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Analyses of transient chaotic time series
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We address the calculation of correlation dimension, the estimation of Lyapunov exponents, and the detec-
tion of unstable periodic orbits, from transient chaotic time series. Theoretical arguments and numerical
experiments show that the Grassberger-Procaccia algorithm can be used to estimate the dimension of an
underlying chaotic saddle from an ensemble of chaotic transients. We also demonstrate that Lyapunov expo-
nents can be estimated by computing the rates of separation of neighboring phase-space states constructed from
each transient time series in an ensemble. Numerical experiments utilizing the statistics of recurrence times
demonstrate that unstable periodic orbits of low periods can be extracted even when noise is present. In
addition, we test the scaling law for the probability of finding periodic orbits. The scaling law implies that
unstable periodic orbits of high period are unlikely to be detected from transient chaotic time series.
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[. INTRODUCTION system is that the chaotic phases, which contain the essential
information about the chaotic saddle, are relatively short. In
In many experiments, the measured signals often exhibithis paper, we show that many of the standard algorithms
irregular behavior during an initial interval before finally set- that are used to estimate dynamical quantities from time se-
tling into an asymptotic state that is nonchaotic. The convenries of sustained chaotic processes can be applied to en-
tional wisdom may be simply to disregard the transient porsembles of shorter, transient chaotic time series. It is not
tion of the data and to concentrate on the final state. Byecessary to construct a single long time series from a set of
doing this, however, information about the system may beshorter ones. All that is required is a collection of transient
lost, because the irregular part of the data may contain imtime series, starting from different initial conditions but for
portant hints about the system dynamics. This is particularlfhe same system parameters.
true when the underlying dynamics is deterministic and ex- The organization of this paper is as follows. In Sec. Il, we
hibits transient chaosl—3]. While there has been a tremen- argue and provide numerical support that the Grassberger-
dous amount of work on analyzing time series from chaotidProcaccig GP) algorithm[11], which has been demonstrated
attractors[4], to our knowledge the problem of analyzing to work well for long time series from chaotic attractors,
transientchaotic time series has not been addre$5¢dThe  works equally well for an ensemble of short transient chaotic
purpose of this paper is to address some aspects of this inime series. In Sec. Ill, we address the estimation of
portant problem: computing the correlation dimension fromLyapunov exponents of chaotic saddles from ensembles of
experimentally measured transient chaotic time series, exransient chaotic time series. In Sec. IV, we demonstrate that
tracting Lyapunov exponents, and detecting unstable perunstable periodic orbits of relatively low period can be de-
odic orbits embedded in the underlying chaotic invariant setected reliably from ensembles of transient chaotic time se-
that is responsible for transient chaos. ries, provided that each individual ensemble is sufficiently
Nonattracting chaotic saddles are the dynamical invariantarge. This result should be useful to experimentalists, be-
sets that give rise to transient chdds-3]. Because such a cause the successful detection of unstable periodic orbits
saddle is chaotic but nonattracting, a trajectory starting fronfrom transient chaotic time series means ttiatthe under-
a typical initial condition in a phase-space region containindying dynamics may exhibit sustained chaotic behavior for
the saddle stays near the saddle for a tigménibiting chaotic  nearby parameter values, a(& many dynamical invariants
behavioj, and then exits the region and asymptotes to a finabf the chaotic saddle may be estimated because unstable pe-
state. Physically, chaotic saddles lead to observable phenomiedic orbits can be related to the natural measure of the
ena such as chaotic scatterifg], fractal basin boundaries chaotic saddl¢12,13. In Sec. IV, we derive a scaling law
[7], fractal concentrations of passive particles advected irfior the probability of finding periodic orbits. We have re-
open hydrodynamical flowg8], and fractal distribution of ported briefly in our previous papgt4] on the detection of
chemicals in environmental flow®]. Mathematically, cha- unstable periodic orbits by utilizing transient chaotic time
otic saddles are closed, bounded, and invariant sets witberies from the Heon map[15]. Besides completeness, the
dense orbits. Like chaotic attractors, a chaotic saddle hasurpose of including Sec. IV is to address detection of un-
embedded within it an infinite number of unstable periodicstable periodic orbits embedded in chaotic saddles of more
orbits that constitute its “skeleton{10]. realistic systems. In particular, we utilize a model electrical
The primary difficulty in dealing with a transient chaotic power system and also the Ikeda-Hammel-Jones-Moloney
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(IHIM) map[16] as our examples. Finally, a discussion is corresponding trajectories will leav® eventually as time

presented in Sec. V. progresses. They do so by being attracted along the stable
manifold, wandering near the chaotic saddle, and then exit-
II. COMPUTING THE CORRELATION DIMENSION ing along the unstable manifold. LBk(n) be the number of

trajectories that still remain i at timen. For largen, N(n)

