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Unstable periodic orbits and the natural measure of nonhyperbolic chaotic saddles
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Chaotic saddles are nonattracting dynamical invariant sets that physically lead to transient chaos. We ex-
amine the characterization of the natural measure by unstable periodic orbiitsfoyperbolicchaotic saddles
in dissipativedynamical systems. In particular, we compare the natural measure obtained from a long trajectory
on the chaotic saddle to that evaluated from unstable periodic orbits embedded in it. Our systematic compu-
tations indicate that the periodic-orbit theory of the natural measure, previously shown to be valid only for
hyperbolic chaotic sets, is applicable to nonhyperbolic chaotic saddles ag 3ub3-651X99)08311-7

PACS numbes): 05.45—-a

Chaotic saddles are nonattracting dynamical invariant sefgaper is on the period-orbit characterization of the natural
that arise in many situations of physical intergst3]. A measure of chaotic saddles. An important contribution in this
trajectory starting from a random initial condition in a phase-direction was made by Grebogi, Ott, and YorKe], who
space region containing a chaotic saddle typically stays ned@btained an expression for the invariant natural measure in
the saddle and exhibits a chaoticlike dynamics for a finiteerms of the magnitude of the eigenvalues of the unstable
amount of time before asymptoting to a final statsually ~ periodic orbits embedded in the chaotic attractor. They
not chaoti¢. Chaos in this case is only transient. Mathemati-pProved[19] the correctness of their expression but only for
cally, a chaotic saddle is a closed, bounded, and invariant séte special case of hyperbolic dynami¢d]. The validity of
with a dense orbit. Chaotic saddles are #uail of chaotic  their results for physical, which are typically nonhyperbolic,
dynamics because they can be produced by the horseshd#tuations remained, however, only a conjecture. Recently, it
type dynamicg4]. It is known that chaotic saddles can lead Was numerically verified that this quantification of the natu-
to important physical phenomena such as chaotic scatterin@! measure by unstable periodic orbits was valid for nonhy-
[5], fractal basin boundarieks], fractal concentrations of Perbolic chaotic attractorf20]. Since chaotic saddles give
passive particles advected in open hydrodynamical fl&s rise to very distinct physical phenomena from those by cha-
and fractal distribution of chemicals in environmental flowsotic attractors, and since chaotic saddles can be commonly
[8]. It is therefore of paramount physical interest to be able td'onhyperbolic[21,22, it is important to assess the validity
understand and characterize chaotic saddles in terms of tt§é the periodic-orbit characterization of the natural measure
fundamental dynamical quantities. And there is nothing mordor nonhyperbolic chaotic saddles. The aim of this paper is
fundamental than the infinite number of unstable periodidhen to provide an analysis and solid numerical evidence for
orbits[9] embedded in the saddle. In this regard, we note thaguch a characterization. We note that due to the nonattracting
the most physically relevant characteristic associated with 8ature of chaotic saddles, the natural measure and its char-
chaotic saddle is its natural measure because dynamical igcterization by periodic orbits become highly nontrivial and
variants of the saddle such as the Lyapunov exponents, tigore sophisticated compared with the case of chaotic attrac-
fractal dimension, and other averages of physical observabldgrs.
are meaningful only when the measure being considered is We begin by introducing the natural measure of a chaotic
the natural one. Thus, it is of primary importance to quantifysaddle and expressing it in terms of unstable periodic orbits.
the natural measure of the chaotic saddle by the infinite set g¢onsider dynamical systems described by two-dimensional
unstable periodic orbits embedded in it. invertible mapsx,;1=M(x,), wherexeR?. These maps

In this paper, we focus on nonhyperbolic chaotic saddle@rise on the Poincargurface of section of three-dimensional
arising in dissipativechaotic systems that can be describedflows. Imagine a phase-space reg®that contains a nonat-
by two-dimensional noninvertible maps or, equivalently,tracting chaotic saddle. The stable and the unstable mani-
three-dimensional flow§10]. For such systems, the source folds of the chaotic saddle are sets of points that asymptote
of nonhyperbolicity is the set of infinite numbers of tangencyto the chaotic saddle under the forward and backward itera-
points between the stable and unstable manifidd As we  tions of the map, respectively. If a large numidéy of ran-
will discuss later, in this case, if one distributes a largerdom initial conditions are distributed i the corresponding
number of initial conditions in a phase-space region containtrajectories will leaveS eventually as time progresses. They
ing the chaotic saddle, the number of chaotic trajectories ifl0 SO by being attracted along the stable manifold, wander-
the region decreasesponentiallyin time [12]. There have ing near the chaotic saddle, and then exiting along the un-
been many papers addressing the role of nonhyperbolic ch&table manifold. LeN(n) be the number of trajectories that
otic saddles in chaotic dynami¢$3—18. The focus of this  still remain in S at time n. For largen, this numberN(n)

decreases exponentially due to the chaotic nature of the
saddle in dissipative systems:

