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We address the calculation of correlation dimension, the estimation of Lyapunov exponents, and the detec-
tion of unstable periodic orbits, from transient chaotic time series. Theoretical arguments and numerical
experiments show that the Grassberger-Procaccia algorithm can be used to estimate the dimension of an
underlying chaotic saddle from an ensemble of chaotic transients. We also demonstrate that Lyapunov expo-
nents can be estimated by computing the rates of separation of neighboring phase-space states constructed from
each transient time series in an ensemble. Numerical experiments utilizing the statistics of recurrence times
demonstrate that unstable periodic orbits of low periods can be extracted even when noise is present. In
addition, we test the scaling law for the probability of finding periodic orbits. The scaling law implies that
unstable periodic orbits of high period are unlikely to be detected from transient chaotic time series.
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I. INTRODUCTION

In many experiments, the measured signals often exh
irregular behavior during an initial interval before finally se
tling into an asymptotic state that is nonchaotic. The conv
tional wisdom may be simply to disregard the transient p
tion of the data and to concentrate on the final state.
doing this, however, information about the system may
lost, because the irregular part of the data may contain
portant hints about the system dynamics. This is particula
true when the underlying dynamics is deterministic and
hibits transient chaos@1–3#. While there has been a treme
dous amount of work on analyzing time series from chao
attractors@4#, to our knowledge the problem of analyzin
transientchaotic time series has not been addressed@5#. The
purpose of this paper is to address some aspects of this
portant problem: computing the correlation dimension fro
experimentally measured transient chaotic time series,
tracting Lyapunov exponents, and detecting unstable p
odic orbits embedded in the underlying chaotic invariant
that is responsible for transient chaos.

Nonattracting chaotic saddles are the dynamical invar
sets that give rise to transient chaos@1–3#. Because such a
saddle is chaotic but nonattracting, a trajectory starting fr
a typical initial condition in a phase-space region contain
the saddle stays near the saddle for a time~exhibiting chaotic
behavior!, and then exits the region and asymptotes to a fi
state. Physically, chaotic saddles lead to observable phen
ena such as chaotic scattering@6#, fractal basin boundarie
@7#, fractal concentrations of passive particles advected
open hydrodynamical flows@8#, and fractal distribution of
chemicals in environmental flows@9#. Mathematically, cha-
otic saddles are closed, bounded, and invariant sets
dense orbits. Like chaotic attractors, a chaotic saddle
embedded within it an infinite number of unstable perio
orbits that constitute its ‘‘skeleton’’@10#.

The primary difficulty in dealing with a transient chaot
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system is that the chaotic phases, which contain the esse
information about the chaotic saddle, are relatively short
this paper, we show that many of the standard algorith
that are used to estimate dynamical quantities from time
ries of sustained chaotic processes can be applied to
sembles of shorter, transient chaotic time series. It is
necessary to construct a single long time series from a se
shorter ones. All that is required is a collection of transie
time series, starting from different initial conditions but fo
the same system parameters.

The organization of this paper is as follows. In Sec. II, w
argue and provide numerical support that the Grassber
Procaccia~GP! algorithm@11#, which has been demonstrate
to work well for long time series from chaotic attractor
works equally well for an ensemble of short transient chao
time series. In Sec. III, we address the estimation
Lyapunov exponents of chaotic saddles from ensemble
transient chaotic time series. In Sec. IV, we demonstrate
unstable periodic orbits of relatively low period can be d
tected reliably from ensembles of transient chaotic time
ries, provided that each individual ensemble is sufficien
large. This result should be useful to experimentalists,
cause the successful detection of unstable periodic or
from transient chaotic time series means that~1! the under-
lying dynamics may exhibit sustained chaotic behavior
nearby parameter values, and~2! many dynamical invariants
of the chaotic saddle may be estimated because unstabl
riodic orbits can be related to the natural measure of
chaotic saddle@12,13#. In Sec. IV, we derive a scaling law
for the probability of finding periodic orbits. We have re
ported briefly in our previous paper@14# on the detection of
unstable periodic orbits by utilizing transient chaotic tim
series from the He´non map@15#. Besides completeness, th
purpose of including Sec. IV is to address detection of u
stable periodic orbits embedded in chaotic saddles of m
realistic systems. In particular, we utilize a model electri
power system and also the Ikeda-Hammel-Jones-Molo
©2001 The American Physical Society07-1



