
PHYSICAL REVIEW E, VOLUME 65, 041917
Measurements of brain activity complexity for varying mental loads
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Using functional magnetic resonance imaging, we investigate the variation in dynamical complexity of
human brain activity for different mental loads. Our experiments measured the activity of ten subjects under
three experimental conditions: a rest condition, a periodic task of finger opposition, and a task of finger
opposition alternated with mathematical serial calculation. We used the correlation dimension to gauge the
spatiotemporal complexity of brain activity. The experiments show a direct relationship between this complex-
ity and the difficulty of the task. A natural interpretation is that higher levels of mental load recruit a larger
number of independent neural processes that contribute to complex brain dynamics. These results suggest the
possibility that the relative change in correlation dimension can be a useful global measure of brain dynamics,
e.g., in determining the levels of mental activity, even if little is known about the underlying neurological
processes.
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I. INTRODUCTION

The correlation dimension has been used widely in
analysis of experimental time series, including data from b
logical systems@1,2# since its introduction by Grassberg
and Procaccia@3#. In particular, it has been a useful glob
measure in the analysis of human electroencephalog
~EEG! data @4–8#. The complexity of electrical activity in
the brain is reported to correlate with global changes in m
tal state@9–11#. Theoretical models have also been propos
predicting that automatic behavior reflects processes of lo
complexity than those underlying consciously controlled
havior ~see Ref.@12#!.

From its inception, functional magnetic resonance im
ing ~FMRI! has been a powerful experimental tool for mon
toring spatiotemporal brain activity, with a wealth of ne
opportunities to advance our understanding of brain org
zation. Modern time series analysis provides natural c
cepts for exploring spatiotemporal complexity of the sort o
served in FMRI studies. In this paper, we report the variat
of the correlation dimension from FMRI signals of the h
man brain subject to different mental loads. The results d
onstrate that an increased mental load yields FMRI signal
greater dynamic complexity. This has a natural interpreta
that higher levels of mental activity are associated with
larger number of independent neural processes that con
ute to complex brain dynamics.

The FMRI signal, known as the blood-oxygen-leve
dependent~BOLD! contrast, represents the magnetic susc
tibility variation associated with neural activity@13,14#. A
local neuronal excitation results in a regional increase in
oxygen consumption followed by a change in cerebral blo
flow. This vascular overcompensation increases the net o
genation of venous blood, which is paramagnetic in
deoxygenated state while other tissue components as we
oxygenated blood are diamagnetic. The increase in bl
oxygenation of venous blood reduces the susceptibility
duced signals. The FMRI signals are thus dependent on
underlying neuronal activity, the hemodynamics of the bra
1063-651X/2002/65~4!/041917~7!/$20.00 65 0419
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and the imaging physics and yield a typical spatial resolut
of a few millimeters and with a temporal resolution of a fe
hundred milliseconds. To the first approximation, one c
think of the observed BOLD signals of FMRI as a smooth
version of the underlying neural activity.

The experiments reported here were designed to test
hypothesis that more difficult mental tasks are associa
with more dynamically complex FMRI signals. We set u
three experimental conditions: a reference condition~rest!, a
task of periodic finger opposition~finger tapping!, and an-
other task of periodic finger opposition alternated with ma
ematical calculation. These three tasks were selected to
a range of mental complexity, ranging from minimal~rest! to
high ~mathematical calculation!. The complexity of the cor-
responding spatiotemporal time series was analyzed by c
puting the correlation dimension. Because of certain pra
cal limitations concerning the length and resolution of t
acquired data, we used a modified algorithm to estimate
correlation dimension that takes advantage of the multiplic
of time series inherent in the spatially resolved images.

This paper is organized as follows. Section II contain
summary of the essential parts of the modified Grassber
Procaccia~GP! algorithm for correlation dimension est
mates from multiple time series. In Sec. III we describe
experimental setup and results. In Sec. IV we discuss
physiological interpretation of these results and outline a f
open problems that, if overcome, would substantia
enhance the use of complexity measures for future FM
studies.

II. BACKGROUND

In this section we briefly summarize the procedure
generating correlation dimension estimates from spatiot
poral time series. We also contrast this approach with
linear imaging analysis more conventionally used in FM
brain studies.

