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Measurements of brain activity complexity for varying mental loads
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Using functional magnetic resonance imaging, we investigate the variation in dynamical complexity of
human brain activity for different mental loads. Our experiments measured the activity of ten subjects under
three experimental conditions: a rest condition, a periodic task of finger opposition, and a task of finger
opposition alternated with mathematical serial calculation. We used the correlation dimension to gauge the
spatiotemporal complexity of brain activity. The experiments show a direct relationship between this complex-
ity and the difficulty of the task. A natural interpretation is that higher levels of mental load recruit a larger
number of independent neural processes that contribute to complex brain dynamics. These results suggest the
possibility that the relative change in correlation dimension can be a useful global measure of brain dynamics,
e.g., in determining the levels of mental activity, even if little is known about the underlying neurological

processes.
DOI: 10.1103/PhysReVvE.65.041917 PACS nunier87.19.La, 05.45-a
[. INTRODUCTION and the imaging physics and yield a typical spatial resolution

of a few millimeters and with a temporal resolution of a few

The correlation dimension has been used widely in théhundred milliseconds. To the first approximation, one can
analysis of experimental time series, including data from biothink of the observed BOLD signals of FMRI as a smoothed
logical systemq1,2] since its introduction by Grassberger Version of the underlying neural activity.
and Procaccid3]. In particular, it has been a useful global ~ The experiments reported here were designed to test the
measure in the analysis of human electroencephalografyPothesis that more difficult mental tasks are associated
(EEG) data[4—8]. The complexity of electrical activity in With more dynamically complex FMRI signals. We set up
the brain is reported to correlate with global changes in menthree experimental conditions: a reference conditiesy, a
tal state[9—11]. Theoretical models have also been proposed@sk of periodic finger oppositioffinger tapping, and an-
predicting that automatic behavior reflects processes of lowedther task of periodic finger opposition alternated with math-
complexity than those underlying consciously controlled be-ematical calculation. These three tasks were selected to span
havior (see Ref[12]). a range of mental complexity, ranging from mininteds to

From its inception, functional magnetic resonance imaghigh (mathematical calculationThe complexity of the cor-
ing (FMRI) has been a powerful experimental tool for moni- fésponding spatiotemporal time series was analyzed by com-
toring spatiotemporal brain activity, with a wealth of new Puting the correlation dimension. Because of certain practi-
opportunities to advance our understanding of brain organic@l limitations concerning the length and resolution of the
zation. Modern time series analysis provides natural con@cquired data, we used a modified algorithm to estimate the
cepts for exploring spatiotemporal complexity of the sort 0b_cor(elatlon _dlm_ensmn th_at takes aQVantage of th(_a multiplicity
served in FMRI studies. In this paper, we report the variatiorPf time series inherent in the spatially resolved images.
of the correlation dimension from FMRI signals of the hu-  This paper is organized as follows. Section Il contains a
man brain subject to different mental loads. The results demsummary of the essential parts of the modified Grassberger-
onstrate that an increased mental load yields FMRI signals drrocaccia(GP) algorithm for correlation dimension esti-
greater dynamic complexity. This has a natural interpretatiofnates from multiple time series. In Sec. Ill we describe the
that higher levels of mental activity are associated with g€xPerimental setup and results. In Sec. IV we discuss the
larger number of independent neural processes that contrifhysiological interpretation of these results and outline a few
ute to complex brain dynamics. open problems that, if overcome, would substantially

The FMRI signal, known as the blood-oxygen-level- enha_mce the use of complexity measures for future FMRI
dependentBOLD) contrast, represents the magnetic suscepstudies.
tibility variation associated with neural activifyi3,14. A
local neuronal excitation results in a regional increase in the
oxygen consumption followed by a change in cerebral blood
flow. This vascular overcompensation increases the net oxy- In this section we briefly summarize the procedure for
genation of venous blood, which is paramagnetic in itsgenerating correlation dimension estimates from spatiotem-
deoxygenated state while other tissue components as well aeral time series. We also contrast this approach with the
oxygenated blood are diamagnetic. The increase in blootinear imaging analysis more conventionally used in FMRI
oxygenation of venous blood reduces the susceptibility inbrain studies.
duced signals. The FMRI signals are thus dependent on the Principal Component AnalysidPCA), also known as the
underlying neuronal activity, the hemodynamics of the brainKarhunen-Loge transformation, Singular Value Decomposi-

