Yorke@19#, who
obtained an expression for the invariant natural measur
terms of the magnitude of the eigenvalues of the unsta
periodic orbits embedded in the chaotic attractor. Th
proved@19# the correctness of their expression but only f
the special case of hyperbolic dynamics@11#. The validity of
their results for physical, which are typically nonhyperbol
situations remained, however, only a conjecture. Recentl
was numerically verified that this quantification of the na
ral measure by unstable periodic orbits was valid for non
perbolic chaotic attractors@20#. Since chaotic saddles giv
rise to very distinct physical phenomena from those by c
otic attractors, and since chaotic saddles can be comm
nonhyperbolic@21,22#, it is important to assess the validit
of the periodic-orbit characterization of the natural meas
for nonhyperbolic chaotic saddles. The aim of this pape
then to provide an analysis and solid numerical evidence
such a characterization. We note that due to the nonattrac
nature of chaotic saddles, the natural measure and its c
acterization by periodic orbits become highly nontrivial a
more sophisticated compared with the case of chaotic att
tors.

We begin by introducing the natural measure of a chao
saddle and expressing it in terms of unstable periodic orb
Consider dynamical systems described by two-dimensio
invertible maps,xn115M (xn), where xPR2. These maps
arise on the Poincare´ surface of section of three-dimension
flows. Imagine a phase-space regionS that contains a nonat
tracting chaotic saddle. The stable and the unstable m
folds of the chaotic saddle are sets of points that asymp
to the chaotic saddle under the forward and backward ite
tions of the map, respectively. If a large numberN0 of ran-
dom initial conditions are distributed inS, the corresponding
trajectories will leaveS eventually as time progresses. The
do so by being attracted along the stable manifold, wand
ing near the chaotic saddle, and then exiting along the
stable manifold. LetN(n) be the number of trajectories tha
still remain in S at time n. For largen, this numberN(n)
decreases exponentially due to the chaotic nature of
saddle in dissipative systems:

N~n!5N0e2n/t, ~1!
,
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where t is the average lifetime of the chaotic transien
caused by the chaotic saddle. Since trajectories escape
the chaotic saddle along the unstable manifold, at large p
tive timen, the N(n) trajectory points will be in thevicinity
of the unstable manifold. Let Cbe a small box withinS that
contains part of the unstable manifold. The natural meas
associated with the unstable manifold inC can thus be de-
fined as@19,23#

mu~C!5 lim
n→1`

lim
N0→`

Nu~n,C!

N~n!
, ~2!

whereNu(n,C) is the number ofN(n) orbits inC at timen.
Similarly, the natural measure of the stable manifold in a b
C in S can be defined as@19,23#

ms~C!5 lim
n→1`

lim
N0→`

Ns~n,C!

N~n!
, ~3!

where Ns(n,C) is the number of initial conditionsin C
whose trajectories do not leaveS before timen.

From the definitions Eqs.~2! and ~3!, we see that the
natural measure associated with the stable and the uns
manifolds inC are determined by the number of trajecto
points inC at time zero and timen, respectively. The natura
measure of the chaotic saddle,m, can then be defined b
consideringNm(r,n,C), the number of trajectory points inC
at a timern in between zero andn:

m~C!5 lim
n→1`

lim
N0→`

Nm~r,n,C!

N~n!
, ~4!

where 0,r,1, Nm(0,n,C)5Ns(n,C), and Nm(1,n,C)
5Nu(n,C). For largeN0 andn, trajectories that remain inS
would stay near the chaotic saddle for most of the time
tween zero andn, except at the beginning when they a
attracted towards the saddle along the stable manifold, an
the end when they are exiting along the unstable manif
Thus, the measure defined in Eq.~4! is independent ofr, as
long as 0,r,1.

Note that althoughN(n) decreases exponentially in time
this decaying factor has been compensated in the definit
of the natural measures Eqs.~2!–~4!. These measures ar
thus invariant under the dynamics, and they are called
conditionally invariant measures@3#. Numerically, the natu-
ral measure of the chaotic saddle can be computed by u
the sprinkler method@23# or the proper-interior-maximum
~PIM! -triple method@24#, the latter usually generates lon
trajectories on the chaotic saddle. Dynamical invariants
the chaotic saddle, such as the fractal dimensions and
Lyapunov exponents, can then be defined with respect to
conditionally invariant measure of the saddle.

To estimate the contribution to the natural measure
unstable periodic orbits of periodp, we consider a time
n.p at which we wish to examine how many trajecto
points, out of those fromN0 initial conditions, still remain in
C. For hyperbolic chaotic sets, at timep, the fraction of
trajectory points that are still inB is given by @19#
(xipPC1/L1(xip), where the summation is over all unstab

fixed pointsxip of thep-time iterated map contained inC and
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L1(xip) is the magnitude of the unstable eigenvalue ofi th
fixed point. Sincep,n, we have

Nm~r,n,C!5N0 (
xipPC

1

L1~xip!
,

wherer5p/n,1. The natural measure of the chaotic sad
contained inC is thus given by

m~C!5 lim
n→1`

lim
N0→`

Nm~r,n,C!

N~n!
5 lim

p→`
(

xipPC

exp~p/t!

L1~xip!
.

~5!

SinceS is a phase-space region that contains the whole c
otic saddle, we havem(S)51, which, from Eq.~5!, gives
@25#

mS~p![ lim
p→`

(
xipPS

1

L1~xip!
5exp~2p/t!. ~6!

