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Detecting unstable periodic orbits from transient chaotic time series
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We address the detection of unstable periodic orbits from experimentally medsanmsigntchaotic time
series. In particular, we examine recurrence times of trajectories in the vector space reconstructed from an
ensemble of such time series. Numerical experiments demonstrate that this strategy can yield periodic orbits of
low periods even when noise is present. We analyze the probability of finding periodic orbits from transient
chaotic time series and derive a scaling law for this probability. The scaling law implies that unstable periodic
orbits of high periods are practically undetectable from transient chaos.
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[. INTRODUCTION system is that the chaotic phases, which contain the essential
information about the chaotic saddle, are usually short. It is
In many biological and physical experiments, the meausually difficult to obtain long chaotic time series from mea-
sured signals often exhibit irregular behavior during an ini-Surements. Methods that rely on long time series and are
tial interval before finally settling into an asymptotic state PrOVen to be effective for detecting periodic orbits in chaotic

that is nonchaotic. The traditional wisdom may simply be toattrqqtors[lz,l?g are applicable to transient chaos only if
disregard the transient portion of the data and to concentrat%umc'ently long time SEries can be ponstrugted from_ a large
umber of short, transient chaotic time series. In this paper

on the final state. By doing this, however, information about” . ) . ) )

the system may be lost because the irregular part of the datye are not mtergsted n qonstrut_:tlng_long time series. In-
may contain important hints about the system dynamics. Thi tead, we work with short time series directly and WE assume
is particularly true when the underlying dynamics is deter- at anensembleof SUCh. time series can be Ob.ta".]ed frpm
ministic and exhibits transient chaps—3]. While there has measurements. A question is, can ur_1$table pe_rlodlc orblts be
been a tremendous amount of work on analyzing time Seriegetected from an ensemble of transient chaotic time series?

from chaotic attractorf4], to our knowledge the problem of h this paper we shqll demonstratg .that the answer to the
analyzing transient chaotic time series has not been ad_above guestion is affirmative. Specifically, we find that the

dressed5]. The purpose of this paper is to address one a method originally developed by La'thrc_Jp anc_i Kostel(tlK) .
pect ofC[th]is impgrta%t problem: F()je?ecting unstable periodi 12] can be adapted to detect periodic orbits from transient

orbits embedded in the underlying chaotic invariant set thaf"hfr"ot'C time series, and we demon_strgte thf"‘t the methoq IS
is responsible for transient chaos quite robust for the detection of periodic orbits of low peri-

It has been known thatonattracting chaotic saddleare ods. For periodic orbits of high periods, we provide a theo-
gtical argument suggesting that they are practically unde-

the dynamical invariant sets that give rise to transient chao X . .

[1-3]. Because such a saddle is chaotic but nonattracting ctable from transient chaos. In particular, we find that the

trajectory starting from a random initial condition in a phasé—prObab'l'ty of qletectlng l_JnstabIe perlodlc_ orbits de_c_reases

space region containing the saddle typically stays near thgxponentlally\mlth the penqd, and we obtain an explicit ex-
pression for the exponential decay exponent in terms of the

fg&glﬁ ;Or:da gg,?negggtsm% CQ i?rfiacl bS?Q{aeVIO’;H;?CSﬁ)I}S (t:u(:loti ynamical invariants associated with the chaotic saddle. The
' ’ eory is verified by numerical examples.

saddles lead to observable phenomena such as chaotic sc
tering[6], fractal basin boundarigg], fractal concentrations

of passive particle advected in open hydrodynamical flow
[8], and fractal distribution of chemicals in environmental
flows [9]. Mathematically, chaotic saddles are closed

The rest of the paper is organized as follows. In Sec. Il we
Sdescribe how the LK algorithm can be used to extract recur-
rent orbits from transient chaotic time series. In Sec. Il we
discuss the effect of noise in the detection of periodic orbits
’py using the LK algorithm. In Sec. IV we analyze the prob-

bounded, and invariant sets with dense orbits. Like chaoti bility of findi iodi bits 1 ¢ ient chaotic i
attractors, a chaotic saddle has embedded within an infinit@°!!Ity Of Tinding periodic orbits from transient chaotic ime
Series and we derive a scaling law for this probability. In

number of unstable periodic orbits that constitute its “skel- !
eton” [10]. Thus, successful detection of unstable periodicsec' V we present conclusions.
orbits from transient chaotic time series means thatthe
underlying dynamics is not stochastic but deterministic, and
(2) dynamical invariants of the chaotic saddle may be esti-
mated because unstable periodic orbits can be related to the
natural measure of the chaotic sadfié]. The LK algorithm[12] to extract unstable periodic orbits
The primary difficulty of dealing with a transient chaotic from experimental chaotic time series is based on identifying