II. BACKGROUND
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tion (SVD) or Empirical Orthogonal Functions, is a common say||x||=max]|jx|:1<i=m}. For largeN, the correlation di-
method to reduce the dimensionality and to extract importaninensionD, is given by

modes of activity from massive datasets, for example FMRI

data from the human brain. Implementation of PCA amounts D.=lim lim dlog, Cy(e) ©

to a search for the direction of maximum variance in the 2 o NLw dlogye

dataset, followed by an orthogonal projection of data onto a

subspace spanned by the direction vectors with highest varithus for a single long time series, once the embedding vec-
ance. It has been indicated that PCA can extract qualitativel{ors are reconstructed, the estimation of the correlation di-
nonlinear dynamical features from experimental time serie§h€nsion is done in two steps. First, one has to determine the

[15-17. PCA is easily implemented by the singular value corelation sumC(e) for the range ofe available and for
decomposition of the data matrix. several embedding dimensions Then, for a given value of

A singular value decomposition &1 X N real matrixA is ™ one looks for a plateau in the plot dflog, C(e)/dlog, e
any factorization of the formA=USV’, whereU is an  BER B9 °S 8BRS T8 YO e Bl T8 reoehes 0 e
é:\g g::;goﬁaég;;ﬁgyzgﬂs a::‘hgrriogﬁp?;?ag:é’ ;nd Data collecteq at a high sampling rate usually contain tem-
. . . : J ' poral correlations in the phase space that presents a bias in
=0;=0, i.e., with leading diagonal element§=---=0\ 4 calculation of the correlation sum. In that case, it is sug-
=0, r being minM,N). The o; are the singular values, and gegsted that the points that are too close in time need to be
the firstr columns ofU and V are the left and the right giscarded, which is known as the Theiler correctiag).
singular vectors, respectively. In the context of a spatiotem- Multiple time series, for example, spatiotemporal series,
poral dataTmatrlx, such as FMRI data captures the tempo- 41 e assumed to be either independent realizations of the
ral and V' the spatial information from the data matrix game observable in a given system or different observables
Amxn, whereM is the number of time points and the ot 4 single attractor measured simultaneously. The
number of voxelsvolume elements, i.e., sources of FMRI Grassherger-Procaccia algorithm can be easily adapted for
signals. To represent the amount of independent contribuytiple time series by separately embedding each time se-
tion in the total variance of the data by each component, wgjag and, in the correlation sum, by counting the pair of
assign the normalized eigenvaluesfi.e., of/%~107,as  points (from all the seriesthat fall inside a hypersphere of

the weighting factors to the temporal components in the maradiuse around the center. Thus, for multiple series, the cor-
trix U. Taking the first few principal components weighted re|ation sum can be written as

with these factors will reduce the noise level while preserv-
ing the correct phase dynamics in the reconstructed space. 2

The Grassberger-Procaccia algorithm is based on an ap- CNT(E):m Zl i='2+1 O(e=[Xi=Xjl). @3
propriate phase-space reconstruction. The time-delay embed- . .
ding is one popular method. Given a scalar time ses{gs ~ where Ny=N;+N,+---+Ng and X is the set of all the

