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Detecting unstable periodic orbits from transient chaotic time series
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We address the detection of unstable periodic orbits from experimentally measuredtransientchaotic time
series. In particular, we examine recurrence times of trajectories in the vector space reconstructed from an
ensemble of such time series. Numerical experiments demonstrate that this strategy can yield periodic orbits of
low periods even when noise is present. We analyze the probability of finding periodic orbits from transient
chaotic time series and derive a scaling law for this probability. The scaling law implies that unstable periodic
orbits of high periods are practically undetectable from transient chaos.
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I. INTRODUCTION

In many biological and physical experiments, the me
sured signals often exhibit irregular behavior during an i
tial interval before finally settling into an asymptotic sta
that is nonchaotic. The traditional wisdom may simply be
disregard the transient portion of the data and to concen
on the final state. By doing this, however, information abo
the system may be lost because the irregular part of the
may contain important hints about the system dynamics. T
is particularly true when the underlying dynamics is det
ministic and exhibits transient chaos@1–3#. While there has
been a tremendous amount of work on analyzing time se
from chaotic attractors@4#, to our knowledge the problem o
analyzing transient chaotic time series has not been a
dressed@5#. The purpose of this paper is to address one
pect of this important problem: detecting unstable perio
orbits embedded in the underlying chaotic invariant set t
is responsible for transient chaos.

It has been known thatnonattracting chaotic saddlesare
the dynamical invariant sets that give rise to transient ch
@1–3#. Because such a saddle is chaotic but nonattractin
trajectory starting from a random initial condition in a phas
space region containing the saddle typically stays near
saddle for a time~exhibiting chaotic behavior!, then exits the
region and asymptotes to a final state. Physically, cha
saddles lead to observable phenomena such as chaotic
tering @6#, fractal basin boundaries@7#, fractal concentrations
of passive particle advected in open hydrodynamical flo
@8#, and fractal distribution of chemicals in environmen
flows @9#. Mathematically, chaotic saddles are close
bounded, and invariant sets with dense orbits. Like cha
attractors, a chaotic saddle has embedded within an infi
number of unstable periodic orbits that constitute its ‘‘sk
eton’’ @10#. Thus, successful detection of unstable perio
orbits from transient chaotic time series means that~1! the
underlying dynamics is not stochastic but deterministic, a
~2! dynamical invariants of the chaotic saddle may be e
mated because unstable periodic orbits can be related to
natural measure of the chaotic saddle@11#.

The primary difficulty of dealing with a transient chaot
PRE 611063-651X/2000/61~6!/6485~5!/$15.00
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system is that the chaotic phases, which contain the esse
information about the chaotic saddle, are usually short. I
usually difficult to obtain long chaotic time series from me
surements. Methods that rely on long time series and
proven to be effective for detecting periodic orbits in chao
attractors@12,13# are applicable to transient chaos only
sufficiently long time series can be constructed from a la
number of short, transient chaotic time series. In this pa
we are not interested in constructing long time series.
stead, we work with short time series directly and we assu
that anensembleof such time series can be obtained fro
measurements. A question is, can unstable periodic orbit
detected from an ensemble of transient chaotic time ser
In this paper we shall demonstrate that the answer to
above question is affirmative. Specifically, we find that t
method originally developed by Lathrop and Kostelich~LK !
@12# can be adapted to detect periodic orbits from transi
chaotic time series, and we demonstrate that the metho
quite robust for the detection of periodic orbits of low pe
ods. For periodic orbits of high periods, we provide a the
retical argument suggesting that they are practically un
tectable from transient chaos. In particular, we find that
probability of detecting unstable periodic orbits decrea
exponentiallywith the period, and we obtain an explicit ex
pression for the exponential decay exponent in terms of
dynamical invariants associated with the chaotic saddle.
theory is verified by numerical examples.

The rest of the paper is organized as follows. In Sec. II
describe how the LK algorithm can be used to extract rec
rent orbits from transient chaotic time series. In Sec. III
discuss the effect of noise in the detection of periodic orb
by using the LK algorithm. In Sec. IV we analyze the pro
ability of finding periodic orbits from transient chaotic tim
series and we derive a scaling law for this probability.
Sec. V we present conclusions.