All analyses of chaotic time series depend on an approgecreases exponentially due to the chaotic but nonattracting
priate embedding; the time-delay embedding method is ongatyre of the saddIE2d]:

popular method. Given a time serie§), one forms a se-
guence of vectorg(t) =(s(t),s(t+T), ... s(t+(d—1)T)), N(n)=Nge "7, 3
whered is the embedding dimension aiids the delay time.
Under mild assumptions about the underlying dynamics, thavhere 7 is the average lifetime of the trajectories on the
nature of the measurement function that produsfgy, and  chaotic saddle.
the choice ofT, it can be shown that various dynamical Because of the nonattracting nature of the chaotic saddle,
quantities of the reconstructed set are the same as those tbf definition of the natural measure is somewhat more com-
the underlying attractor, provided thaltis suitably large plicated than that for a chaotic attractor. Because of the in-
[17,18. In particular, if the correlation dimension of the un- variance of the natural measure under the dynamics, it is
derlying attractor iD,, then, for an infinitely long, noiseless necessary in the definition to compensate for the escape of
time series, the choice af=D, allows one to determinB, chaotic trajectories. The standard approach is to choose an
from the trajectories in the reconstructed phase spiagg ensemble of initial conditions and ask where the resulting
and d=2D,+ 1 suffices to produce a diffeomorphism be- trajectories can be at different times. In particular, since tra-
tween the embedded set and the underlying attrd¢&jr jectories escape from the chaotic saddle along the unstable
Almost all works on computing the fractal dimension manifold, at large positive time, theN(n) trajectory points
from chaotic time series address the estimation of the correwill be in the vicinity of the unstable manifold. In order for
lation dimensiorD,, due to the fundamental observation by the points to stay near the unstable manifold at timeni-
Grassberger and Procacﬁm_] thatDZ can be evaluated by tlaIIy these points have to be in the vicinity of the stable
using the correlation integr&y(e,d), which is the probabil- manifold. At an intermediate time, the points are then con-
ity that a pair of points chosen randomly with respect to thecentrated near the chaotic saddle itself. These considerations
natura' measure are Separated by a distance |es$m|[he Iead to the formal definitions Of the natural measures Of the
reconstructed set of phase space of dimensdioRor a tra- unstable manifold, the stable manifold, and the chaotic

jectory of lengthN, the correlation integral can be approxi- saddle[12,22, as follows.

mated by the sum Let C be a small box withinS that contains part of the
unstable manifold. The natural measure associated with the
2 N unstable manifold irC can thus be defined as
Crn(ed) =~ 2 > O(e—[xi—x), @
N(N 1) jJ=1li=j+1 Nu(n,C)
uy(C)= lim lim ———, 4)
where © is the Heaviside functiof®(x)=1 if x=0 and n— +%Ng—o N(n)

©®(x) =0 otherwisg, and||-|| denotes a suitable vector norm, . o _

say|x||=max|x|:1<i=<d}. Asymptotically, the correlation WhereN(n,C) is the number of th&l(n) orbits inC at time

dimensionD, is given by[11] n. Similarly, the natural measure of the stable manifold in a
box C in Scan be defined as

. InCy(e,d)
D,=lim IlmT. (2 ©)= | i Ng(n,C)
e—0ON—® y = ium mm —————,
S nﬂ-f—ooNOHoo N(n)

©)