Nt Nt

one forms a sequence of vector(t)=(s(t),s(t  delayed vectors, i.g{x"} L (X2, , . .. XHE ]}, where
+7), ... S(t+[m=1]7), wheremis the embedding dimen- ,(1.2... K5 are the delay vectors constructed from indi-
sion andr is the delay time. Under mild assumptions about,;iq,al time series. Heré;, N, ... are the numbers of

the underlying dynamics, the nature of the measuremenie|ayed vectors in the reconstructed space flormumber of

function that produces(t), and the choice of, it can be e series. In this reconstructed space of delay vectors
shown that various dynamical quantities of the reconstructeghq correlation sum. as defined in Ed), measures the prob-
set are the same as those of the underlying attractor, providegjji that a randomly selected pair of delay coordinate
thatm is suitably large[18,19. In particular, if the correla-  hoints from the vector seX is separated by a distance less
tion dimension of the underlying attractor 8, thenm  {hane D, is then determined from the converging plateaus
=D, allows one to determin®, from an embedding of a (corresponding to different m) in the plot of

corresponding time serig®0], andm=2D,+1 suffices to 4 |oa.rC. (m.aldlo vs lo bv the similar procedure
produce a diffeomorphism between the embedded set and the gZ[f. NT(d ’;)] E ?22)(6)1_” (9 fy itin| P .
underlying attractor under mild assumptidi$]. as dehined by Eqis). This sum irom mulliple Series 1S

Grassbergerand Procact nave shoun D can be 17017, 9% 1 €10% coreaton su and can e ueed o the
evaluated by using the correlation integ@{e), which is fundamental mathgmatical Enderstandin is. lackin ; the va-
defined to be the probability that a pair of points chose g 9.

randomly with respect to the natural measure is separated a'}(/j'ty of the phase-space reconstruction from multiple series

a distance less than on the reconstructed set. For a trajec- as been checked with mathematical mod@,24. Re-

L : search reporting improved results for correlation dimension
tory of lengthN, the correlation integral can be approximated and density estimates with multiple channel EEG d4ta6]

by the sum, also support the applicability of this scheme for multiple
2 N time series. With some normalization scheme, the dimension
Cne)=———— > > O(e—|x—x]), (1) density can be defined §87]
N(N—-1) {Z1 i+
dlog, Cn.(m,e)/m
where O is the Heaviside functiof®(x)=1 if x=0 and p(e,m)= ! (4)

®(x) =0 otherwisg, and||-|| denotes a suitable vector norm, dlog, Cn.(1.€)
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and then the correlation dimension is jusp(e,m) at the G (b)
scaling regions.

IIl. FMRI EXPERIMENT AND RESULTS 205

Ten normal, right-handed subjectBve males and five
female$, aged between 23 to 36, participated in this stdy.