*Also at Department of Mathematics, University of Kansas,
Lawrence, KS 66045. N(n)=Nge "7, (D)

1063-651X/99/6(b)/61764)/$15.00 PRE 60 6176 © 1999 The American Physical Society



PRE 60 BRIEF REPORTS 6177

where 7 is the average lifetime of the chaotic transients|(x;,) is the magnitude of the unstable eigenvaluei tbf
caused by the chaotic saddle. Since trajectories escape frofited point. Sincep<n, we have

the chaotic saddle along the unstable manifold, at large posi-

tive timen, the N(n) trajectory points will be in theicinity 1

of the unstable manifold_et Cbe a small box withirS that Nm(p.n,C)=Ng > L)
contains part of the unstable manifold. The natural measure XipeC =11p
associated with the unstable manifold@can thus be de-

=p/n<1. i
fined as[19,23 wherep=p/n<1. The natural measure of the chaotic saddle

contained inC is thus given by

. . Nu(n7c)
wy(C)= lim lim ————, 2 o _ Np(p,n,C) exp(p/ )
N C)= lim lim —————=1im _.
n—+ow NoﬁOC (n) Iu’( ) e NOHW N(n) pﬂmxiéc Ll(Xip)
whereN,(n,C) is the number oN(n) orbits inC at timen. ®)

Similarly, the natural measure of the stable manifold in a bo’%inces is a phase-space region that contains the whole cha-
Cin Scan be defined d9,23 otic saddle, we have.(S)=1, which, from Eq.(5), gives
Ng(n,C) (23]

,LLS(C)Z lim lim W, (3)

n—+o Ng—®

psp)=lim > o =exp—pln.  (6)
where N¢(n,C) is the number of initial conditionsn C P %ip® °
whose trajectories do not leag&before timen. Equationg5) and(6) are rigorously valid only for hyper-

From the definitions Eqs(2) and (3), we see that the . . oo ;
natural measure associated with the stable and the unstabl?cc:gIIC chaotic saddles. The applicability of these equations to

manifolds inC are determined by the number of trajectory ?uorr;hyrp;erbrgl\llci: dzhﬁg:rlwceﬁigldlee\i dree:;z'niet2%3022|{H2$gjec'
points inC at time zero and time, respectively. The natural ' P '

. —y2 -
measure of the chaotic saddle, can then be defined by map[26]: (x,y)—(a—x"+ by,x), wherea andb are param

S . . eters for which systematic computations of unstable periodic
consideringN,(p,n,C), the number of trajectory points @ . s : ;
at a timepn in between zero and: orbits can be dong27]. To obtain chaotic saddles, we fix

b=0.3 and choosea>a., wherea.~1.426 is the crisis
N,(p,n,C) value beyond which the H®n chaotic attractor is converted
pm(C)= Iim |Im ——, (4)  into a chaotic saddlgl]. Fora=a., explicit numerical com-
N(n) putation reveals that the minimum possible angles between
the stable and the unstable directions for points on the cha-
where 0<p<1, Npu(0n,C)=Ng(n,C), and N;(1n,C) otic saddles can be arbitrarily close to zero, indicating that
=N,(n,C). For largeN, andn, trajectories that remain i8  the chaotic saddles are nonhyperbd®2]. Here we report
would stay near the chaotic saddle for most of the time beour results with four values af, the chaotic saddles at which
tween zero andh, except at the beginning when they are are apparently nonhyperboli2]. We compute all unstable
attracted towards the saddle along the stable manifold, and geriodic orbits of periods up to 28 by using the algorithm in
the end when they are exiting along the unstable manifoldref. [27] and their eigenvalues. The quantiiag(p) in Eq.
Thus, the measure defined in E4) is independent op, as () is then computed as a function pf Figure 1a) shows
long as 0<p<1. In ug(p) versusp for a=1.6. We observe thatg(p) decays
Note that althougiN(n) decreases exponentially in time, exponentially, as predicted by E@). The slope of the fit is
this decaying factor has been compensated in the definitiong=1/r=0.08+0.008, which gives=12.5+1.3. From a di-
of the natural measures Eq&)—(4). These measures are rect numerical realization of Eql), we obtain r~11.2
thus invariant under the dynamics, and they are called the-0.1, which agrees well with that from periodic orbits, as in
conditionally invariant measurgs3]. Numerically, the natu- Fig. 1(a). Figure 1b) shows the values af obtained via Egs.
ral measure of the chaotic saddle can be computed by using) and (1) for a=1.5, 1.55, 1.6, and 1.65. The closeness of
the sprinkler method23] or the proper-interior-maximum the values ofr obtained via these two independent ap-
(PIM) -triple method[24], the latter usually generates long proaches indicates the applicability of E@) for nonhyper-
trajectories on the chaotic saddle. Dynamical invariants Opolic chaotic saddles. To check the validity of E&), we
the chaotic saddle, such as the fractal dimensions and thfvide the phase-space region2=<(x,y)<2, in which the
Lyapunov exponents, can then be defined with respect to thghaotic saddles lie by a grid of 128128. We use the PIM-
conditionally invariant measure of the saddle. triple algorithm to generate a long trajectory on the saddle
To estimate the contribution to the natural measure by24) identify nonempty cells that the trajectory visits, and
unstable periodic orbits of period, we consider a time compute the frequency of visits, or the approximation to the
n>p at which we wish to examine how many trajectory natural measure, in each nonempty cell. Call this natural
points, out of those fron\, initial conditions, still remainin  measurew;, i=1,...N,., whereN, is the number of non-
C. For hyperbolic chaotic sets, at timg the fraction of  empty cells. The contribution to the natural measgp),
trajectory points that are still inB is given by [19]  from each nonempty cell by all periodic orbits of peripd
2y eclli(Xip), where the summation is over all unstable contained in the cell, is then computed. Figur@ 2hows
fixed pointsx;, of thep-time iterated map contained @and  InAu(p) versus p for a=1.6, where Au(p)