For a long time series from a chaotic attractor, the common . o o
numerical practice is to extrapolate the slope from a lineathere Ny(n,C) is the number of initial conditionsin C
fitting of In Cy(&d) versus Ire in an appropriate scaling re- Whose trajectories do not leaebefore timen. The defini-

gime [20] at a set of increasing values of the embeddingfions Egs.(4) and (5) mean that the natural measures asso-

dimensiond. For d<|D,|, where|D,| denotes the largest ciated with the stable and the unstable manifold<imre

integer less than or equal @, the slope is equal td. For ~ determined by the numbers of trajectory pointsirat time

d>|D,|, the slope saturates at a constant value which i€€r0 and timen, respectively. The natural measure of the

usually taken to be the estimated valueDnf. chaotic saddle,u, can then .be deflngd b_y cons@ermg
An important question is whether the GP paradigm EqsNm(p.n,C), the number of trajectory points i@ at a time

(1) and(2) is applicable to transient time series from chaoticPn between zero and:

saddles. Here we present a theoretical argument that appears

to provide an affirmative answer to this question. w(C)= lim lim Nm(p,n,C)’
First, we define the natural measure associated with a o toNgoee  N(N)

nonattracting chaotic saddle. Imagine a phase-space r&gion

that contains a nonattracting chaotic saddle. If a large numwhere 0<p<1, N(0,n,C)=Ng(n,C), and N,,(1n,C)

ber Ny of random initial conditions is distributed i8, the  =Ny(n,C). For largeN, andn, trajectories that remain i8

(6)
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stay near the chaotic saddle for most of the time between 0 . INCy . (€,d)
andn, except at the beginning when they are attracted toward D= lm —— —. (13)
the saddle along the stable manifold, and at the end when e=0M—e

they are exiting along the unstable manifold. Thus, the mea-
sure defined in Eq(6) is independent op, insofar as 6<p Equation(1l) indicates that, if one computes the correlation

<1. integral as defined in Eq10), the GP formulation is valid
Based on Eq(6), one can define the following dimension for transient chaotic time series as well.
spectrum for nonattracting chaotic saddl8 in analogy to To provide numerical support, we consider transient cha-
that of the chaotic attractdd1,23: otic time series from the H®n map[15]: (x,y)—(a—x?
+by,x) (a andb are parameteydor which the correlation
1 Inl(ge) dimension can be obtained both from the GP formulation Eq.
Dq:(q_l)em Ine ' () (11) and from a straightforward implementation of the box-

counting definition(7) by utilizing a long PIM(proper inte-
whereq is a continuous index,(q,e) =N ud, 4, is the rior maximum triple trajectqry on the' chaotic §add]é4].
natural measure of the chaotic saddle contained inithe Fora:1.5_ andb=0.3, there |s_achao_t|c saidle in the phase-
box, and the sum is over all té(e) boxes in a grid of size  SPace regiof— 2,2r]1>< [~ 2'2]~W'th lifetime TIN 3:])' The b?x'
e needed to cover the whole chaotic saddle. Lettjirge, we ~ cOUNting approach giveB,~1.2. To apply the GP algo-

obtain rithm, we generat® =5000 transient chaotic time series. To
guarantee that each time series reflects, approximately, the
N(e) natural measure of the chaotic saddle, we disregard both the
In E ,uf initial and final phases, and keep only 20 points from the
D.= i =1 0 In( i) middle of the time series. For a given embedding dimension
>=lim =lim , (8) ! . . i
.o Ine e Ine d, the number of trajectory points corresponding to each time

series is therb <20. We choose the delay time to be=1,
where(-) denotes the phase-space average over the chaotiormalize each time series to the unit interval, and compute
saddle. For a long, ergodic trajectory on the chaotic saddlghe correlation suntCy, | (e,d) at 100 values ok for —30
(wi) is approximately the probability that the trajectory <log, e<0 using embedding dimensions ranging frain
comes in thee neighborhood of a poink; on the chaotic =1 to d=8, as shown in Fig. &. For d>3, the local
saddle in théth box, which is given by the correlation inte- slopes of the plots appear to converge to a plateau value, as
gral in Eq.(1). From measurements, we do not have a longshown in Fig. 1b). We obtainD,~1.12, which agrees rea-
ergodic trajectory on the chaotic saddle. Instead, we can onlgonably well with the value oD, obtained from the box-
haveM transient chaotic time series, each of length.et p; counting algorithm. We note that due to the availability of
be the probability that the reconstructed trajectory comes tonly short time series the embedding dimension needs to be