Subjects were asked to perform three different tasks during % = 1 305 o 5 o

0 _
three functional runs of FMRI. These experimental tasks © X(i) @
were: (i) rest (reference condition (ii) rest alternated with 40
finger opposition, andiii) mathematical calculation alter-
nated with finger opposition. The order of these tasks pre-
sented was randomized across subjects. In the first(tabk  ©oq
erence conditiop subjects were asked to relax and rest in the °
scanner for 500 scar(800 9. The second task consisted of
twenty-five epochs of rest alternated with finger opposition
(10 s each With visual instructions on a screen, subjects
were asked to rest and to tap their index fingers to their
thumb on the right hand in periodic cycles for about 500 s. G, 1. (a) Phase portraitdelay time 6 & for the principal
The ﬁnal taSk was 25 CyCIeS Of mathematical CaICUIation al'components of FMRI data from the rest p|us finger-tapping tﬁsk,
ternated with finger opposition. The mathematical calcula1092 C(e) vs log €, (€) Local slopegd(e€)] vs log, € (a clear scaling
tion involved successive subtractions of 17 from a randonbehavior foree[0.12,0.17, between two dotted lingsand (d)
three-digit number. We hypothesized that these tasks would(e) vs m for e~[0.12,0.17.
present an increasing mental load resulting in an increasing
degree of complexity of FMRI signals and that the complex-ance(the first component being excludeh the dataset of
ity would be different enough to be captured in correlationeach run. The first component was excluded because it rep-
dimension estimates. resented the variance due to different brain tissues other than
All imaging was performed on a Philips 1.5 T Intera in- those involved in the functional dynamics, as revealed by the
strument. Each imaging session consisted of a scout image,imspection of the image of the corresponding spatial mode.
T1l-weighted structural scan, and three runs of 500 scanghe extraction of useful principal components has the advan-
each in the functional sessions. Each functional scan watage of reducing both computational load and noise in the
acquired with eight slices each with 8 mm thickness andsignals. Out of all the components (8800 time points
orientation of slice planes of about 10° down from the ante-with a separate time-delay embedding scheme, a phase space
rior commissure—posterior commissure li@eho-planar im- was reconstructed for embedding dimensiam from 2 to
aging, gradient-recalled repetition time (TRL000 ms, 25. With the delay vectors constructed from 25000 data
echo time (TEF40 ms, flip angle=81°, 64x 64 matriX.>  points, one could estimate the correlation dimension as high
This imaged a major portion of the brain comprising areas ofis 10 if the scaling region occurs fee=0.14[29]. Figure
hypothesized motor and cognitive activations. Before the exi(a) shows a projection of 15-dimensional phase space onto
traction of principal components, each functional run wastwo dimensions, constructed with a delay time sffeom 50
corrected for head of subjects movement using a 6 degregsincipal components of the FMRI data collected from one
of freedom rigid-body transformation as implemented in thesubject doing the second task. We remark here that such a
software package callesbm9o[28]. phase space constructed from multiple time series has dis-
We used singular value decomposition to reduce thgoint sets and cannot be used to observe continuously evolv-
FMRI data from a large number of signal sources<@  ing dynamics. However, the cross-correlation sum can still
X 64 voxelg into a few dominant modes of spatiotemporal be calculated for such sets to a good precision and is essen-
activity. Each temporal component of SV (as defined in tially identical to their(auto correlation sums above certain
Sec. I) had 500 data points that evolved in time as the siglength scalg23]. The plot indicates nonlinearity in the data
nals were sampled at 1 Hz. We extracted a number of conbecause the phase portrait is not symmetrical with respect to
ponents from the FMRI data and used 50 properly weightedeflection in the diagonal line. In contrast, for a random pro-
components that accounted for more than 96% residual varess, the phase portrait would be symmetr[&tl]. Figure
1(b) is a plot of log C(e) vs log, € for the same data. The plot
indicates power law behavior of the correlation sums with
This study was approved by the Human Investigations Commitmost of the length scale at all reconstructed phase space of
tee, Emory University. dimensionsm=2 to 25. A scaling behavior is apparent for
2TR is time resolution of the FMRI datéor the sampling inter-  €€[0.12,0.17 as shown in the plot of local slopgd(e€) ] vs
val); after FMRI signals from a given slice are collected, it is nec- 109, € [Fig. 1(c)]. The size of this scaling region is about 5%
essary to wait a “scan repeat” tim@R) before the same slice can 0f the maximum extent of the attractor. We can read off the
be resampled. TE is the time that the spins are given to accrugalues forD, at sufficiently high embedding dimension in
BOLD contrast after spin excitation and before echo collection. this regime. Statistical fluctuation&ynamical complexity

30 D2 =~6.55+0.23

10 /
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m
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FIG. 2. The dlfft_arenceAgDz_) of correlation dimensions for thg . FIG. 4. The differencerAp) for the second and the third tasks
second and the third tasks with respect to the reference condition

L . . with respect to the reference conditioresy: there are significant
(res): there are significant differences in the valuesDgf ((AD,) differences in the values ahp ((mAp)=standard error mean for
+standard error mean fdr) the second task: 1.800.31 and(ii) . ) - . .
th d task: 1.7200.30 and(ii) the third task: 2.9 0.20
the third task: 3.280.30, shown in the insgtNote that all the (1) the second tas and(ii) the third tas '

shown in the inse(statistical significancep<0.01).
subjects displayed monotonically increasibg related to task dif- wn i insg(statist gnif @ )

ficulty (statistical significancegp<<0.01). ) ) o
and 2.9-0.2 from the first to the third tasks, as shown in Fig

h 4 These results support the hypothesis that the correlation

and noise¢ distort the scaling behavior below this length X " - i "
scale. At sufficiently high embedding dimensions, the valuegImenSIon of FMRI signals is higher in conditions that de-
mand a greater mental effort.

