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Estimating generating partitions of chaotic systems by unstable periodic orbits
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An outstanding problem in chaotic dynamics is to specify generating partitions for symbolic dynamics in
dimensions larger than 1. It has been known that the infinite number of unstable periodic orbits embedded in
the chaotic invariant set provides sufficient information for estimating the generating partition. Here we present
a general, dimension-independent, and efficient approach for this task based on optimizing a set ofproximity
functions defined with respect to periodic orbits. Our algorithm allows us to obtain the approximate location of
the generating partition for the Ikeda-Hammel-Jones-Moloney map.

PACS number~s!: 05.45.Ac, 05.45.Pq, 05.45.Vx
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Many chaotic systems admit a good symbolic dynam
@1#. Take, for example, the one-dimensional logistic map@2#:
xn115rxn(12xn). For a typical trajectory, the correspon
ing symbolic dynamics can be defined by associating
symbols0 and1 with trajectory points 0<xn,xc51/2 and
xc,xn<1, respectively. In this example, there is a one-
one correspondence between trajectories in the phase s
and itinerary sequences represented by~semi!infinite se-
quences of the two symbols. The critical pointxc in this case
is the generating partitionfor the logistic map. For two-
dimensional maps there exists no unique recipe for ident
ing generating partitions. For example, it is conjectured t
a generating partition passes through theprimary tangency
points between the stable and unstable manifolds@3–6#,
which is strictly fulfilled only for specific systems such a
the Hénon map@7,3,4#. For other systems, additional consi
erations have to be employed, such as attractor folding in
case of Duffing attractor@5#, or symmetry considerations i
the case of the standard map@6#. It is also possible to con
struct generating partitions based on a topological anal
@8#. However, this approach can only be applied totwo-
dimensionalmaps obtained from the Poincare´ surface of sec-
tion of three-dimensional flows. At present, there exists
efficient approach to identifying the generating partition
generalhigh-dimensional chaotic dynamics. Being of fund
mental importance to the study of chaotic dynamics, find
generating partitions is also critical for important technolo
cal applications such as communicating with chaos@9#.

Given a chaotic system, it is known that the generat
partition can be specified by using the set of an infinite nu
ber of unstable periodic orbits~UPO’s! embedded in the un
derlying dynamical invariant set@10#. The general criterion
is that each UPO has to be represented by a unique sym
sequence, if the partition is generating. Thus it is possible
principle, to assign a symbol to each UPO point in suc
way that the above requirement is satisfied up to some la
periodp. Since the numberNp of orbit points increases ex
ponentially as a function of the periodp: Np; ehTp, where
hT.0 is the topological entropy of the chaotic set, speci
ing a generating partition in this manner appears to b
formidable optimization problem for a large number of o
bits.
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In this paper, we present an efficient algorithm for es
mating the location of the generating partition for a chao
system whose attractor is dense with UPO’s@11#. Our prin-
cipal idea is based on the observation that the coarse fea
of chaotic attractors are typically revealed by a relative
small number of short UPO’s, while increasingly longer o
bits refine~fill-in ! the features without altering the gener
structure. Therefore, orbit points of longer UPO’s are m
likely to be assigned the same symbols as the nearby po
belonging to shorter UPO’s. We then construct a set ofprox-
imity functions in the phase space, which greatly facilita
the assignment of symbols to orbit points of increasin
longer UPO’s, thereby allowing us to estimate generat
partitions in an extremely efficient way. Besides taking a
vantage of the proximity functions, our success also relies
the efficient detection of large numbers of UPO’s in gene
chaotic systems, a task that has recently become fea
@12,13#. Our approach enables us to compute the genera
partition for chaotic systems such as the Ikeda-Hamm
Jones-Moloney map@14# ~see Fig. 2!.

We begin by defining agenerating partitionof symbolic
dynamics. The notion ofgenerating partition@15# is based
on the ‘‘splitting’’ of the phase space in terms of measura
sets @16#. Consider anN-dimensional dynamical system
xn115f(xn), f:M→M . A finite collection of disjoint open
sets,$Bk%k51

K , whereBkùBj5B (kÞ j ), is defined to be a
topological partition if the union of their closures exact
coversM: M5øk51

K B̄k @17#. Given an initial conditionx0

and the topological partition$Bk%k51
K , the trajectory

$xi% i 52n
n defines a sequence of visited partition elemen

$Bxi
% i 52n

n , whereBxi
is the partition elementBk such that

xiPBk . The set of the intersection of the images and pre
ages of these elementsù i 52n

n f(2 i )(Bxi
) is, in general, open

and nonempty. For a faithful symbolic representation of
dynamics, the limitùn50

` ù i 52n
n f(2 i )(Bxi

) must be a single

point. Given a dynamical systemf:M→M on a measure
space (M,F,m), a finite partitionP5$Bk%k51

K is generating
if the union of all images and preimages ofP gives the set of
all m-measurable setsF. In other words, the ‘‘natural’’ tree
of partitions: ~ i 52`

` f( i )(P) always generates some su
1353 ©2000 The American Physical Society
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s-algebra, but if it gives the fulls algebra of all measurabl
setsF, thenP is calledgenerating@16#. This weaker notion
says that the splitting needs only be up to measurable
Since our approach demands splitting of a countable se
points, the unstable periodic orbits, we do not make t
distinction. For our algorithm to work, it is sufficient to de
mand that the UPO’s be dense in the attractor, which
common trait of chaotic attractors.