the neighborhood of%; . We have much larger than the value &, itself to yield the correct
plateau value foD,, in contrast to the case of long time
M L . . .
1 series from chaotic attractors wheile=D, usually suffices
P~ L(L I 2 2 ~x=xily [19].
wherexirn .is thfajth trgjectory.point rgcc_)nstructed from the . ESTIMATING LYAPUNOV EXPONENTS
mth transient time series. Noting thisttis in fact the number o
N, of initial conditions in the definitior(6), we have Our approach for obtaining Lyapunov exponents from an

ensemble of transient chaotic time series is similar to that in
Mp; e ML - Refs.[25—29. We apply the same time-delay embedding to
Me-U7 ~ ML(L-1) E: 21 O (e—|Ix"=xil). each of the transient time series. Linear approximations of
the dynamics at each point in the resulting ensemble are
constructed using least squares, as described in [REF.
(Care is taken to avoid points in the reconstruction that have
no image in the same transient time sejid&s.this way, we
(pi)=~e“"Cy L(€,d), (9)  obtain models of the forny;=T,x; +b;, which approximate
' the dynamics in a neighborhood xf. A QR decomposition
where of a suitable product of th&'s, as described in Ref§26—
vooL L 28], can be used to obtain approximations of the Lyapunov
B m exponents.
~ ML(L—-1) mE:1 21 j:;j# O (e=[>x"=x) As a numerical experiment, we generate an ensemble of
(10) chaotic transients from the iHen map for the parameter
pairs @,b)=(1.46,0.3) and4,b)=(1.50,0.3). We generate
is defined to be the correlation integral associated with 21 000 points near the chaotic saddle using 300 random ini-
observations of transient chaos, each consisting pbints tial conditions in[ —2,2] X[ —2,2] for the casea=1.46 and
in the reconstructed phase space. We then have 700 random initial conditions faa=1.50.(The average life-

L/T

M=

Averaging over all pointg; in the reconstructed phase space,
we obtain
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FIG. 1. For the Heon map,
. (a) log, C(e,d) versus loge, and
o -15f . D15k . (b) log, C(e,d)/log,e versus
o log,e at a=1.5p=0.3. The
73

curves with comparatively higher

slopes correspond to higher em-
20+ . 1+ ‘_,,___\,/\ H bedding dimensions.
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time of the chaotic transients is about 70 iterates dor relatively accurate, particularly for the positive exponent, as
=1.46 and 30 iterates fa=1.50) A two-dimensional em- shown in Figs. 43) and 4b) for transient chaos a=1.46
bedding with a time delay of 1 is constructed from eachand a=1.50, respectively. In the figures, the dashed lines
collection of time series. Local linear maps are computedndicate the correct values of the corresponding positive and
using least squares for each neighborhood. negative exponents. We note that the difficulty in obtaining
In the casea=1.46, each transient time series consists Ofgood estimates for the negative Lyapunov exponents from
about 70 iterates. Thus, the “Lyapunov exponents” that argjme series is a common problem even for sustained chaos

computed are actually finite-time approximations, where wg27], because of the issue of accurately determiningftiie
consider a suitable product of the 70 or so linear maps assQacobian matriceg30].

ciated with points on the individual transient time series.
Similarly, whena=1.50, we consider products of 30 or so

linear maps. Figure(2) shows the distribution of the largest 4 @ 0.4 ®)
Lyapunov exponenht, computed from the ensembles of
time series fom=1.46, and Fig. () shows the distribution 0.3} <A>;~044+0.05 03 <h>,~-1.72+0,06

of the values ofA,. We obtain\;=0.44+0.05 and\,=
—1.72+0.06 (the second value is the standard deviation of

each distribution Similarly, for a=1.50, we obtain\; 0.1 0.1
=0.54+0.06 and\,= —1.77+0.08. Ul Hm“” ... miIRIR

0.2

To assess the reliability of these estimates, we compute §5 0.4 0.6 9% 1.8 1.6
long PIM triple trajectories of the corresponding chaotic © A, (a=1.46) . A, (a=1.46)
saddles. Then, using the associated Jacobian matrices at eap 4 0.4 (@

point, we compute finite-time Lyapunov exponents over sec-
tions of 70 iterates and 30 iterates, respectively, dor 03
=1.46 anda=1.50. Figure 3 shows the resulting distribu-
tions, which are centered around =0.44 and\,=—1.64
(a=1.46), and\;=0.54 and\,=—1.72 (@=1.50). (The 0.1 0.1 i
standard deviations are smallThis numerical experiment HHHH “H”ﬂﬂnn
suggests that the Lyapunov exponents from low dimensiona 35 04 o6 08 S48 _1s

chaotic saddles can be computed with reasonable accurac A (a=1.50) A, (8= 1.50)

provided that sufficiently many observations are available !