of D, estimated from this scaling region remained substan-
In order to compare our results based on the concepts

tially the samdFig. 1(d)]. . . . )
Similarly, after establishing a scaling region in the graphder've(.j from t'he theory (?f nor'llmer?\r dynamlgs to linear
of d(e) andmp(e) vs log e, we estimated correlation di- analy3|s |_nclud|ng conventional imaging analy_3|s for neuro-
mensions for all the subjects. We found that the correIatiorPhyS'Ok)g'Sts’ we comp_l_Jted) the mean amplitude of the
dimension changed significantly with the tasks: it was thes'gna.IS for e}]! the taskgji) the frequency power spectra of
highest for the calculation-finger-opposition task and thethe signals(iii) the number of correlated voxel pairs above
lowest for the reference task. Figure 2 summarizes the resul rtain threshold value of Spearman’s correlation coefficients
of the changes D) with tasks for all the subjects. With o contrast GP algorithm that counts the pairs of delay vec-
AD,, there is a siénificant dimension increase of 4@3  ©OrS within e radiug, and performed a standard general linear
(meantstandard error meaufrom the first to the second task mOdel analysis W'mngg[z.S]’ shown in Fig(5). The mean .
amplitude changed approximately by 0.5% between the first

T e 1% 1 thosecond tasks, and by 1.0% hetween th it and he
rest(l), finger oppositior(ll), and finger opposition plus cal- third tasks EStﬁt'St'cal S|gn|f|<|:ancep<|%10)|. The pOV\k/)er ¢
culation(lll) (calculated at= 20). Also withmAp, there is fSrF()aZ(l:th;]r(T:]y%eglfso':r'\gS)Ia?jlg:]?r:qije(;/r?g/eba;d)?r?nec:rgljjri?fi-er 0
also an increase of 1:70.3 from the first to the second task cult taskg/see Fig. 6a) for all the tasks IIIl in one subjekt
Figures @b)(I-Ill’) show average frequency spectrum of all
the subjects.The average spectrum preserves the dominant
frequency peaks at 0.05 and 0.1 Hz corresponding to the task
cycles for the second and the third tasks. The number of
correlated voxel pairs in the brain overall increased by 3%
from the first to the second task{0.10) and by 1% from
the second to the thirdp(<0.10). The general procedure for
, , , , statistical parametric mapping analysis is described here.
-5 -4 -3 -2 -1 0 Following motion correction, the functional FMRI images
log, (¢) were first spatially transformed into a commonly accepted
brain coordinate system using a 12-parameter affine transfor-
FIG. 3. For the three tasks#lrest, II=finger opposition, and Mation followed by nonlinear wrapping. These images were
Il =finger opposition plus calculatigrthe variation oimp(€) with spatially smoothed with an 8-mm isotropic Gaussian Kernel.
log,(e). There is a significant difference of the valuesnaf(e) at ~ Data were also bandpass filtered in the time domain to re-
the scaling regions for the different tasfteese curves were calcu- move high-frequency noise and artifactual signal drifts. The
lated form=20). statistical analysis was performed by modeling the two task

15

mp(e)
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(b)

(a) (b)

0 10 20
m

FIG. 7. For the multivariate surrogate dafa), local slopesi(e€)
vs log, € there is apparently no scaling region, aifl d(e) vs m

FIG. 5. The SPM analysis of the FMRI data collected during thefor .6%[0'17'0'23): there is no saturation cd(e), shown for a
regione~[0.17,0.23.