II. LK ALGORITHM FOR DETECTING
UNSTABLE PERIODIC ORBITS

FROM TRANSIENT CHAOTIC TIME SERIES

The LK algorithm@12# to extract unstable periodic orbit
from experimental chaotic time series is based on identify
6485 ©2000 The American Physical Society
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6486 PRE 61DHAMALA, LAI, AND KOSTELICH
sets of recurrent points in the reconstructed phase space
do this, one first reconstructs a phase-space trajectoryx(t)
from a measured scalar time series$s(t)% by using the delay-
coordinate embedding method@14#: x(t)5„s(t),s(t
1t), . . . ,s(t1(d21)t…, whered is the embedding dimen
sion andt is the delay time. To identify unstable period
orbits, one follows the images ofx(t) under the dynamics
until a value t1.t is found such thatix(t1)2x(t)i,e,
wheree is a prespecified small number that defines the s
of the recurrent neighborhood atx(t). In this case,x(t) is
called an (m,e) recurrent point, andm5t12t is the recur-
rence time. A recurrent point is not necessarily a compone
of a periodic orbit of periodm. However, if a particular re-
currence timem appears frequently in the reconstruct
phase space, it is likely that the corresponding recurr
points are close to periodic orbits of periodm. The idea is
then to construct a histogram of the recurrence times
identify peaks in the histogram. Points that occur frequen
with are taken to be, approximately, components of the
riodic orbits. The LK algorithm successfully detected u
stable periodic orbits such as those from measurement
chaotic chemical reactions@12#.

While the original algorithm was developed for chao
attractors from which long time series can be obtained@12#,
it can be adapted to detect unstable periodic orbits from t
sient chaotic time series as well. The reason lies in the
tistical nature of this method, as a histogram of recurre
times can be obtained even with short time series. Provi
that there is a large number of such time series so that g
statistics of the recurrence times can be obtained, unst
periodic orbits embedded in the underlying chaotic sad
can be identified. It is not necessary to concatenate m
short time series to form a single long one~such concatena
tions are invariably problematic@5#!. Intuitively, since the
time series are short, we expect to be able to detect at
periodic orbits of short periods~the issue of long periods wil
be addressed later!.

We have implemented and tested the LK algorithm
detecting unstable periodic orbits from various model cha
systems. Here we report numerical results with the follow
Rössler system@15#: dx/dt52y2z,dy/dt5x1ay,dz/dt
5b1(x2c)z, where a,b, and c are parameters. There
transient chaos when the set of parameter values yiel
periodic window in which a stable periodic attractor and
chaotic saddle coexist. For instance, fora5b50.2 andc
55.3, the system falls in a periodic window of period 3.
typical measurement of a dynamical variable, sayx(t), ex-
hibits chaotic behavior for a finite amount of time befo
settling in the period-3 attractor. We generate ten such t
series by integrating the Ro¨ssler system from ten differen
initial conditions, and record thex coordinate for 0<t<40,
the approximate lifetime of the transients. These time se
are assumed to be the only available data about the sys
For each time series, a seven-dimensional vector spac
reconstructed by using the delay timet50.2. To obtain re-
currence times, it is necessary to determinee, the size of the
recurrent neighborhood. The value ofe must not be so large
that many ‘‘false positives’’ are reported, bute must not be
so small that genuine recurrences are missed. Typically
find in numerical experiments that the number of recurren
N(e) usually increases with the length and the number of
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invidual transient trajectories, and withe. It tends to saturate
whene is too large. The value ofe at whichN(e) saturates
is taken to be an appropriate size of the recurrent neigh
hood. For the Ro¨ssler system, we usee52% of the root-
mean-square~rms! value of the chaotic signal. Figure 1~a!
shows the histogram of the recurrence times for the ten t
sient chaotic time series from the period-3 window. Figu
1~b!–1~d! show, in the plane ofx(t) versusx(t1t), three
recurrent orbits. The orbit in Fig. 1~b! has the shortest recur
rence time, so we call it a ‘‘period-1’’ orbit. Figures 1~c! and
1~d! show a period-3 and a period-8 orbit. The orbits we
selected from the set of recurrent points comprising the c
responding peak in the histogram. In general, we find that
LK algorithm is capable of yielding many periodic orbits o
low periods~say, a period less than 10!.