and the noise level is low. Specifically, for noise belew FIG. 2. (a)—(d) The distributions of Lyapunov exponents of the
=101 (about 2.5% of the transient chaotic signal the ~ Hénon map for chaotic transients at the two parameter values of
Henon map, the estimates of the Lyapunov exponent are stih=1.46 anda=1.50, respectively.

<7»>1 ~0.54 £ 0.06 <7»>2 =~ -1.77 £0.08

0.3

0.2 0.2
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(a) (b)

0.4 0.4 _} V£3 —
A, = 0.44 Ay~ —1.64 ‘ ¥of-8,-/2) VB 2) ‘
03} ! 0.3
Q E,£0 |_toas | E 25, O o
0.2 0.2 ‘ ‘
0.1 0.1
Q 0
0.2 ; 0.6 -2 -1.8 -1.6 ]
A (a=1.46 =
© ( ) @ A, (a=1.46)
0.4 0.4
A, ~ 0.52 A = -1.72 _
1 =
0.3 0.3 Sost
0.2 0.2
0 X X
B 01 0 50 100 150
t
8 2 0.4 0.6 0.8 02 18 1.6
’ x; (a=1.46) ' A, (a=1.46) FIG. 5. For the electrical power systef@ the model network,

and(b) a chaotic transient.
FIG. 3. ()—(d) The distributions of finite-time Lyapunov expo-
nents of the Heon map from the PIM triple trajectory at the two

parameter values ai—1.46 anda—1.50, respectively. For long chaotic time series, unstable periodic orbits can be

traced by following trajectories starting from the correspond-
ing (M, €) recurrent points.
In Ref. [14], the LK algorithm is adapted to detecting
Lathrop and KostelicHLK) [32] describe a simple algo- unstable periodic orbits from an ensemble of transient cha-
rithm to identify unstable periodic orbits from long time se- otic time series. The idea is essentially the same as that in the
ries from chaotic attractors, which is based on locating setsriginal formulation of the LK algorithn}32], i.e., to accu-
of recurrent points in the reconstructed attra¢®8]. Given  mulate a histogram of recurrence times from all time series
a positive e, one follows successive images of a starting ain the ensemble. As each individual time series is short, we
point x(t) to determine whether a valum>0 exists such expect to be able to detect at least periodic orbits of short
that||x(t+m)—x(t)||< e. If such anm exists, therx(t) is an  periods(the issue of long periods is addressed later in this
(m, €) recurrent point andm is the recurrence time. A re- Section. It is not necessary to attempt to concatenate many
current point needs not be periodic, but points that lie suffishort time series into a single long one, an approach that is
ciently close to periodic orbits are recurrent. Histograms ofusually problemati¢5].
recurrence times from embedded attractors can then be con- We have implemented and tested the LK algorithm for
structed and examined for valuesrofthat occur frequently. detecting unstable periodic orbits from various models of
chaotic systems. Here we report numerical results with tran-

IV. DETECTING UNSTABLE PERIODIC ORBITS

(a)a=146 sient time series of an electrical power system network
_______ D model at voltage collapge4,35. The electrical power sys-
o Or I tem is modeled by the network shown in Fig@ab The
< 1 model consists of two generatasith voltagesky andE,;,)
< o . ] and a loadconsisting of an induction motor andRQ load
_al . ] in paralle). There are four dynamical variableg) &,,, the
. generator phase angle, which is closely related to the me-
-4 -3 2 - chanical angle of the rotof2) o, the angular speed of the
(b)a=1.50 |°g1o€ rotor; (3) &, the load voltage phase angle; at V, the
7777777 B magnitude of the voltage provided to the load. The system is
or 1 described by the four autonomous ordinary differential equa-
< 1t ] tions[34]
< -2 ) .
3| on=a,
-3 2 log, o -