II. LK ALGORITHM FOR DETECTING
UNSTABLE PERIODIC ORBITS
FROM TRANSIENT CHAOTIC TIME SERIES
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sets of recurrent points in the reconstructed phase space. T 15 (a) 15O
do this, one first reconstructs a phase-space trajectdy
from a measured scalar time ser{sét)} by using the delay- _ol® 10
coordinate embedding method14]:  x(t)=(s(t),s(t 2 |le T 5
+7), ...8(t+(d—1)7), whered is the embedding dimen- & % o
sion andr is the delay time. To identify unstable periodic 5 @ 5
orbits, one follows the images of(t) under the dynamics |
until a valuet;>t is found such that|x(t;)—x(t)[|<e, % 10 20 9o 0 10
wheree is a prespecified small number that defines the size recurrence time, m X(t)
of the recurrent neighborhood &(t). In this casex(t) is 1548 15—
called an (n,e) recurrent point, anan=t;—t is therecur- 10 10
rence time A recurrent point is not necessarily a component _ 5 ~ 5
. . . . . . v (X
of a periodic orbit of periodn. However, if a particular re- & &
currence timem appears frequently in the reconstructed = © 0
phase space, it is likely that the corresponding recurrent -5 -5
points are close to periodic orbits of period The idea is ~10 ~10
then to construct a histogram of the recurrence times anc ~1° Ox(t) 10 -10 Ox(t) 10

identify peaks in the histogram. Points that occur frequently

with are taken to be, approximately, components of the pe- FIG. 1. For the Rssler system(a) histogram of the recurrence
riodic orbits. The LK algorithm successfully detected un-time m (normalized with the recurrence time of the first peak
stable periodic orbits such as those from measurements @f)—(d) a period-1, a period-3, and a period-8 recurrent orbit ex-

chaotic chemical reactiorj42]. tracted from the histogram ifa), respectively.
While the original algorithm was developed for chaotic
attractors from which long time series can be obtaifEg, invidual transient trajectories, and with It tends to saturate

it can be adapted to detect unstable periodic orbits from tranwhen € is too large. The value of at whichN(¢€) saturates
sient chaotic time series as well. The reason lies in the stds taken to be an appropriate size of the recurrent neighbor-
tistical nature of this method, as a histogram of recurrencéood. For the Rssler system, we use=2% of the root-
times can be obtained even with short time series. Providethean-squarérms) value of the chaotic signal. Figurgél
that there is a large number of such time series so that goashows the histogram of the recurrence times for the ten tran-
statistics of the recurrence times can be obtained, unstablient chaotic time series from the period-3 window. Figures
periodic orbits embedded in the underlying chaotic saddlel(b)—1(d) show, in the plane ok(t) versusx(t+ 7), three
can be identified. It is not necessary to concatenate mamecurrent orbits. The orbit in Fig.(h) has the shortest recur-
short time series to form a single long ofgich concatena- rence time, so we call it a “period-1" orbit. Figurec and
tions are invariably problematif5]). Intuitively, since the 1(d) show a period-3 and a period-8 orbit. The orbits were
time series are short, we expect to be able to detect at leastlected from the set of recurrent points comprising the cor-
periodic orbits of short periodshe issue of long periods will responding peak in the histogram. In general, we find that the
be addressed later LK algorithm is capable of yielding many periodic orbits of
We have implemented and tested the LK algorithm forlow periods(say, a period less than )10
detecting unstable periodic orbits from various model chaotic
systems. Here we report numerical results with the following
Rossler system[15]: dx/dt=—y—z,dy/dt=x+ay,dz/dt
=b+(x—c)z, wherea,b, andc are parameters. There is  In an experimental setting, time series are usually con-
transient chaos when the set of parameter values yields taminated by dynamical and/or observational noise. A ques-
periodic window in which a stable periodic attractor and ation is whether periodic orbits can still be extracted from
chaotic saddle coexist. For instance, fo+=b=0.2 andc noisy transient chaotic time series. Qualitatively, under the
=5.3, the system falls in a periodic window of period 3. A influence of noise, the effective volume of recurrent region
typical measurement of a dynamical variable, g&t), ex- in the phase space decreases and, hence, we expect to see a
hibits chaotic behavior for a finite amount of time before decrease in the number of recurrences. Figurgs—2(d)
settling in the period-3 attractor. We generate ten such timehow the number of recurrent points) and three periodic
series by integrating the Reler system from ten different orbits extracted from ten transient chaotic time series with
initial conditions, and record the coordinate for 8=t<40, the additive noise of the for®(0,0.01), where5(0,0.01) is
the approximate lifetime of the transients. These time seriethe normal(Gaussiain distribution centered at 0 with vari-
are assumed to be the only available data about the systelance 0.01. This noise level represents a rms value that is
For each time series, a seven-dimensional vector space &pproximately 0.5% of that of the chaotic signal. We see that
reconstructed by using the delay time=0.2. To obtain re- at this low noise level, periodic orbits can still be reliably
currence times, it is necessary to determinéhe size of the detected. We find, however, that for the SRRter system at
recurrent neighborhood. The value ©must not be so large e=2% of the rms value of the chaotic signal with rms value
that many “false positives” are reported, batmust not be  of the noise beyond 1% of rms value of the chaotic signal, no
so small that genuine recurrences are missed. Typically, wperiodic orbits can be extracted from the histogram of recur-
find in numerical experiments that the number of recurrencesences. To be systematic, we compute, at several fixed values
N(e€) usually increases with the length and the number of thef €, how the number of recurrent points decreases as the