III. EFFECT OF NOISE

In an experimental setting, time series are usually c
taminated by dynamical and/or observational noise. A qu
tion is whether periodic orbits can still be extracted fro
noisy transient chaotic time series. Qualitatively, under
influence of noise, the effective volume of recurrent regi
in the phase space decreases and, hence, we expect to
decrease in the number of recurrences. Figures 2~a!–2~d!
show the number of recurrent points~a! and three periodic
orbits extracted from ten transient chaotic time series w
the additive noise of the formG(0,0.01), whereG(0,0.01) is
the normal~Gaussian! distribution centered at 0 with vari
ance 0.01. This noise level represents a rms value tha
approximately 0.5% of that of the chaotic signal. We see t
at this low noise level, periodic orbits can still be reliab
detected. We find, however, that for the Ro¨ssler system at
e52% of the rms value of the chaotic signal with rms val
of the noise beyond 1% of rms value of the chaotic signal,
periodic orbits can be extracted from the histogram of rec
rences. To be systematic, we compute, at several fixed va
of e, how the number of recurrent points decreases as

FIG. 1. For the Ro¨ssler system:~a! histogram of the recurrence
time m ~normalized with the recurrence time of the first pea!,
~b!–~d! a period-1, a period-3, and a period-8 recurrent orbit
tracted from the histogram in~a!, respectively.
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PRE 61 6487DETECTING UNSTABLE PERIODIC ORBITS FROM . . .
noise amplitude (h) is increased. Figures 3~a! and 3~b! show
the result of such computations fore52% ~a! and e56%
~b! of the rms value of the signal. We see that the numbe
recurrent points goes to zero ath'e/2, which can be under
stood as follows. Under the noise of amplitudeh, both the
center and the boundary of the recurrent region are unce
within h. Thus, the effective phase-space volume ind di-
mensions in which two points can still be considered with
distancee ~recurrent! is proportional to (e2h)d2hd, which
vanishes ath5e/2. Sincee should be small to guarante

FIG. 2. For a noisy Ro¨ssler system:~a! histogram of the recur-
rence timem ~normalized with the recurrence time of the first pea!,
~b!–~d! a period-1, a period-2, and a period-4 recurrent orbit
tracted from the histogram in~a!, respectively, wheree56% and
the rms value of the noise is at about 0.5% of that of the cha
signal.

FIG. 3. For the noisy Ro¨ssler system, the relative numbe
(N/N0) of recurrent points versus the amplitude of noise for t
values of the size of the recurrent neighborhood:~a! e52% and~b!
e56% of the rms value of the signal, whereN0 is the number of
recurrent points at zero amplitude of noise. The vertical line in~b!
denotes the noise level at which periodic orbits in Fig. 2 are
tracted.
f

in

recurrence, we see that the noise level that can be tolerat
also small.

IV. PROBABILITY OF DETECTING PERIODIC ORBITS
FROM TRANSIENT CHAOTIC TIME SERIES

We now consider the probability of detecting periodic o
bits from transient chaotic time series@16#. This is particu-
larly relevant for transient chaos because trajectories o
chaotic saddle have an average lifetime timet staying near
the saddle and, hence, it is difficult for a typical trajectory
contain periodic orbits of period larger than, say,t. Effort
may then be devoted to connect short time series so tha
resulting long time series would contain periodic orbits
larger period@5#. Such a task may be difficult. If one fails t
detect periodic orbits of high periods, the question is whet
one should attempt to increase the number of measurem
so that more time series are available. Or, one may attem
improve techniques to link these time series, a computat
ally demanding task because it is essentially a problem
optimizing many time series and the computation required
any optimization problem typically increases dramatically
the number of elements involved is increased. Our m
point here is that in detecting unstable periodic orbits fro
transient chaos, the probability of detecting orbits of high
periods is typically exponentially small. This is an intrins
dynamical property of the underlying chaotic saddle a
hence, increasing the number of measurements or impro
techniques of detection will not help to enhance the cha
to detect these orbits.

We derive a scaling relation forF(p), the probability to
detect any period-p orbit. Note thatF(p) is actually the
probability for a trajectory to stay in a small neighborhood
any periodic orbit of periodp. For a trajectory to stay in a
n-neighborhood of allp points of thei th orbit of periodp,
the trajectory must come withind5ne2l i (p)p of any of thep
points when it first encounters with the periodic orbit, whe
l i(p).0 is the Lyapunov exponent of this orbit. The pro
ability for this event isf i(p);dDi, whereDi is the point-
wise dimension of any one of thep points of the this periodic
orbit. The exponential factore2l i (p)p is proportional to the
natural measure associated with this periodic orbit@11#. The
probability F(p) is the accumulative probability of al
f i(p):

F~p!5 (
i 51

K(p)

f i~p!; (
i 51

K(p)

nDi exp@2l i~p!Dip#, ~1!