Principal Component Analysis~PCA!, also known as the
Karhunen-Loe´ve transformation, Singular Value Decompos
©2002 The American Physical Society17-1
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tion ~SVD! or Empirical Orthogonal Functions, is a commo
method to reduce the dimensionality and to extract impor
modes of activity from massive datasets, for example FM
data from the human brain. Implementation of PCA amou
to a search for the direction of maximum variance in t
dataset, followed by an orthogonal projection of data ont
subspace spanned by the direction vectors with highest v
ance. It has been indicated that PCA can extract qualitativ
nonlinear dynamical features from experimental time se
@15–17#. PCA is easily implemented by the singular val
decomposition of the data matrix.

A singular value decomposition ofM3N real matrixA is
any factorization of the formA5USVT, whereU is an M
3M orthogonal matrix,V is anN3N orthogonal matrix, and
S is an M3N diagonal matrix withSi j 50 if iÞ j and Sii
5s i>0, i.e., with leading diagonal elementss1>•••>s r
>0, r being min(M,N). The s i are the singular values, an
the first r columns ofU and V are the left and the righ
singular vectors, respectively. In the context of a spatiote
poral data matrix, such as FMRI data,U captures the tempo
ral and VT the spatial information from the data matr
AM3N , where M is the number of time points andN the
number of voxels~volume elements, i.e., sources of FMR
signals!. To represent the amount of independent contri
tion in the total variance of the data by each component,
assign the normalized eigenvalues ofS , i.e., s i

2/( i .1s i
2 , as

the weighting factors to the temporal components in the m
trix U. Taking the first few principal components weighte
with these factors will reduce the noise level while prese
ing the correct phase dynamics in the reconstructed spa

The Grassberger-Procaccia algorithm is based on an
propriate phase-space reconstruction. The time-delay em
ding is one popular method. Given a scalar time seriess(t),
one forms a sequence of vectorsx(t)5„s(t),s(t
1t), . . . ,s(t1@m21#t…, wherem is the embedding dimen
sion andt is the delay time. Under mild assumptions abo
the underlying dynamics, the nature of the measurem
function that producess(t), and the choice oft, it can be
shown that various dynamical quantities of the reconstruc
set are the same as those of the underlying attractor, prov
that m is suitably large@18,19#. In particular, if the correla-
tion dimension of the underlying attractor isD2, then m
>D2 allows one to determineD2 from an embedding of a
corresponding time series@20#, andm>2D211 suffices to
produce a diffeomorphism between the embedded set an
underlying attractor under mild assumptions@19#.

Grassberger and Procaccia@3# have shown thatD2 can be
evaluated by using the correlation integralC(e), which is
defined to be the probability that a pair of points chos
randomly with respect to the natural measure is separate
a distance less thane on the reconstructed set. For a traje
tory of lengthN, the correlation integral can be approximat
by the sum,

CN~e!5
2

N~N21! (
j 51

N

(
i 5 j 11

N

Q~e2ixi2xj i !, ~1!

where Q is the Heaviside function@Q(x)51 if x>0 and
Q(x)50 otherwise#, andi•i denotes a suitable vector norm
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say ixi5max$ixii:1<i<m%. For largeN, the correlation di-
mensionD2 is given by

D25 lim
e→0

lim
N→`

d log2 CN~e!

d log2 e
. ~2!

Thus for a single long time series, once the embedding v
tors are reconstructed, the estimation of the correlation
mension is done in two steps. First, one has to determine
correlation sumC(e) for the range ofe available and for
several embedding dimensionsm. Then, for a given value of
m, one looks for a plateau in the plot ofd log2 C(e)/d log2 e
versus log2 e to estimate the value ofD2. The presence of a
plateau indicates self-similar structure known as fractal@21#.
Data collected at a high sampling rate usually contain te
poral correlations in the phase space that presents a bia
the calculation of the correlation sum. In that case, it is s
gested that the points that are too close in time need to
discarded, which is known as the Theiler correction@22#.

Multiple time series, for example, spatiotemporal seri
can be assumed to be either independent realizations o
same observable in a given system or different observa
of a single attractor measured simultaneously. T
Grassberger-Procaccia algorithm can be easily adapted
multiple time series by separately embedding each time
ries and, in the correlation sum, by counting the pair
points ~from all the series! that fall inside a hypersphere o
radiuse around the center. Thus, for multiple series, the c
relation sum can be written as

CNT
~e!5

2

NT~NT21! (
j 51

NT

(
i 5 j 11

NT

Q~e2iX i2X j i !, ~3!