Ill. EFFECT OF NOISE
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5 (a) 10 (0) recurrence, we see that the noise level that can be tolerated is
also small.
4 5
5(\‘3 ® (© g 0 IV. PROBABILITY OF DETECTING PERIODIC ORBITS
Sat| |V £ FROM TRANSIENT CHAOTIC TIME SERIES
! | ‘ " ‘ h ‘ ° We now consider the probability of detecting periodic or-
% 10 20 Yo 0 10 bits from transient chaotic time serig6]. This is particu-
recurrence time, m x(t) larly relevant for transient chaos because trajectories on a
15-) 15 @ chaotic saddle have an average lifetime timstaying near
10 10 the saddle and, hence, it is difficult for a typical trajectory to
contain periodic orbits of period larger than, say,Effort
T8 g° may then be devoted to connect short time series so that the
X 0 X 0 resulting long time series would contain periodic orbits of
-5 -5 larger period5]. Such a task may be difficult. If one fails to
10 _10 detect periodic orbits of high periods, the question is whether
-10 Ox(t) 10 -10 Ox(t) 10 one should attempt to increase the number of measurements

so that more time series are available. Or, one may attempt to

FIG. 2. For a noisy Resler system(a) histogram of the recur- improve techniques to link these time series, a computation-
rence timem (normalized with the recurrence time of the first peak ally demanding task because it is essentially a problem of
(b)—(d) a period-1, a period-2, and a period-4 recurrent orbit ex-Optimizing many time series and the computation required in
tracted from the histogram i(g), respectively, where=6% and  any optimization problem typically increases dramatically as
the rms value of the noise is at about 0.5% of that of the chaotithe number of elements involved is increased. Our main
signal. point here is that in detecting unstable periodic orbits from

transient chaos, the probability of detecting orbits of higher

noise amplitude #) is increased. Figures® and 3b) show  Pperiods is typically exponentially small. This is an intrinsic
the result of such computations fer=2% (a) ande=6%  dynamical property of the underlying chaotic saddle and,
(b) of the rms value of the signal. We see that the number ofi€nce, increasing the number of measurements or improving
recurrent points goes to zero gt e/2, which can be under- techniques of detegtion will not help to enhance the chance
stood as follows. Under the noise of amplituge both the ~ to detect these orbits. _ 3

center and the boundary of the recurrent region are uncertain We derive a scaling relation fab(p), the probability to
within 7. Thus, the effective phase-space volumedidi- ~ detect any periog- orbit. Note that®(p) is actually the
mensions in which two points can still be considered withinProbability for a trajectory to stay in a small neighborhood of
distancee (recurrent is proportional to €— 77)@— 79, which ~ any periodic orbit of periocp. For a trajectory to stay in a

vanishes aty=e/2. Sincee should be small to guarantee »-Neighborhood of alp points of theith orbit of periodp,
the trajectory must come withifi= ve ™ *(P)P of any of thep

@ points when it first encounters with the periodic orbit, where
1 : : : : : : Ni(p)>0 is the Lyapunov exponent of this orbit. The prob-
ability for this event is¢;(p)~ 6°i, whereD; is the point-
e=2% wise dimension of any one of thepoints of the this periodic
orbit. The exponential factoe™*(PP is proportional to the
natural measure associated with this periodic drblf. The
probability ®(p) is the accumulative probability of all

. . . . ¢i(p):
0 05 1 15 2 25 3 35
noise % K(p) K(p)

1 . . - - . @(p>=i§1¢i<p>~i§1vDiexr{—Mp)Dip], 1)