We now outline our general strategy for estimating t
generating partition of chaotic systems based on the kno
edge of unstable periodic orbits embedded in the chaotic
Consider anN-dimensional dynamical systemxn115f(xn)
and assume that we know the location of the UPO’s of up
a relatively large period. The numberK of symbols neces-
sary for the symbolic representation must be large enoug
allow for unique encoding of all UPO’s in the system:K
>maxpAp Np, whereNp is the total number of orbit points o
periodp, including orbit points with periods that are facto
of p. Our goal is to assign each orbit pointxi a symbolsi
PA5$a1 , . . . ,aK%, such that all the UPO’s are represent
by distinct symbolic sequences. In general, this is a com
cated problem of optimization for which a practical soluti
does not exist — a factor that hinders the determination
generating partitions from UPO’s. Our success relies on
following key observation: if we start the encoding proce
by assigning symbols to low-period UPO’s and then u
them as a guidance for encoding increasingly longer UPO
then the optimization problem becomes greatly simplified
particular, if the encoding of short UPO’s correctly reflec
the overall partitioning of the phase space, then most of
orbit points of longer periods are likely to be encoded
cording to theirproximity to the orbit points of shorter peri
ods. In order to have a quantitative measure, we define
following proximity functions of order pfor an arbitrary
point x in the phase space:

Zp
(k)~x!5 (

i 51

N<p dak ,si

ux2xi u2
, k51, . . . ,K, ~1!

whereN<p is the total number of orbit points whose perio
are less than or equal top, anddak ,si

is the Kronecker delta
which selects for the sum only those points encoded by
symbol ak . The choice of the functionux2xi u22 is not
unique, as long as it satisfies the following requirements
must be a positive monotone decreasing function wh
tends to1` in the limit x→xi . In our particular choice we
were primarily guided by the computational efficiency. W
can now divide the phase space intoK domains$Bk%k51

K such
that Zp

(k)(x)>Zp
( j )(x), j Þk, and, therefore, define a partitio

which distinguishes all UPO’s up to at least periodp.
To better illustrate the usefulness of the proximity fun

tions, say we consider a symbolic dynamics of two symb
and the set of points on periodic orbits of periods less tha
equal to p. Assume that a subset of these poin
(A1 ,B1 ,C1 , . . . ), hasalready been assigned the symb
‘‘ 1’’ and the complementary set (A2 ,B2 ,C2 , . . . ) bears
the symbol ‘‘2’’. Let x be a point in the phase space, then
have the following two proximity functions:Zp

1(x)51/r A1

2

11/r B1

2 11/r C1

2 1 . . . and Zp
2(x)51/r A2

2 11/r B2

2 11/r C2
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1 . . . . Clearly, if x is ‘‘closer’’ to the set of ‘‘1’’ points,
the distancesr A1

, r B1
, r C1

, etc., are shorter, leading to

Zp
1(x).Zp

2(x) as shown schematically in Fig. 1. Whilex
can be any point on the chaotic set, choosing it to be
components of all periodic orbits of period-(p11) yields the
symbolic coding for these periodic orbits, which in turn, r
fines the generating partition. Thus, starting from perio
orbits of the lowest period, we can, in principle, assi
proper symbols to orbit points of all periods. Since unsta
periodic orbits are dense on a chaotic set, in the limitp
→`, the boundaries between subsets of points with dist
symbols asymptote to the generating partition.~In Fig. 2, we
see that UPO’s through period-18 already ‘‘fill-in’’ quit
well.! This strategy is powerful because the symbolic cod
of the lowest periodic orbit can be readily obtained by e
amining the structure of the chaotic set. The method is a
efficient because the computation required is just to comp
the proximity functions. Occasionally, a point on a perio
(p11) orbit may be assigned a wrong symbol, but this c
be corrected easily by testing the uniqueness of the enco
of all period-(p11) orbits and then comparing the relativ
values of proximity functions at the orbit points. We find
numerical experiments that such corrections are rarely n
essary.

Note that in the scheme just described, we do not dire
search for a partitioning curve; this represents a basic dif
ence from the existing methods@3–6#. Rather, we define a
‘‘coloring’’ scheme for a large list of periodic orbits, an
then we imply that a partitioning curve (or hyper surface
passes between every two unlike colored pair of points.The
gap in-between is expected to decrease with increasing
riod. Our approach is thus more natural than specifying
exact partitioning curve. Most importantly, once the list
periodic orbits has been found, our algorithm is essentia
dimension independent.

To have confidence in our method, we tested our strat
using the He´non map@7#: (x,y)→(a2x21by,x) for differ-

FIG. 1. A schematic illustration of the proximity function and i
usage in the determination of the generating partition based on
stable periodic orbits. The two proximity functionsZp

1(x) and
Zp

2(x) are equal on the curve.