FIG. 4. For transient chaos in the kten map, effect of noise on Mw=—dnw+Pn—=EnVYnsin(n—4),

computation of Lyapunov exponeni®) a=1.46 and(b) a=1.50.
The dashed lines indicate the values of the two exponents in the )
absence of noise. Kquwd=—Kg2V?=Kg,V+Q(8r,8,V) —Qo—Qy,
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Recurrence time.m =t, -t V(1) power system(a) a histogram of
(© d recurrence time, trajectories near
0ss 2 G (b) period-1,(c) period-2, andd)
period-3 saddle.
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m 06
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> > 058
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and period-3 orbit§36]. These sample orbits belong to the

TKauwK po V=K puK o2 V2+ (KK g — K quwK pp) V
awee pukav2VF (KpuK gy =Kaulpu) set of recurrent points comprising the corresponding cluster

+Kgw P(0m,0,V) = Po—P4] of peaks in the histogram. In general, the LK algorithm can
identify many periodic orbits of low period.
~Kpul Q(6m,6,V) = Qo— Qul. (12 In an experimental setting, time series are usually con-

Th | and . lied to the load by th taminated by dynamical and/or observational noise. Noise
te rel? and reaclive powers supplied 1o the load by Ngqqyces the volume of every recurrent region in the phase
network are space and hence reduces the number of observed recurrent

_ . . _ points. A previous analysigl4] shows that the number of
P(6m.4,V) EoVYoSind+EmV Y sin(6m=2), observed recurrent points decreases linearly with increasing
B noise level. Nevertheless, numerical experiments suggest
Q(6m,6,V)=EqV Y, €085+ EpV Yy, COS 6~ &) that the LK algorithm can be used to identify potential saddle
—(Yo+ Y V2. periodic orbits even if the noise level is as large as 1% of the
root-mean-square value of the signal.
In our numerical simulation, the load, the network, and the _ W& now consider the probability of detecting periodic or-

generator parameter values are chosen td335 K bits from transient chaotic time seri¢37]. This consider-
=0.4, Kp,=0.3, Kqu=—0.03, Kg, =~ 2.8, Kg,p=2.1 p—‘f—’ ation is particularly relevant for transient chaos, because tra-

—8.5, P,=0.6, Qy=0.3, P,=0.0, Y,=3.33, Y,,=5.0, P,, jectories on a chaotic saddle have an average lifetiu

~1.0. d.=0.05 M=001464 E.=1.05. 0.=0. and 6 staying near the saddle and hence it is unlikely that a typical
—o0 ' o R ™ trajectory contains periodic orbits of period larger than ap-

There is a period-doubling cascade to chaos, and a crisRoximately 7. In our previous work14], we have shown
occurs atQ;.~2.560, after which the chaotic attractor is that the probability of detecting periodic orbits decreases ex-

converted into a chaotic saddle. Figui®Sshows a transient ponentﬁally with increasing period._ This res_ult is an intrinsic
voltage signal after the crisis. These time series are assuméjé(nam',cal property of the gnderlymg chaqtlc sad.dle. Hen(;e,
to be the only available data about the system. We then colt IS Unlikely to observe periodic orbits of high period even if
lect a number of such transient time series. construct thgwe number of measurements is increased or the noise level is

. ) . duced.
corresponding time-delay embeddings, and apply the LK al'® . . . . .
gorithm to each. We taketo be 2% of the root-mean-square The probability®(p) that a typical trajectory is found in

value of the time series. Figurdz shows the histogram of &1 € neighborhood ofiny periodp orbit is [14]
the recurrence times obtained by combining the statistics ®(p)~e MPIPN(p)~e(MPithIP_g=7 (13