£=6%

N/N
o9
n

whereK(p) is the total number of periodic points of period
p. Since\;(p) andD; are the local positive Lyapunov expo-
nent and pointwise dimension of periodic orbits of pennd
for large p we expect them to obey distributions centered at
0 L L . .
0 0.5 1 15 2 25 3 35 N, and D, respectively, where.; andD, are the positive
noise % Lyapunov exponent and the information dimension of the
FIG. 3. For the noisy Resler system, the relative number chaotic saddle. Thus, the main dependenc® @) onp is
(N/Ng) of recurrent points versus the amplitude of noise for two
values of the size of the recurrent neighborho@iie=2% and(b) ®(p)~e MPPK(p)~el MPrthIP=g=7P, 2
€=6% of the rms value of the signal, whekg is the number of
recurrent points at zero amplitude of noise. The vertical linéojn ~ Where y is the exponential scaling exponent ahgl is the
denotes the noise level at which periodic orbits in Fig. 2 are exfopological entropy. Using the Kaplan-Yorke formula for
tracted. chaotic saddlefl7] to expresd in terms of the Lyapunov

N/N
o0
o0
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FIG. 4. (8—(c) For the H@mon map ata=1.6,1.8, and 2.0,
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TABLE I. Theoretical and numerical values of the scaling ex-
ponenty at three different parameters for the idm map.

a 1.60 1.8 2.0
N 0.58 0.81 0.87
Ao —-1.78 —2.01 —2.07
ht 0.53 0.54 0.53
T 11.2 4.7 54
v (theoretical 0.12 0.31 0.44
v (numerica) 0.13+0.04 0.32£0.03 0.470.04

the plots. To compute the theoretical scaling exponents in
Eq. (3), it is necessary to compute the Lyapunov exponents,
the topological entropy, and the lifetime of the chaotic
saddles. The following techniques are used in our computa-
tion: (1) we use the PIM-triple algorithif21,22 to compute

the Lyapunov exponent$2) we use the method in Rei23]

to compute the topological entropy; a(®) we use the sprin-

In d(p) versusp. The dotted lines indicate the theoretically pre- kler method to computer [17]. The slopes of the dashed

dicted slopes of Imb(p) versusp.

exponents A,<0<\; and the lifetime = D;=(\q
—17)(1IN1—1/\,), or since \,<O0D;=(\;—21/7)(1/\,
+1/|\,|), we obtain the following scaling exponent:

. h+)\§ 11+)\l 3
y=hmhe e A T ) ®

straight lines in Figs. @ —4(d) are the theoretical slopes for
the corresponding chaotic saddles. We see that the numerical
slopes agree reasonably well with the theoretical ones, as
shown further in Table I, where the numerical and theoretical
slopes, together with the values of other quantities involved
in Eq. (3), are listed.

V. CONCLUSION

In this work we demonstrate that unstable periodic orbits

The scaling relation E¢(2), together with the scaling expo- of |ow periods can be detected reliably from an ensemble of
nent in Eq.(3), is applicable to chaotic saddles in two- yansient chaotic time series by using the LK algorithm. Our
dimensional invertible maps or in three-dimensional flows.nymerical analysis indicates that the LK algorithm is power-

Note that for chaotic attractorsr{>), we have y=~\;
—hr+ A3\,

To test Egs.(2) and (3) numerically, we use chaotic
saddles in the Awon map[18]: (x,y)— (a—x2+0.3y,x) for

ful for extracting unstable periodic orbits at low noise level.
We further give a theoretical justification for the difficulty of

detecting periodic orbits of high periods from transient
chaos. The theoretical scaling law is verified by numerical

which unstable periodic orbits can be computed systematiexamples. Since the probability of detecting these orbits is
cally [19]. We choose the following set of three parameterexponentially small, as a matter of practicality it is perhaps

values for which there is transient chad)]: a=1.6,1.8,
and 2.0. For each value af we choose 19initial conditions
in the region —2,2] X[ —2,2] containing the chaotic saddle,
which yield 16 transient time series. For a given peripd
we then compute the fractions of times that thes tifie
series get close to every periodic orbit of peripdThese

worthless to obtain long time series or to improve technique
to detect periodic orbits from transient chaos. We remark
that although there has been a tremendous amount of work
on analyzing time series from chaotic attractors, the analysis
of transient chaotic time series remains a far less explored
area.

fractions are then accumulated to yield the probabiliyp).

From our numerical experiments, we see that this probability
usually increases with the number of transient time series
and also with the length of the individual trajectories. Fig- We thank Professor Frank Moss and Professor Steven
ures 4a)—4(c) show Ind(p) versusp for a=1.6,1.8, and 2.0, Schiff for valuable discussions. This work was sponsored by
respectively. These plots indicate behavior of exponentiathe AFOSR under Grant No. F49620-98-1-0400 and by the
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