where NT5N11N21•••1NK and X is the set of all the
delayed vectors, i.e,$$xi

1% i 51
N1 ,$xi

2% i 51
N2 , . . . ,$xi

K% i 51
NK %, where

xi
(1,2, . . . ,K)’s are the delay vectors constructed from ind

vidual time series. HereN1 , N2 , . . . are the numbers o
delayed vectors in the reconstructed space fromK number of
time series. In this reconstructed space of delay vectorsX,
the correlation sum, as defined in Eq.~3!, measures the prob
ability that a randomly selected pair of delay coordina
points from the vector setX is separated by a distance le
thane. D2 is then determined from the converging platea
~corresponding to different m) in the plot of
d log2@CNT

(m,e)#/d log2(e) vs log2(e) by the similar procedure
as defined by Eq.~2!. This sum from multiple series is
known as the cross correlation sum and can be used as
measure of overlap of multiple time series@23#. Although a
fundamental mathematical understanding is lacking, the
lidity of the phase-space reconstruction from multiple ser
has been checked with mathematical models@24,25#. Re-
search reporting improved results for correlation dimens
and density estimates with multiple channel EEG data@4,26#
also support the applicability of this scheme for multip
time series. With some normalization scheme, the dimens
density can be defined as@27#

r~e,m!5
d log2 CNT

~m,e!/m

d log2 CNT
~1,e!

~4!
7-2
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MEASUREMENTS OF BRAIN ACTIVITY COMPLEXITY . . . PHYSICAL REVIEW E65 041917
and then the correlation dimension is justmr(e,m) at the
scaling regions.

III. FMRI EXPERIMENT AND RESULTS

Ten normal, right-handed subjects~five males and five
females!, aged between 23 to 36, participated in this stud1

Subjects were asked to perform three different tasks du
three functional runs of FMRI. These experimental tas
were: ~i! rest ~reference condition!, ~ii ! rest alternated with
finger opposition, and~iii ! mathematical calculation alter
nated with finger opposition. The order of these tasks p
sented was randomized across subjects. In the first task~ref-
erence condition!, subjects were asked to relax and rest in
scanner for 500 scans~500 s!. The second task consisted
twenty-five epochs of rest alternated with finger opposit
~10 s each!. With visual instructions on a screen, subjec
were asked to rest and to tap their index fingers to th
thumb on the right hand in periodic cycles for about 500
The final task was 25 cycles of mathematical calculation
ternated with finger opposition. The mathematical calcu
tion involved successive subtractions of 17 from a rand
three-digit number. We hypothesized that these tasks wo
present an increasing mental load resulting in an increa
degree of complexity of FMRI signals and that the comple
ity would be different enough to be captured in correlati
dimension estimates.

All imaging was performed on a Philips 1.5 T Intera i
strument. Each imaging session consisted of a scout ima
T1-weighted structural scan, and three runs of 500 sc
each in the functional sessions. Each functional scan
acquired with eight slices each with 8 mm thickness a
orientation of slice planes of about 10° down from the an
rior commissure–posterior commissure line@echo-planar im-
aging, gradient-recalled repetition time (TR)51000 ms,
echo time (TE)540 ms, flip angle581°, 64364 matrix#.2

This imaged a major portion of the brain comprising areas
hypothesized motor and cognitive activations. Before the
traction of principal components, each functional run w
corrected for head of subjects movement using a 6 deg
of freedom rigid-body transformation as implemented in
software package calledSPM99 @28#.

We used singular value decomposition to reduce
FMRI data from a large number of signal sources (8364
364 voxels! into a few dominant modes of spatiotempor
activity. Each temporal component of SVD (U as defined in
Sec. II! had 500 data points that evolved in time as the s
nals were sampled at 1 Hz. We extracted a number of c
ponents from the FMRI data and used 50 properly weigh
components that accounted for more than 96% residual v

1This study was approved by the Human Investigations Comm
tee, Emory University.