is

ro
on

th

al
se

n-
s

e-

n
rr
y

th

i-

,

o
ea
-
in
t

qs
tic
e

h
io
um

able
xit-

ting

he

dle,
om-
in-

it is
e of
e an
ing
tra-
able

r

le
n-

tions
the
tic

the

a

so-

he
g

DHAMALA, LAI, AND KOSTELICH PHYSICAL REVIEW E 64 056207
~IHJM! map @16# as our examples. Finally, a discussion
presented in Sec. V.

II. COMPUTING THE CORRELATION DIMENSION

All analyses of chaotic time series depend on an app
priate embedding; the time-delay embedding method is
popular method. Given a time seriess(t), one forms a se-
quence of vectorsx(t)5(s(t),s(t1T), . . . ,s„t1(d21)T…),
whered is the embedding dimension andT is the delay time.
Under mild assumptions about the underlying dynamics,
nature of the measurement function that producess(t), and
the choice ofT, it can be shown that various dynamic
quantities of the reconstructed set are the same as tho
the underlying attractor, provided thatd is suitably large
@17,18#. In particular, if the correlation dimension of the u
derlying attractor isD2, then, for an infinitely long, noiseles
time series, the choice ofd>D2 allows one to determineD2
from the trajectories in the reconstructed phase space@19#,
and d>2D211 suffices to produce a diffeomorphism b
tween the embedded set and the underlying attractor@18#.

Almost all works on computing the fractal dimensio
from chaotic time series address the estimation of the co
lation dimensionD2, due to the fundamental observation b
Grassberger and Procaccia@11# that D2 can be evaluated by
using the correlation integralCN(e,d), which is the probabil-
ity that a pair of points chosen randomly with respect to
natural measure are separated by a distance less thane on the
reconstructed set of phase space of dimensiond. For a tra-
jectory of lengthN, the correlation integral can be approx
mated by the sum

CN~e,d!5
2

N~N21! (
j 51

N

(
i 5 j 11

N

Q~e2ixi2xj i !, ~1!

where Q is the Heaviside function@Q(x)51 if x>0 and
Q(x)50 otherwise#, andi•i denotes a suitable vector norm
say ixi5max$uxi u:1< i<d%. Asymptotically, the correlation
dimensionD2 is given by@11#

D25 lim
e→0

lim
N→`

ln CN~e,d!

ln e
. ~2!

For a long time series from a chaotic attractor, the comm
numerical practice is to extrapolate the slope from a lin
fitting of ln CN(e,d) versus lne in an appropriate scaling re
gime @20# at a set of increasing values of the embedd
dimensiond. For d< bD2c, where bD2c denotes the larges
integer less than or equal toD2, the slope is equal tod. For
d. bD2c, the slope saturates at a constant value which
usually taken to be the estimated value ofD2.

An important question is whether the GP paradigm E
~1! and~2! is applicable to transient time series from chao
saddles. Here we present a theoretical argument that app
to provide an affirmative answer to this question.

First, we define the natural measure associated wit
nonattracting chaotic saddle. Imagine a phase-space regS
that contains a nonattracting chaotic saddle. If a large n
ber N0 of random initial conditions is distributed inS, the
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corresponding trajectories will leaveS eventually as time
progresses. They do so by being attracted along the st
manifold, wandering near the chaotic saddle, and then e
ing along the unstable manifold. LetN(n) be the number of
trajectories that still remain inSat timen. For largen, N(n)
decreases exponentially due to the chaotic but nonattrac
nature of the saddle@21#:

N~n!5N0e2n/t, ~3!

where t is the average lifetime of the trajectories on t
chaotic saddle.