rest-tapping and calculation-tapping tasks. The black and white
spots inside the brain represent the significantly active voxels linearl . .
correlated with the hypothesized response. This is a static measu%@x and the supplementary motor area. The calculation elic-
of activity, shown for comparison with the dynamics resuiw.  ited additional activations in frontal and prefrontal cortex as
Tapping-vs-rest contrast, showing activated areas in the hand powell as in posterior parietal areas. This analysis indicates that
tion of the left primary sensorimotor cortex and in the supplemen-@ higher mental load may result in a more spatially distrib-
tary motor area, andb) calculation-vs-tapping contrast, showing uted activation and may be associated with higher levels of
several clusters of activations, located mostly in frontal, prefrontaljndependent neural processes.
and posterior parietal corticeghe probability threshold set at Experimental measurements are never noise-free. This
<0.05, corrected for multiple comparisons fact poses a concern for our calculation, which may be re-
lated to whether the results are due to correlated noise in the
conditions(finger tapping and calculatipras square waves FMRI data. To test this null hypothesis that the results are
convolved with a synthetic hemodynamic response functiondue to stochastic fluctuations, we constructed a number of
which were entered as separate effects in the statistical deaultivariate surrogate data from each data set by randomiz-
sign matrix. Figures @) and 3b) show the relative activa- ing their phases in the Fourier domaimithin the component
tions of brain areas in one subject during the second andnd across componentdut preserving their linear correla-
third tasks in the tapping-vs-rest and calculation-vs-tappingions[31,32. The null hypothesis was rejected as there was
contrasts, respectively. The finger-tapping task strongly actiapparently no scaling region with the surrogate date
vated the hand portion of the left primary sensorimotor cor-Figs. 7a) and 1b)]. This means that the deterministic part is

) {n (1

0.8 0.8 0.8

0.6 0.6 0.6
P

0.4 0.4 0.4

FIG. 6. Frequency spectrum

05 05 02 (spectral power P in arbitrary units
’ ' ’ ’ versus frequency, f, in Hz (a)
0 0 0 there are more peaks at higher fre-

0 01 02 03 04 05 0 01 02 03 04 05 0 01 02 03 04 05 quencies for the third tasklll)
f (Hz) f (Hz) fHz) than for the secondl) or the first
(1), and (b) the average spectrum
1 1 1 for all the subjects preserves the
(b) dominant frequency peaks at 0.05
0.8 0.8 0.8 and 0.1 Hz corresponding to the
task cycles of the second and the
0.6 0.6 0.6 third tasks.
<P>
0.4 0.4 0.4
0.2 0.2 M 0.2 K
0 Wk A 0 0 MJ\A M
0 01 02 03 04 05 0 01 02 03 04 05 0 01 02 03 04 05
f (Hz) f(Hz) f (Hz)
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dominant in the FMRI signals. Successful estimates of corniques. Particularly, the nonlinear measures based on the cor-
relation dimension indicate the presence of a dominant derelation sum from the reconstructed phase space are reliably
terministic dynamical structure governing a complex systensensitive to the complexity of the signals compared to the
such as the human brain and are, therefore, reflective of tHemear measures. Although the precise nature of the signals
level of dynamical complexity in the FMRI signals. that result in relative changes in these nonlinear measures
needs more investigation, one can say that these measures
are sensitive to changes in signal amplitude and frequency
IV. DISCUSSION: PHYSIOLOGICAL INTERPRETATIONS power spectrum. For example, let us consider two signals
AND FUTURE CHALLENGES with different amplitudes\; andA,. The correlation integral

Complex systems such as the human brain can be thouglt P algorithm measures the probability of finding a point
of as having enormous numbers of interrelated dependef@ir inside a hypersphere of radiasn a reconstructed space
variables. It may not be possible to measure all of thenff dimensionm and this probability is proportional to
directly. It is, therefore, intuitive to take these dimension(€/A1)™ and (/A;)™ for the two signals, respectively. The
estimates from different experimental conditions in a relative€lative increase in correlation integral is thus on the order of
sense. These results of increasing correlation dimension wittf\2/A1)™ (it is amplified in high-dimensional spacéven a
increasing task load indicate that more mental activity in-Simple change in amplitude can result in very noticeable
volves a higher number of temporally independent procességmnge in correlation dimensional measures. The frequency
contributing to the complexity of brain dynamics. The dy- of the signals car_1_a|so affect these measures in very _subtle
namic complexity of brain signals has been previouslyWays: t_he probability measure for point pairs to fall witkdn
shown to correlate with the conscious state of the subjecfadius is overall greater for higher frequency signals.