2TR is time resolution of the FMRI data~or the sampling inter-
val!; after FMRI signals from a given slice are collected, it is ne
essary to wait a ‘‘scan repeat’’ time~TR! before the same slice ca
be resampled. TE is the time that the spins are given to ac
BOLD contrast after spin excitation and before echo collection.
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ance~the first component being excluded! in the dataset of
each run. The first component was excluded because it
resented the variance due to different brain tissues other
those involved in the functional dynamics, as revealed by
inspection of the image of the corresponding spatial mo
The extraction of useful principal components has the adv
tage of reducing both computational load and noise in
signals. Out of all the components (503500 time points!,
with a separate time-delay embedding scheme, a phase s
was reconstructed for embedding dimension~m! from 2 to
25. With the delay vectors constructed from 25 000 d
points, one could estimate the correlation dimension as h
as 10 if the scaling region occurs fore>0.14 @29#. Figure
1~a! shows a projection of 15-dimensional phase space o
two dimensions, constructed with a delay time of 6s from 50
principal components of the FMRI data collected from o
subject doing the second task. We remark here that su
phase space constructed from multiple time series has
joint sets and cannot be used to observe continuously ev
ing dynamics. However, the cross-correlation sum can
be calculated for such sets to a good precision and is es
tially identical to their~auto! correlation sums above certai
length scale@23#. The plot indicates nonlinearity in the dat
because the phase portrait is not symmetrical with respec
reflection in the diagonal line. In contrast, for a random p
cess, the phase portrait would be symmetrical@30#. Figure
1~b! is a plot of log2 C(e) vs log2 e for the same data. The plo
indicates power law behavior of the correlation sums w
most of the length scalee at all reconstructed phase space
dimensionsm52 to 25. A scaling behavior is apparent fo
eP@0.12,0.17# as shown in the plot of local slopes@d(e)# vs
log2 e @Fig. 1~c!#. The size of this scaling region is about 5%
of the maximum extent of the attractor. We can read off
values forD2 at sufficiently high embedding dimension i
this regime. Statistical fluctuations~dynamical complexity

t-

-

ue

FIG. 1. ~a! Phase portrait~delay time 6 s! for the principal
components of FMRI data from the rest plus finger-tapping task,~b!
log2 C(e) vs log2 e, ~c! Local slopes@d(e)# vs log2 e ~a clear scaling
behavior for eP@0.12,0.17#, between two dotted lines!, and ~d!
d(e) vs m for e'@0.12,0.17#.
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DHAMALA, PAGNONI, WIESENFELD, AND BERNS PHYSICAL REVIEW E65 041917
and noise! distort the scaling behavior below this leng
scale. At sufficiently high embedding dimensions, the val
of D2 estimated from this scaling region remained subst
tially the same@Fig. 1~d!#.

Similarly, after establishing a scaling region in the gra
of d(e) and mr(e) vs log2 e, we estimated correlation di
mensions for all the subjects. We found that the correlat
dimension changed significantly with the tasks: it was
highest for the calculation-finger-opposition task and
lowest for the reference task. Figure 2 summarizes the res
of the changes (DD2) with tasks for all the subjects. With
DD2, there is a significant dimension increase of 1.860.3
~mean6standard error mean! from the first to the second tas
and 3.260.3 from the first to the third. Figure 3 shows th
comparison of three curves ofmr(e) vs log2(e) for the tasks,
rest~I!, finger opposition~II !, and finger opposition plus cal
culation~III ! ~calculated atm520). Also withmDr, there is
also an increase of 1.760.3 from the first to the second tas

FIG. 2. The difference (DD2) of correlation dimensions for the
second and the third tasks with respect to the reference cond
~rest!: there are significant differences in the values ofD2 (^DD2&
6standard error mean for~i! the second task: 1.8060.31 and~ii !
the third task: 3.2060.30, shown in the inset!. Note that all the
subjects displayed monotonically increasingD2 related to task dif-
ficulty ~statistical significance,p,0.01).

FIG. 3. For the three tasks (I5rest, II5finger opposition, and
III 5finger opposition plus calculation!, the variation ofmr(e) with
log2(e). There is a significant difference of the values ofmr(e) at
the scaling regions for the different tasks~these curves were calcu
lated form520).
04191
s
-

n
e
e
lts

and 2.960.2 from the first to the third tasks, as shown in F
4. These results support the hypothesis that the correla
dimension of FMRI signals is higher in conditions that d
mand a greater mental effort.