Because of the nonattracting nature of the chaotic sad
the definition of the natural measure is somewhat more c
plicated than that for a chaotic attractor. Because of the
variance of the natural measure under the dynamics,
necessary in the definition to compensate for the escap
chaotic trajectories. The standard approach is to choos
ensemble of initial conditions and ask where the result
trajectories can be at different times. In particular, since
jectories escape from the chaotic saddle along the unst
manifold, at large positive timen, theN(n) trajectory points
will be in the vicinity of the unstable manifold. In order fo
the points to stay near the unstable manifold at timen, ini-
tially these points have to be in the vicinity of the stab
manifold. At an intermediate time, the points are then co
centrated near the chaotic saddle itself. These considera
lead to the formal definitions of the natural measures of
unstable manifold, the stable manifold, and the chao
saddle@12,22#, as follows.

Let C be a small box withinS that contains part of the
unstable manifold. The natural measure associated with
unstable manifold inC can thus be defined as

mu~C!5 lim
n→1`

lim
N0→`

Nu~n,C!

N~n!
, ~4!

whereNu(n,C) is the number of theN(n) orbits inC at time
n. Similarly, the natural measure of the stable manifold in
box C in S can be defined as

ms~C!5 lim
n→1`

lim
N0→`

Ns~n,C!

N~n!
, ~5!

where Ns(n,C) is the number of initial conditionsin C
whose trajectories do not leaveS before timen. The defini-
tions Eqs.~4! and ~5! mean that the natural measures as
ciated with the stable and the unstable manifolds inC are
determined by the numbers of trajectory points inC at time
zero and timen, respectively. The natural measure of t
chaotic saddle,m, can then be defined by considerin
Nm(r,n,C), the number of trajectory points inC at a time
rn between zero andn:

m~C!5 lim
n→1`

lim
N0→`

Nm~r,n,C!

N~n!
, ~6!

where 0,r,1, Nm(0,n,C)5Ns(n,C), and Nm(1,n,C)
5Nu(n,C). For largeN0 andn, trajectories that remain inS
7-2
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ANALYSES OF TRANSIENT CHAOTIC TIME SERIES PHYSICAL REVIEW E64 056207
stay near the chaotic saddle for most of the time betwee
andn, except at the beginning when they are attracted tow
the saddle along the stable manifold, and at the end w
they are exiting along the unstable manifold. Thus, the m
sure defined in Eq.~6! is independent ofr, insofar as 0,r
,1.

Based on Eq.~6!, one can define the following dimensio
spectrum for nonattracting chaotic saddles@3#, in analogy to
that of the chaotic attractor@11,23#:

Dq5
1

~q21!
lim
e→0

ln I ~q,e!

ln e
, ~7!

whereq is a continuous index,I (q,e)5( i 51
N(e)m i

q , m i is the
natural measure of the chaotic saddle contained in thei th
box, and the sum is over all theN(e) boxes in a grid of size
e needed to cover the whole chaotic saddle. Lettingq52, we
obtain

D25 lim
e→0

ln (
i 51

N(e)

m i
2

ln e
5 lim

e→0

ln^m i&
ln e

, ~8!

where^•& denotes the phase-space average over the ch
saddle. For a long, ergodic trajectory on the chaotic sad
^m i& is approximately the probability that the trajecto
comes in thee neighborhood of a pointxi on the chaotic
saddle in thei th box, which is given by the correlation inte
gral in Eq.~1!. From measurements, we do not have a lo
ergodic trajectory on the chaotic saddle. Instead, we can
haveM transient chaotic time series, each of lengthL. Let pi
be the probability that the reconstructed trajectory come
the neighborhood ofxi . We have

pi'
1

M

1

L~L21! (
m51

M

(
j 51

L

Q~e2ixj
m2xi i !,

wherexj
m is the j th trajectory point reconstructed from th

mth transient time series. Noting thatM is in fact the number
N0 of initial conditions in the definition~6!, we have

m i'
Mpi

Me2L/t
'

eL/t

ML~L21! (
m51

M

(
j 51

L

Q~e2ixj
m2xi i !.

Averaging over all pointsxi in the reconstructed phase spac
we obtain

^m i&'eL/tCM ,L~e,d!, ~9!

where

CM ,L~e,d![
1

ML~L21! (
m51

M

(
i 51

L

(
j 51,j Þ i

L

Q~e2ixj
m2xi

mi !