n—+o0 Ng—o
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FIG. 2. (a) For the Heon chaotic saddle @=1.6, InAu(p) vs
p. (b) The positive Lyapunov exponent estimated from a long PIM-
triple trajectory(the horizontal ling and those from unstable peri-
odic orbits(dots.

FIG. 1. (a) For the Hamon chaotic saddle aa=1.6 andb
=0.3, Inugp) vs p. (b) Comparison of the lifetimes of a chaotic
saddle obtained by extracting the slopes of the lines dfin vs n
(circles and those obtained via E¢6) through unstable periodic
orbits (diamond$ for a=1.5, 1.55, 1.6, and 1.65.

N measure of the chaotic saddle can be computed in terms of
=(1Npd 2, "¢ i~ ni(p)|. We see thatA u(p) decreases unstable periodic orbits embedded in the saddle. This offers
exponentially ap increases, indicating the validity of Ech) an alternative way to check the validity of E(). To do
for large periods. this, we compute the positive Lyapunov exponent of the cha-

The main source of error in the exponential fittings in otic saddle by usindi) a long PIM-triple trajectory, andi)

Figs. Xa) and Za) comes from the fact that Eq&) and(6) by using periodic orbits, as shown in Figb2 where the

are theoretically valid only for hyperbolic chaotic saddles inhorizontal line denotes the exponent from the PIM-triple tra-
the limit of p— . While we believe that Eq$5) and(6) are  jectory and dots are those from all periodic orbits of period
also valid for nonhyperbolic chaotic saddles, we are nop. Apparently, the exponent estimated from the periodic or-
aware of any theoretical tools that can be utilized to derivebits asymptotes to the one from the PIM-triple trajectory, and
these equations when there are tangency points on the sadd¥e observe that the difference decreases exponentially as
between the stable and the unstable manifolds. Due to praiacreases. The results summarized in Figs. 1 and 2 thus
tical limitation, numerical verification of Eqg5) and(6) is  strongly suggest the validity of the periodic-orbit character-
possible only for periodic orbits of finite periods less than,ization of the natural measure for nonhyperbolic chaotic
say, 30. We are satisfied that numerical experiments pesaddles.

formed with periodic orbits of periods up to about 28 already In summary, we provide strong evidence for the applica-
give robust fittings to the conjectured exponential behaviobility of the periodic-orbit theory of the natural measure for
in Eq. (6). Theoretically, for hyperbolic chaotic saddles, it an important class of dynamical invariant sets: nonhyper-
can be argued that the error in the exponential fitting debolic chaotic saddles. As in the case of chaotic attractors, the
creases exponentially as the period incred26% Numeri-  natural measure is important because it is the one that is
cally, we find that other ways of fitting the data in Figéa)l  usually produced in physical experiments involving transient
and 2a), such as power-law fitting, are apparently ruled outchaos. Our systematic numerical computations suggest that
[21]. the characterization of this measure by unstable periodic or-

Equation(5) implies that statistical averages of dynamical bits, while previously shown to be valid for hyperbolic
invariants and physical functions with respect to the naturataddleq19], is apparently correct for nonhyperbolic chaotic
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