In order to compare our results based on the conce
derived from the theory of nonlinear dynamics to line
analysis including conventional imaging analysis for neu
physiologists, we computed~i! the mean amplitude of the
signals for all the tasks,~ii ! the frequency power spectra o
the signals,~iii ! the number of correlated voxel pairs abo
certain threshold value of Spearman’s correlation coefficie
~to contrast GP algorithm that counts the pairs of delay v
tors withine radius!, and performed a standard general line
model analysis withSPM99@28#, shown in Fig.~5!. The mean
amplitude changed approximately by 0.5% between the
and the second tasks, and by 1.0% between the first and
third tasks ~statistical significance,p,0.10). The power
spectrum of the FMRI signals revealed a larger number
frequency peaks~or broader frequency band! for more diffi-
cult tasks@see Fig. 6~a! for all the tasks I–III in one subject#.
Figures 6~b!~I–III ! show average frequency spectrum of
the subjects.The average spectrum preserves the dom
frequency peaks at 0.05 and 0.1 Hz corresponding to the
cycles for the second and the third tasks. The numbe
correlated voxel pairs in the brain overall increased by 3
from the first to the second task (p,0.10) and by 1% from
the second to the third (p,0.10). The general procedure fo
statistical parametric mapping analysis is described h
Following motion correction, the functional FMRI image
were first spatially transformed into a commonly accep
brain coordinate system using a 12-parameter affine trans
mation followed by nonlinear wrapping. These images w
spatially smoothed with an 8-mm isotropic Gaussian Kern
Data were also bandpass filtered in the time domain to
move high-frequency noise and artifactual signal drifts. T
statistical analysis was performed by modeling the two t

on
FIG. 4. The difference (mDr) for the second and the third task

with respect to the reference condition~rest!: there are significant
differences in the values ofmr (^mDr&6standard error mean fo
~i! the second task: 1.7060.30 and~ii ! the third task: 2.9060.20,
shown in the inset!~statistical significance,p,0.01).
7-4
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MEASUREMENTS OF BRAIN ACTIVITY COMPLEXITY . . . PHYSICAL REVIEW E65 041917
conditions~finger tapping and calculation! as square wave
convolved with a synthetic hemodynamic response funct
which were entered as separate effects in the statistica
sign matrix. Figures 5~a! and 5~b! show the relative activa
tions of brain areas in one subject during the second
third tasks in the tapping-vs-rest and calculation-vs-tapp
contrasts, respectively. The finger-tapping task strongly a
vated the hand portion of the left primary sensorimotor c

FIG. 5. The SPM analysis of the FMRI data collected during
rest-tapping and calculation-tapping tasks. The black and w
spots inside the brain represent the significantly active voxels line
correlated with the hypothesized response. This is a static mea
of activity, shown for comparison with the dynamics results.~a!
Tapping-vs-rest contrast, showing activated areas in the hand
tion of the left primary sensorimotor cortex and in the supplem
tary motor area, and~b! calculation-vs-tapping contrast, showin
several clusters of activations, located mostly in frontal, prefron
and posterior parietal cortices~the probability threshold set atp
,0.05, corrected for multiple comparisons!.
04191
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tex and the supplementary motor area. The calculation e
ited additional activations in frontal and prefrontal cortex
well as in posterior parietal areas. This analysis indicates
a higher mental load may result in a more spatially distr
uted activation and may be associated with higher levels
independent neural processes.

Experimental measurements are never noise-free. T
fact poses a concern for our calculation, which may be
lated to whether the results are due to correlated noise in
FMRI data. To test this null hypothesis that the results
due to stochastic fluctuations, we constructed a numbe
multivariate surrogate data from each data set by random
ing their phases in the Fourier domain~within the component
and across components!, but preserving their linear correla
tions @31,32#. The null hypothesis was rejected as there w
apparently no scaling region with the surrogate data@see
Figs. 7~a! and 7~b!#. This means that the deterministic part

e
te
ly
ure

or-
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FIG. 7. For the multivariate surrogate data,~a! local slopesd(e)
vs log2 e: there is apparently no scaling region, and~b! d(e) vs m
for e'@0.17,0.22#): there is no saturation ofd(e), shown for a
regione'@0.17,0.22#.
s

e-

e
5
e
e

FIG. 6. Frequency spectrum
~spectral power P in arbitrary unit
versus frequency, f, in Hz!: ~a!
there are more peaks at higher fr
quencies for the third task~III !
than for the second~II ! or the first
~I!, and ~b! the average spectrum
for all the subjects preserves th
dominant frequency peaks at 0.0
and 0.1 Hz corresponding to th
task cycles of the second and th
third tasks.
7-5
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dominant in the FMRI signals. Successful estimates of c
relation dimension indicate the presence of a dominant
terministic dynamical structure governing a complex syst
such as the human brain and are, therefore, reflective o
level of dynamical complexity in the FMRI signals.