~10!

is defined to be the correlation integral associated withM
observations of transient chaos, each consisting ofL points
in the reconstructed phase space. We then have
05620
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D25 lim
e→0,M→`

ln CM ,L~e,d!

ln e
. ~11!

Equation~11! indicates that, if one computes the correlati
integral as defined in Eq.~10!, the GP formulation is valid
for transient chaotic time series as well.

To provide numerical support, we consider transient c
otic time series from the He´non map@15#: (x,y)→(a2x2

1by,x) (a andb are parameters! for which the correlation
dimension can be obtained both from the GP formulation
~11! and from a straightforward implementation of the bo
counting definition~7! by utilizing a long PIM~proper inte-
rior maximum! triple trajectory on the chaotic saddle@24#.
For a51.5 andb50.3, there is a chaotic saddle in the phas
space region@22,2#3@22,2# with lifetime t'30. The box-
counting approach givesD2'1.2. To apply the GP algo
rithm, we generateM55000 transient chaotic time series. T
guarantee that each time series reflects, approximately,
natural measure of the chaotic saddle, we disregard both
initial and final phases, and keep only 20 points from t
middle of the time series. For a given embedding dimens
d, the number of trajectory points corresponding to each ti
series is thenL,20. We choose the delay time to beT51,
normalize each time series to the unit interval, and comp
the correlation sumCM ,L(e,d) at 100 values ofe for 230
, log2 e,0 using embedding dimensions ranging fromd
51 to d58, as shown in Fig. 1~a!. For d.3, the local
slopes of the plots appear to converge to a plateau value
shown in Fig. 1~b!. We obtainD2'1.12, which agrees rea
sonably well with the value ofD2 obtained from the box-
counting algorithm. We note that due to the availability
only short time series the embedding dimension needs to
much larger than the value ofD2 itself to yield the correct
plateau value forD2, in contrast to the case of long tim
series from chaotic attractors whered*D2 usually suffices
@19#.

III. ESTIMATING LYAPUNOV EXPONENTS

Our approach for obtaining Lyapunov exponents from
ensemble of transient chaotic time series is similar to tha
Refs.@25–29#. We apply the same time-delay embedding
each of the transient time series. Linear approximations
the dynamics at each point in the resulting ensemble
constructed using least squares, as described in Ref.@31#.
~Care is taken to avoid points in the reconstruction that h
no image in the same transient time series.! In this way, we
obtain models of the formyj5T jxj1bj , which approximate
the dynamics in a neighborhood ofxj . A QR decomposition
of a suitable product of theT’s, as described in Refs.@26–
28#, can be used to obtain approximations of the Lyapun
exponents.

As a numerical experiment, we generate an ensembl
chaotic transients from the He´non map for the paramete
pairs (a,b)5(1.46,0.3) and (a,b)5(1.50,0.3). We generate
21 000 points near the chaotic saddle using 300 random
tial conditions in@22,2#3@22,2# for the casea51.46 and
700 random initial conditions fora51.50.~The average life-
7-3
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FIG. 1. For the He´non map,
~a! log2 C(e,d) versus log2 e, and
~b! log2 C(e,d)/ log2 e versus
log2 e at a51.5,b50.3. The
curves with comparatively highe
slopes correspond to higher em
bedding dimensions.
ch
te

o
ar
w
ss
s
o
t

of

o

u
tic
e

ec

u-

t
n

ra
bl

st

as

es
and
ng
om
aos

e
s of
time of the chaotic transients is about 70 iterates fora
51.46 and 30 iterates fora51.50.! A two-dimensional em-
bedding with a time delay of 1 is constructed from ea
collection of time series. Local linear maps are compu
using least squares for each neighborhood.

In the casea51.46, each transient time series consists
about 70 iterates. Thus, the ‘‘Lyapunov exponents’’ that
computed are actually finite-time approximations, where
consider a suitable product of the 70 or so linear maps a
ciated with points on the individual transient time serie
Similarly, whena51.50, we consider products of 30 or s
linear maps. Figure 2~a! shows the distribution of the larges
Lyapunov exponentl1, computed from the ensembles
time series fora51.46, and Fig. 2~b! shows the distribution
of the values ofl2. We obtainl150.4460.05 andl25
21.7260.06 ~the second value is the standard deviation
each distribution!. Similarly, for a51.50, we obtainl1
50.5460.06 andl2521.7760.08.