whereK(p) is the total number of periodic points of perio
p. Sincel i(p) andDi are the local positive Lyapunov expo
nent and pointwise dimension of periodic orbits of periodp,
for largep we expect them to obey distributions centered
l1 and D1, respectively, wherel1 and D1 are the positive
Lyapunov exponent and the information dimension of t
chaotic saddle. Thus, the main dependence ofF(p) on p is

F~p!;e2l1D1pK~p!;e(2l1D11hT)p5e2gp, ~2!

whereg is the exponential scaling exponent andhT is the
topological entropy. Using the Kaplan-Yorke formula fo
chaotic saddles@17# to expressD1 in terms of the Lyapunov
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6488 PRE 61DHAMALA, LAI, AND KOSTELICH
exponents l2,0,l1 and the lifetime t: D15(l1
21/t)(1/l121/l2), or since l2,0,D15(l121/t)(1/l1
11/ul2u), we obtain the following scaling exponent:

g5l12hT1
l1

2

ul2u
2

1

t S 11
l1

ul2u D . ~3!

The scaling relation Eq.~2!, together with the scaling expo
nent in Eq. ~3!, is applicable to chaotic saddles in two
dimensional invertible maps or in three-dimensional flow
Note that for chaotic attractors (t→`), we haveg'l1

2hT1l1
2/ul2u.

To test Eqs.~2! and ~3! numerically, we use chaotic
saddles in the He´non map@18#: (x,y)→(a2x210.3y,x) for
which unstable periodic orbits can be computed system
cally @19#. We choose the following set of three parame
values for which there is transient chaos@20#: a51.6,1.8,
and 2.0. For each value ofa, we choose 106 initial conditions
in the region@22,2#3@22,2# containing the chaotic saddle
which yield 106 transient time series. For a given periodp,
we then compute the fractions of times that these 106 time
series get close to every periodic orbit of periodp. These
fractions are then accumulated to yield the probabilityF(p).
From our numerical experiments, we see that this probab
usually increases with the number of transient time se
and also with the length of the individual trajectories. F
ures 4~a!–4~c! show lnF(p) versusp for a51.6,1.8, and 2.0,
respectively. These plots indicate behavior of exponen
decay, and the decay exponents are given by the slope

FIG. 4. ~a!–~c! For the Hénon map ata51.6,1.8, and 2.0,
ln F(p) versusp. The dotted lines indicate the theoretically pr
dicted slopes of lnF(p) versusp.
n
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the plots. To compute the theoretical scaling exponents
Eq. ~3!, it is necessary to compute the Lyapunov expone
the topological entropy, and the lifetime of the chao
saddles. The following techniques are used in our comp
tion: ~1! we use the PIM-triple algorithm@21,22# to compute
the Lyapunov exponents;~2! we use the method in Ref.@23#
to compute the topological entropy; and~3! we use the sprin-
kler method to computet @17#. The slopes of the dashe
straight lines in Figs. 4~a!–4~d! are the theoretical slopes fo
the corresponding chaotic saddles. We see that the nume
slopes agree reasonably well with the theoretical ones
shown further in Table I, where the numerical and theoreti
slopes, together with the values of other quantities involv
in Eq. ~3!, are listed.

V. CONCLUSION

In this work we demonstrate that unstable periodic orb
of low periods can be detected reliably from an ensemble
transient chaotic time series by using the LK algorithm. O
numerical analysis indicates that the LK algorithm is pow
ful for extracting unstable periodic orbits at low noise lev
We further give a theoretical justification for the difficulty o
detecting periodic orbits of high periods from transie
chaos. The theoretical scaling law is verified by numeri
examples. Since the probability of detecting these orbits
exponentially small, as a matter of practicality it is perha
worthless to obtain long time series or to improve techniq
to detect periodic orbits from transient chaos. We rem
that although there has been a tremendous amount of w
on analyzing time series from chaotic attractors, the anal
of transient chaotic time series remains a far less explo
area.
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TABLE I. Theoretical and numerical values of the scaling e
ponentg at three different parameters for the He´non map.

a 1.60 1.8 2.0
l1 0.58 0.81 0.87
l2 21.78 22.01 22.07
hT 0.53 0.54 0.53
t 11.2 4.7 5.4
g ~theoretical! 0.12 0.31 0.44
g ~numerical! 0.1360.04 0.3260.03 0.4760.04
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