For example, cerebral blood flow is globally reduced during !N sSummary, our work suggests that the principal compo-
slow-wave sleep as compared to both wakefulness and rapents of FMRI signals can be used to estimate the correla'tlon
eye movement sleef®—11]. The differing dynamical com- dimension related to d|ffe_rent b_ehawor_al tasks. In a relative
plexities of the human brain can be understood as the resul&€nse, the correlation dimension estimates are useful dy-
of differing numbers of temporally independent neuronal ash@mical complexity measures in evaluating the level of men-
semblies that may also be spatially distributg8]. The ta_ll activity. The monotonic relat|onsh|p_of the correla_t|on
higher value of the correlation dimension during the calculadimension with the behavioral tasks indicated that a higher
tion task than during the other two tasks reflects the involvemental load is associated with a higher dynamical complex-
ment of more neuronal assemblies contributing to more comity: '_I'hese results indicate that hlg_her mental activity involves
plex FMRI signals. Because these are spatially distribute@ higher number of temporally independent neuronal pro-
networks, the increase in correlation dimension suggests th&€SSes contributing to complex brain dynamics. The findings
this increase in complexity changes the pattern of activity irSuggest potential applications of the variation of the correla-
both space and time. In effect, the brain uses more degrees Bpn dimension as a global measure of levels of brain activity.
freedom to accomplish a task of greater complexity. This had Nis applications of this measure may yield insight into the
important implications for the study of neural systems indynamic range of human intelligence and in characterizing
humans. certain mental disorders of brain function, like depression

Calculation of correlation dimensions provides us with@nd schizophrenia. For example, the relationship of intelli-
useful measures as to how many order parameters to expedgnce to b_ram fUﬂC_tIOn has been Inyestlgated with S|m|lar
even when the system, like the human brain, is spatiallPrain imaging techniquef7], suggesting that “general in-
extended, highly interconnected and very complex. Howeverelligence” is a function of frontal lobe activity. The afore-
the calculation always suffers from several experimental anéeéntioned study examined static correlations of brain activ-
theoretical limitations. For an exact determination of corre-ty With measures of individual performance. Further work is
lation dimension, the Grassberger-Procaccia algorithm rewarrrented to elucidate the relationship between spatial lo-
quires a long enough noise-free time series under steady sttglization of brain activity and its dynamic complexity. We
conditions. Unfortunately, in practice, these conditions carPelieve that bridging the measure of dynamic complexity
never be fulfilled completely by physiological measure-YV'th the spatial d!strlbutmn of. activity will ultimately yleld
ments, such as electroencephalography, magnetoencephald@'ghts not only into human intelligence but mental iliness
raphy, or FMRI. The calculation of dimension from brain @5 Well.
signals is a compromise with the experimental measurement
and also with the computationdl.e., size of the dataset
limitations (see also Ref§34—3€). Thus, the results of suc- ACKNOWLEDGMENTS
cessful dimensional estimates can be understood in a relative This work was sponsored by the National Institute of
sense, for instance, to compare dynamical complexity in difMental Health(Grant No. 1R01MH61010and the National
ferent situations. Given these limitations, we do not maintairinstitute on Drug AbuséGrant No. 1KO8DA0036), We are
that the absolute estimates of dimension reflect the true digrateful to Professor Arnold J. Mandell for many valuable
mension of the brain. Even so, the relative measures arguggestions and Professor Thomas Schreiber for the impor-
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