PRE 61 1355ESTIMATING GENERATING PARTITIONS OF CHAOTIC . . .
FIG. 2. ~Color.! Orbit points up to period-18 for the Ikeda-Hammel-Jones-Moloney attractor in Eq.~2! colored according to their
symbolic representation: green and red dots represent orbit points encoded with symbols0 and1, respectively.
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ent parameters (a,b), for which the generating partition ha
been obtained previously by examining the tangencies
tween stable and unstable manifolds@3#. We shall neglect the
computational details here and instead, give details sho
when we compute the generating partition for the Ike
Hammel-Jones-Moloney map@14#. It suffices to say that
generating partitions which we obtain for the He´non map
converge to those passing through the primary tange
points @3#.

We now consider the Ikeda-Hammel-Jones-Moloney m
@14# for which the generating partition, to our knowledg
has not been previously known. The map is given by

x85a1b~x cosf2y sinf!,
~2!

y85b~x sinf1y cosf!,

wheref5k2h/(11x21y2), and the parameters are chos
such that the map has a chaotic attractor:a51.0, b50.9, k
50.4, andh56.0. Using a recently developed method f
efficient detection of large numbers of UPO’s in general c
otic systems@13# we obtain a~conjectured! complete set of
UPO’s of period up to 22. The topological entropy of th
attractor ishT'0.602, ln 2, so the symbolic dynamics i
likely to be encoded with two symbols (A5$0,1%). In the
case of a binary representation it is convenient to defin
single proximity function:Zp(x)5Zp

(1)(x)2Zp
(2)(x), which

is positive in the domain of the symbol0 and negative the
domain of the symbol1.
e-

ly
-

cy

p

-

a

We begin construction of the partition by assigning sy
bols to the fixed points, e.g., point (0.5328,0.2469) in t
attractor is encoded with the symbol0, and point (1.1143,
22.2857) on the basin boundary is encoded with the sym
1 @18#. Next, we determine the values of the proximity fun
tion Z1(x(2)) at the positions of the two period-2 orbit point
x(2)5$(0.5098,20.6084),(0.6216,0.6059)%, relative to the
just assigned partitioning of the period-1 orbits. The corre-
sponding values are 1.05 and 7.19, which would indicate
both points should be encoded with0. This encoding obvi-
ously violates the requirement for unique symbolic repres
tation of each UPO, and, therefore, correction is necess
An orbit point with the smallest absolute value of the pro
imity function is most likely to be the one encoded inco
rectly. Thus the symbol representing point (0.509
20.6084) is changed to1. We then proceed to calculatin
Zp21(x(p)) for p>3, with subsequent assignment of symbo
according to the sign of the proximity functions, wit
uniqueness verifications after each period. In this exam
no more inconsistencies are encountered until period
where two orbits are assigned the same sequences. The
essary correction is again obvious if we consider the val
of the proximity function at the two orbits:~2554.6,2265.4,
188.3, 486.4, 664.9, 608.9,28.4, 310.3! and ~2535.2,
2270.0, 188.3, 487.4, 708.1, 704.2,298.6, 395.0!. Accord-
ing to these values, we should change the encoding of
seventh point in the first orbit. After this correction, no mo
inconsistencies are detected, and we can proceed to the
period. Note that the number of corrections for this attrac
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is extremely small: a total of only 16 corrections was
quired for the encoding of all the UPO’s up to period-20~for
a total of 373 005 orbit points!, each correction being a
simple as the one illustrated above.

The position of the generating partition for the attrac
given by Eq.~2! is indicated in Fig. 2, where orbit point
with periods up to 18 are colored according to their symbo
representation. The generating partition curve passes thro
the narrow region separating the two colors. We remark
in Fig. 2, one can see a ‘‘shadow’’ of the homoclinic ta
gency points@19# through our partition curveeven though no
such considerations entered directly into our computatio.
Apparently, the precision of thus determined generating p
tition can be made arbitrarily high by considering UPO’s
higher period, which is, in principle, no longer an obstac
particularly for low-dimensional chaotic systems@12,13#.
We stress two facts here:~1! the generating partition ob
tained is only an approximation, and~2! to our knowledge,
the generating partition shown in Fig. 2 for the Iked
Hammel-Jones-Moloney map has not been obtained pr
ously.
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Note that our approach has some common ideas with
one based on the topological analysis@8#. Both methods ex-
tract the information about symbolic dynamics progressiv
from the hierarchy of UPO’s, and both rely on the continu
and uniqueness of the underlying dynamics. The topolog
analysis has the added constraint that topological invaria
are compatible with symbolic names to ensure dynamic
evance. However, this analysis can only be applied to flo
and hence to orientation-preserving two-dimensional ma
while our approach is simpler, more general and, in pr
ciple, dimension independent.

In summary, we have developed an efficient strategy
determining the generating partitions in chaotic systems.
method works extremely well for low-dimensional chao
systems for which UPO’s can be readily obtained, and
applicable to high-dimensional chaotic systems as well, in
far as large numbers of UPO’s can be detected.
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