Equations~5! and~6! are rigorously valid only for hyper-
bolic chaotic saddles. The applicability of these equations
nonhyperbolic chaotic saddles remains, thus, only a con
ture. To provide numerical evidence, we choose the He´non
map@26#: (x,y)→(a2x21by,x), wherea andb are param-
eters for which systematic computations of unstable perio
orbits can be done@27#. To obtain chaotic saddles, we fi
b50.3 and choosea.ac , where ac'1.426 is the crisis
value beyond which the He´non chaotic attractor is converte
into a chaotic saddle@1#. Fora*ac , explicit numerical com-
putation reveals that the minimum possible angles betw
the stable and the unstable directions for points on the c
otic saddles can be arbitrarily close to zero, indicating t
the chaotic saddles are nonhyperbolic@22#. Here we report
our results with four values ofa, the chaotic saddles at whic
are apparently nonhyperbolic@22#. We compute all unstable
periodic orbits of periods up to 28 by using the algorithm
Ref. @27# and their eigenvalues. The quantitymS(p) in Eq.
~6! is then computed as a function ofp. Figure 1~a! shows
ln mS(p) versusp for a51.6. We observe thatmS(p) decays
exponentially, as predicted by Eq.~6!. The slope of the fit is
k[1/t50.0860.008, which givest512.561.3. From a di-
rect numerical realization of Eq.~1!, we obtain t'11.2
60.1, which agrees well with that from periodic orbits, as
Fig. 1~a!. Figure 1~b! shows the values oft obtained via Eqs.
~6! and~1! for a51.5, 1.55, 1.6, and 1.65. The closeness
the values oft obtained via these two independent a
proaches indicates the applicability of Eq.~6! for nonhyper-
bolic chaotic saddles. To check the validity of Eq.~5!, we
divide the phase-space region:22<(x,y)<2, in which the
chaotic saddles lie by a grid of 1283128. We use the PIM-
triple algorithm to generate a long trajectory on the sad
@24#, identify nonempty cells that the trajectory visits, an
compute the frequency of visits, or the approximation to
natural measure, in each nonempty cell. Call this natu
measurem i , i 51,...,Nne , whereNne is the number of non-
empty cells. The contribution to the natural measure,m i(p),
from each nonempty cell by all periodic orbits of periodp
contained in the cell, is then computed. Figure 2~a! shows
ln Dm(p) versus p for a51.6, where Dm(p)
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[(1/Nne)( i 51
Nneum i2m i(p)u. We see thatDm(p) decreases

exponentially asp increases, indicating the validity of Eq.~5!
for large periods.

The main source of error in the exponential fittings
Figs. 1~a! and 2~a! comes from the fact that Eqs.~5! and~6!
are theoretically valid only for hyperbolic chaotic saddles
the limit of p→`. While we believe that Eqs.~5! and~6! are
also valid for nonhyperbolic chaotic saddles, we are
aware of any theoretical tools that can be utilized to der
these equations when there are tangency points on the s
between the stable and the unstable manifolds. Due to p
tical limitation, numerical verification of Eqs.~5! and ~6! is
possible only for periodic orbits of finite periods less tha
say, 30. We are satisfied that numerical experiments
formed with periodic orbits of periods up to about 28 alrea
give robust fittings to the conjectured exponential behav
in Eq. ~6!. Theoretically, for hyperbolic chaotic saddles,
can be argued that the error in the exponential fitting
creases exponentially as the period increases@20#. Numeri-
cally, we find that other ways of fitting the data in Figs. 1~a!
and 2~a!, such as power-law fitting, are apparently ruled o
@21#.

Equation~5! implies that statistical averages of dynamic
invariants and physical functions with respect to the natu

FIG. 1. ~a! For the Hénon chaotic saddle ata51.6 and b
50.3, lnmS(p) vs p. ~b! Comparison of the lifetimes of a chaoti
saddle obtained by extracting the slopes of the lines of lnN(n) vs n
~circles! and those obtained via Eq.~6! through unstable periodic
orbits ~diamonds! for a51.5, 1.55, 1.6, and 1.65.
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measure of the chaotic saddle can be computed in term
unstable periodic orbits embedded in the saddle. This of
an alternative way to check the validity of Eq.~5!. To do
this, we compute the positive Lyapunov exponent of the c
otic saddle by using~i! a long PIM-triple trajectory, and~ii !
by using periodic orbits, as shown in Fig. 2~b!, where the
horizontal line denotes the exponent from the PIM-triple t
jectory and dots are those from all periodic orbits of peri
p. Apparently, the exponent estimated from the periodic
bits asymptotes to the one from the PIM-triple trajectory, a
we observe that the difference decreases exponentiallyp
increases. The results summarized in Figs. 1 and 2
strongly suggest the validity of the periodic-orbit charact
ization of the natural measure for nonhyperbolic chao
saddles.

In summary, we provide strong evidence for the applic
bility of the periodic-orbit theory of the natural measure f
an important class of dynamical invariant sets: nonhyp
bolic chaotic saddles. As in the case of chaotic attractors,
natural measure is important because it is the one tha
usually produced in physical experiments involving transi
chaos. Our systematic numerical computations suggest
the characterization of this measure by unstable periodic
bits, while previously shown to be valid for hyperbol
saddles@19#, is apparently correct for nonhyperbolic chaot

FIG. 2. ~a! For the Hénon chaotic saddle ata51.6, lnDm(p) vs
p. ~b! The positive Lyapunov exponent estimated from a long PI
triple trajectory~the horizontal line! and those from unstable per
odic orbits~dots!.
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saddles in dissipative dynamical systems as well. T
periodic-orbit theory is conceptually appealing and is pot
tially useful for further theoretical or even practical develo
ments@28#.
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