To assess the reliability of these estimates, we comp
long PIM triple trajectories of the corresponding chao
saddles. Then, using the associated Jacobian matrices at
point, we compute finite-time Lyapunov exponents over s
tions of 70 iterates and 30 iterates, respectively, fora
51.46 anda51.50. Figure 3 shows the resulting distrib
tions, which are centered aroundl150.44 andl2521.64
(a51.46), andl150.54 andl2521.72 (a51.50). ~The
standard deviations are small.! This numerical experimen
suggests that the Lyapunov exponents from low dimensio
chaotic saddles can be computed with reasonable accu
provided that sufficiently many observations are availa
and the noise level is low. Specifically, for noise belowe
51021 ~about 2.5% of the transient chaotic signal! in the
Hénon map, the estimates of the Lyapunov exponent are
05620
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relatively accurate, particularly for the positive exponent,
shown in Figs. 4~a! and 4~b! for transient chaos ata51.46
and a51.50, respectively. In the figures, the dashed lin
indicate the correct values of the corresponding positive
negative exponents. We note that the difficulty in obtaini
good estimates for the negative Lyapunov exponents fr
time series is a common problem even for sustained ch
@27#, because of the issue of accurately determining thefull
Jacobian matrices@30#.

FIG. 2. ~a!–~d! The distributions of Lyapunov exponents of th
Hénon map for chaotic transients at the two parameter value
a51.46 anda51.50, respectively.
7-4
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IV. DETECTING UNSTABLE PERIODIC ORBITS

Lathrop and Kostelich~LK ! @32# describe a simple algo
rithm to identify unstable periodic orbits from long time s
ries from chaotic attractors, which is based on locating s
of recurrent points in the reconstructed attractor@33#. Given
a positivee, one follows successive images of a starting
point x(t) to determine whether a valuem.0 exists such
that ix(t1m)2x(t)i,e. If such anm exists, thenx(t) is an
(m,e) recurrent point, andm is the recurrence time. A re
current point needs not be periodic, but points that lie su
ciently close to periodic orbits are recurrent. Histograms
recurrence times from embedded attractors can then be
structed and examined for values ofm that occur frequently.

FIG. 3. ~a!–~d! The distributions of finite-time Lyapunov expo
nents of the He´non map from the PIM triple trajectory at the tw
parameter values ofa51.46 anda51.50, respectively.

FIG. 4. For transient chaos in the He´non map, effect of noise on
computation of Lyapunov exponents:~a! a51.46 and~b! a51.50.
The dashed lines indicate the values of the two exponents in
absence of noise.
05620
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For long chaotic time series, unstable periodic orbits can
traced by following trajectories starting from the correspon
ing (m,e) recurrent points.

In Ref. @14#, the LK algorithm is adapted to detectin
unstable periodic orbits from an ensemble of transient c
otic time series. The idea is essentially the same as that in
original formulation of the LK algorithm@32#, i.e., to accu-
mulate a histogram of recurrence times from all time ser
in the ensemble. As each individual time series is short,
expect to be able to detect at least periodic orbits of sh
periods~the issue of long periods is addressed later in t
section!. It is not necessary to attempt to concatenate m
short time series into a single long one, an approach tha
usually problematic@5#.

We have implemented and tested the LK algorithm
detecting unstable periodic orbits from various models
chaotic systems. Here we report numerical results with tr
sient time series of an electrical power system netw
model at voltage collapse@34,35#. The electrical power sys
tem is modeled by the network shown in Fig. 5~a!. The
model consists of two generators~with voltagesE0 andEm)
and a load~consisting of an induction motor and aPQ load
in parallel!. There are four dynamical variables:~1! dm , the
generator phase angle, which is closely related to the
chanical angle of the rotor;~2! v, the angular speed of th
rotor; ~3! d, the load voltage phase angle; and~4! V, the
magnitude of the voltage provided to the load. The system
described by the four autonomous ordinary differential eq
tions @34#