IV. DISCUSSION: PHYSIOLOGICAL INTERPRETATIONS
AND FUTURE CHALLENGES

Complex systems such as the human brain can be tho
of as having enormous numbers of interrelated depen
variables. It may not be possible to measure all of th
directly. It is, therefore, intuitive to take these dimensi
estimates from different experimental conditions in a relat
sense. These results of increasing correlation dimension
increasing task load indicate that more mental activity
volves a higher number of temporally independent proces
contributing to the complexity of brain dynamics. The d
namic complexity of brain signals has been previou
shown to correlate with the conscious state of the subj
For example, cerebral blood flow is globally reduced dur
slow-wave sleep as compared to both wakefulness and r
eye movement sleep@9–11#. The differing dynamical com-
plexities of the human brain can be understood as the re
of differing numbers of temporally independent neuronal
semblies that may also be spatially distributed@33#. The
higher value of the correlation dimension during the calcu
tion task than during the other two tasks reflects the invol
ment of more neuronal assemblies contributing to more c
plex FMRI signals. Because these are spatially distribu
networks, the increase in correlation dimension suggests
this increase in complexity changes the pattern of activity
both space and time. In effect, the brain uses more degre
freedom to accomplish a task of greater complexity. This
important implications for the study of neural systems
humans.

Calculation of correlation dimensions provides us w
useful measures as to how many order parameters to ex
even when the system, like the human brain, is spati
extended, highly interconnected and very complex. Howe
the calculation always suffers from several experimental
theoretical limitations. For an exact determination of cor
lation dimension, the Grassberger-Procaccia algorithm
quires a long enough noise-free time series under steady
conditions. Unfortunately, in practice, these conditions c
never be fulfilled completely by physiological measur
ments, such as electroencephalography, magnetoenceph
raphy, or FMRI. The calculation of dimension from bra
signals is a compromise with the experimental measurem
and also with the computational~i.e., size of the dataset!
limitations ~see also Refs.@34–36#!. Thus, the results of suc
cessful dimensional estimates can be understood in a rel
sense, for instance, to compare dynamical complexity in
ferent situations. Given these limitations, we do not maint
that the absolute estimates of dimension reflect the true
mension of the brain. Even so, the relative measures
meaningful.

Although linear analysis is generally useful, the reliabil
of the analysis can be enhanced by the use of nonlinear t
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niques. Particularly, the nonlinear measures based on the
relation sum from the reconstructed phase space are reli
sensitive to the complexity of the signals compared to
linear measures. Although the precise nature of the sig
that result in relative changes in these nonlinear meas
needs more investigation, one can say that these meas
are sensitive to changes in signal amplitude and freque
power spectrum. For example, let us consider two sign
with different amplitudesA1 andA2. The correlation integral
in GP algorithm measures the probability of finding a po
pair inside a hypersphere of radiuse in a reconstructed spac
of dimension m and this probability is proportional to
(e/A1)m and (e/A2)m for the two signals, respectively. Th
relative increase in correlation integral is thus on the orde
(A2 /A1)m ~it is amplified in high-dimensional space!. Even a
simple change in amplitude can result in very noticea
change in correlation dimensional measures. The freque
of the signals can also affect these measures in very su
ways: the probability measure for point pairs to fall withine
radius is overall greater for higher frequency signals.

In summary, our work suggests that the principal comp
nents of FMRI signals can be used to estimate the correla
dimension related to different behavioral tasks. In a relat
sense, the correlation dimension estimates are useful
namical complexity measures in evaluating the level of m
tal activity. The monotonic relationship of the correlatio
dimension with the behavioral tasks indicated that a hig
mental load is associated with a higher dynamical compl
ity. These results indicate that higher mental activity involv
a higher number of temporally independent neuronal p
cesses contributing to complex brain dynamics. The findi
suggest potential applications of the variation of the corre
tion dimension as a global measure of levels of brain activ
This applications of this measure may yield insight into t
dynamic range of human intelligence and in characteriz
certain mental disorders of brain function, like depress
and schizophrenia. For example, the relationship of inte
gence to brain function has been investigated with sim
brain imaging techniques@37#, suggesting that ‘‘general in
telligence’’ is a function of frontal lobe activity. The afore
mentioned study examined static correlations of brain ac
ity with measures of individual performance. Further work
warrrented to elucidate the relationship between spatial
calization of brain activity and its dynamic complexity. W
believe that bridging the measure of dynamic complex
with the spatial distribution of activity will ultimately yield
insights not only into human intelligence but mental illne
as well.
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