from the entire ensemble of time series. Figurés)-66(d)
show, respectively, trajectories near period-1, period-2wherevy is the exponential scaling exponehy; is the topo-
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0 " ' ' ' ®(p). Figure 7 shows a plot of l(p) versusp, which
suggests an exponential decay with increagingvhere the
decay exponeny is given by the slope of the plot. To com-
pute the theoretical scaling exponents in Etf), it is nec-
essary to compute the Lyapunov exponents, the topological
entropy, and the lifetime of the chaotic saddles. The follow-
ing numerical algorithms are employed:) the PIM triple
algorithm [24,40Q for a long continuous trajectory on the
saddle(the Jacobian matrix is evaluated at each point on the
trajectory and the resulting collection is used to compute the
Lyapunov exponents of the chaotic sadd(@) the algorithm
in Ref. [41] for computing the topological entropy of the
chaotic saddle; anB) the sprinkler methof22] for estimat-
ing the lifetime7. For the IHIM map with the stated param-
) ‘ . . eter values, these computations yield;=0.56, X,
5 10 15 20 =-0.77, hy=0.54, and 7=28. The slope of the fitted
p straight line in Fig. 7 is 0.384 0.015. The theoretical scaling
FIG. 7. For the magg15) at C,;=0.4, C,=0.9, C5=6, andR exponent isy~0.365, as indicated by the dashed straight
=1.1, In®(p) versusp. The dotted line indicates the theoretically € iN Fig. 7. We see that the exponent extrapolated from the
predicted slope of Ifb(p) versusp. direct numerical simulation of(p) agrees reasonably well
with the predicted one in Eq14), which supports the argu-
|Ogica| entropy,N(p) is the number of periodic orbits of ment that the prObablllty of flndlng UnSt.able pe.riOdiC orbits
periodp, A is the largest Lyapunov exponent, aRg is the  in experimentally measured transient time series decreases
information dimension of the chaotic saddle. The Kaplan-exponentially with increasing period.
Yorke formula[22] relatesD; to the Lyapunov exponents
and the mean lifetimer of chaotic transients aB;=(\,

slope =~ -0.38

0

4t

In ®(p)

_sf slope ~-0.36

-8

-10
0

V. DISCUSSION

—1/7) (1N 1+ 1/N5[). This result and Eq(13) yield the scal- In this work, we demonstrate that the GP algorithm is
Ing exponent generally applicable for estimating the correlation dimension
9 of the chaotic saddle from an ensemble of transient chaotic
—\-—h i_i ﬁ time series. We present a numerical procedure with the ex-
Y )\1 T+ 1 . (1 ) - . .
INo| 7 INo| ample of the Haon map to find the rates of separation of

) o ) ) neighboring phase-space states constructed from each tran-
The scaling relation in E¢(13) and the analysis leading to gjent time series in an ensemble to extract Lyapunov expo-
the scaling exponent in Eq14) are applicable to chaotic npents, We also show that unstable periodic orbits of low
saddles of two-dimensional invertible maps and threeperiod can be detected reliably from an ensemble of transient
dimensional flows. Note that for chaotic attractors<{~)  chaotic time series by using the LK algorithm. Our numeri-

we havey~X\1—hr+\{/[\y]. _ _ ~cal analysis indicates that the LK algorithm is powerful for
Here we test Eq413) and(14) numerically using chaotic  extracting unstable periodic orbits at low noise level. We
saddles in the IHIM mafL6] further give a theoretical justification for the difficulty of

detecting periodic orbits of high period from transient chaos.
The theoretical scaling law is verified by numerical ex-

amples. Since the probability of detecting these orbits is ex-
ponentially small, as a matter of practicality it is perhaps

where 7=C,— Ca/(1+x2+y?) is the phase variable, and worthless to obtain long time series or to improve the tech-
n n 1

C,, C,, Cs, andR are parameters. The unstable periodicniq“e for detecting periodic orbits from transient chaos. We

orbits are g(')mputed utilizing the method in REg8]. There ~remark that, although there has been a tremendous amount of
is a chaotic saddle for the following set of parameter valuesVork on analyzing time series from chaotic attractors, the
C,=0.4,C,=0.9,C5=6, andR= 1.1, which is contained in analysis of transient chaotic time series remains a far less

explored area.

Xnt+1=R+Cy(X, cost—Yy,sin7),

Yn+1=Csy(X, SinT+y,COST), (15

the phase-space regidn-0.5,2.0 X[ —2.5,1]. We choose
10° random initial conditions in this region to obtain #10
transient time series, each of length of about 28. For each

periodp, we compute the frequency with which orbits on the  This work was sponsored by AFOSR under Grant No.
time series fall into a neighborho¢@9] of a saddle periodic F49620-98-1-0400 and by NSF under Grants No. PHY-
orbit of periodp. The results are accumulated to determine9996454 and No. ECS-9807529.
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