ḋm5v,

M v̇52dmv1Pm2EmVYm sin~dm2d!,

Kqwḋ52Kqv2V22KqvV1Q~dm ,d,V!2Q02Q1 ,
he

FIG. 5. For the electrical power system~a! the model network,
and ~b! a chaotic transient.
7-5
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FIG. 6. For the electrical
power system,~a! a histogram of
recurrence time, trajectories nea
~b! period-1,~c! period-2, and~d!
period-3 saddle.
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TKqwKpvV̇5KpwKqv2V21~KpwKqv2KqwKpv!V

1Kqw@P~dm ,d,V!2P02P1#

2Kpw@Q~dm ,d,V!2Q02Q1#. ~12!

The real and reactive powers supplied to the load by
network are

P~dm ,d,V!52E0VY0 sind1EmVYm sin~dm2d!,

Q~dm ,d,V!5E0VY0 cosd1EmVYm cos~dm2d!

2~Y01Ym!V2.

In our numerical simulation, the load, the network, and
generator parameter values are chosen to be@34,35# Kpw
50.4, Kpv50.3, Kqw520.03, Kqv522.8, Kqv252.1, T
58.5, P050.6, Q050.3, P150.0, Y053.33, Ym55.0, Pm
51.0, dm50.05, M50.014 64, Em51.05, u050, and um
50.

There is a period-doubling cascade to chaos, and a c
occurs atQ1c'2.560, after which the chaotic attractor
converted into a chaotic saddle. Figure 5~b! shows a transien
voltage signal after the crisis. These time series are assu
to be the only available data about the system. We then
lect a number of such transient time series, construct
corresponding time-delay embeddings, and apply the LK
gorithm to each. We takee to be 2% of the root-mean-squa
value of the time series. Figure 6~a! shows the histogram o
the recurrence times obtained by combining the statis
from the entire ensemble of time series. Figures 6~b!–6~d!
show, respectively, trajectories near period-1, period
05620
e

e
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e
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s

,

and period-3 orbits@36#. These sample orbits belong to th
set of recurrent points comprising the corresponding clu
of peaks in the histogram. In general, the LK algorithm c
identify many periodic orbits of low period.

In an experimental setting, time series are usually c
taminated by dynamical and/or observational noise. No
reduces the volume of every recurrent region in the ph
space and hence reduces the number of observed recu
points. A previous analysis@14# shows that the number o
observed recurrent points decreases linearly with increa
noise level. Nevertheless, numerical experiments sug
that the LK algorithm can be used to identify potential sad
periodic orbits even if the noise level is as large as 1% of
root-mean-square value of the signal.

We now consider the probability of detecting periodic o
bits from transient chaotic time series@37#. This consider-
ation is particularly relevant for transient chaos, because
jectories on a chaotic saddle have an average lifetimet of
staying near the saddle and hence it is unlikely that a typ
trajectory contains periodic orbits of period larger than a
proximately t. In our previous work@14#, we have shown
that the probability of detecting periodic orbits decreases
ponentially with increasing period. This result is an intrins
dynamical property of the underlying chaotic saddle. Hen
it is unlikely to observe periodic orbits of high period even
the number of measurements is increased or the noise lev
reduced.

The probabilityF(p) that a typical trajectory is found in
an e neighborhood ofany period-p orbit is @14#

F~p!;e2l1D1pN~p!;e(2l1D11hT)p5e2gp, ~13!

whereg is the exponential scaling exponent,hT is the topo-
7-6
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ANALYSES OF TRANSIENT CHAOTIC TIME SERIES PHYSICAL REVIEW E64 056207
logical entropy,N(p) is the number of periodic orbits o
periodp, l1 is the largest Lyapunov exponent, andD1 is the
information dimension of the chaotic saddle. The Kapla
Yorke formula @22# relatesD1 to the Lyapunov exponent
and the mean lifetimet of chaotic transients asD15(l1
21/t)(1/l111/ul2u). This result and Eq.~13! yield the scal-
ing exponent

g5l12hT1
l1

2

ul2u
2

1

t S 11
l1

ul2u D . ~14!

The scaling relation in Eq.~13! and the analysis leading t
the scaling exponent in Eq.~14! are applicable to chaotic
saddles of two-dimensional invertible maps and thr
dimensional flows. Note that for chaotic attractors (t→`)
we haveg'l12hT1l1

2/ul2u.
Here we test Eqs.~13! and~14! numerically using chaotic

saddles in the IHJM map@16#

xn115R1C2~xn cost2yn sint!,

yn115C2~xn sint1yn cost!, ~15!

where t5C12C3 /(11xn
21yn

2) is the phase variable, an
C1 , C2 , C3, and R are parameters. The unstable period
orbits are computed utilizing the method in Ref.@38#. There
is a chaotic saddle for the following set of parameter valu
C150.4, C250.9, C356, andR51.1, which is contained in
the phase-space region@20.5,2.0#3@22.5,1#. We choose
106 random initial conditions in this region to obtain 106

transient time series, each of length of about 28. For e
periodp, we compute the frequency with which orbits on t
time series fall into a neighborhood@39# of a saddle periodic
orbit of periodp. The results are accumulated to determ

FIG. 7. For the map~15! at C150.4, C250.9, C356, andR
51.1, lnF(p) versusp. The dotted line indicates the theoretical
predicted slope of lnF(p) versusp.
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F(p). Figure 7 shows a plot of lnF(p) versusp, which
suggests an exponential decay with increasingp, where the
decay exponentg is given by the slope of the plot. To com
pute the theoretical scaling exponents in Eq.~14!, it is nec-
essary to compute the Lyapunov exponents, the topolog
entropy, and the lifetime of the chaotic saddles. The follo
ing numerical algorithms are employed:~1! the PIM triple
algorithm @24,40# for a long continuous trajectory on th
saddle~the Jacobian matrix is evaluated at each point on
trajectory and the resulting collection is used to compute
Lyapunov exponents of the chaotic saddle!; ~2! the algorithm
in Ref. @41# for computing the topological entropy of th
chaotic saddle; and~3! the sprinkler method@22# for estimat-
ing the lifetimet. For the IHJM map with the stated param
eter values, these computations yieldl150.56, l2
520.77, hT50.54, and t528. The slope of the fitted
straight line in Fig. 7 is 0.38460.015. The theoretical scalin
exponent isg'0.365, as indicated by the dashed straig
line in Fig. 7. We see that the exponent extrapolated from
direct numerical simulation ofF(p) agrees reasonably we
with the predicted one in Eq.~14!, which supports the argu
ment that the probability of finding unstable periodic orb
in experimentally measured transient time series decre
exponentially with increasing period.

V. DISCUSSION

In this work, we demonstrate that the GP algorithm
generally applicable for estimating the correlation dimens
of the chaotic saddle from an ensemble of transient cha
time series. We present a numerical procedure with the
ample of the He´non map to find the rates of separation
neighboring phase-space states constructed from each
sient time series in an ensemble to extract Lyapunov ex
nents. We also show that unstable periodic orbits of l
period can be detected reliably from an ensemble of trans
chaotic time series by using the LK algorithm. Our nume
cal analysis indicates that the LK algorithm is powerful f
extracting unstable periodic orbits at low noise level. W
further give a theoretical justification for the difficulty o
detecting periodic orbits of high period from transient cha
The theoretical scaling law is verified by numerical e
amples. Since the probability of detecting these orbits is
ponentially small, as a matter of practicality it is perha
worthless to obtain long time series or to improve the te
nique for detecting periodic orbits from transient chaos. W
remark that, although there has been a tremendous amou
work on analyzing time series from chaotic attractors,
analysis of transient chaotic time series remains a far
explored area.
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Phys. Rev. Lett.80, 500 ~1998!, and references therein.

@10# See, for example, A. Katok, Publ. Math. IHES51, 377~1980!;
T. Morita, H. Hata, H. Mori, T. Horita, and K. Tomita, Prog
Theor. Phys.78, 511~1987!; G.H. Gunaratne and I. Procacci
Phys. Rev. Lett.59, 1377~1987!; D. Auerbach, P. Cvitanovic´,
J.-P. Eckmann, G.H. Gunaratne, and I. Procaccia,ibid. 58,
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