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We propose a general strategy for designing coupling functions in order to achieve a desired amplitude
dynamics in coupled nonlinear oscillators. The target dynamics achieved by the proposed control schemes is a
fixed-point motion at a desired amplitude level or a periodic motion at a desired frequency. The control
schemes are illustrated with Rössler and Hindmarsh-Rose oscillators.
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Over the last two decades, control of dynamical systems
and stabilization of unstable dynamical states have been a
topic for intense research in theoretical and experimental
nonlinear science �1�. Ott, Grebogi, and Yorke �2� introduced
a control technique to stabilize a chaotic system in the neigh-
borhood of a desirable unstable periodic orbit naturally em-
bedded in the chaotic motion. Pyragas �3� proposed a time-
delayed self-controlling feedback technique. Experimental
control of chaos by one or both of these methods has been
achieved in a variety of chaotic and stochastic systems, in-
cluding turbulent fluids, oscillating chemical reactions, mag-
netomechanical oscillators, cardiac tissues, and neurons �4�.
Here, for physically accessible or modifiable coupling func-
tions, we propose a general strategy for designing coupling
functions in order to achieve a desired amplitude dynamics
in coupled chaotic systems.

The key observation is that an appropriate coupling func-
tion can put a coupled system of chaotic oscillators to a
fixed-point motion and time-dependent sinusoidal inputs in
the coupling functions can further stabilize the system to a
targeted periodic orbit. The stabilization of fixed points in
coupled oscillators is a phenomenon that has been commonly
known as amplitude death �AD� �5–9�: as a consequence of
the interaction, a pair of fixed points becomes stable and
attracting, leading to a loss of oscillatory dynamics. Ampli-
tude death was first observed experimentally in diffusively
coupled chemical systems �5�, and by now is known in a
variety of other situations �8�. The stabilization of fixed
points has been an important objective of many experimental
studies. In coupled laser systems, for instance, the removal
of chaotic fluctuations is highly desirable �10,11�. When the
systems are identical, AD is known to occur when there is
time delay in the coupling �7�, a scenario that can occur even
when the systems are not identical �6�. A series of studies of
delay coupled systems have analyzed AD both theoretically
and experimentally �8,9,11,12�, and a novel setting of AD is
via conjugate coupling where oscillators are coupled through
dissimilar or conjugate variables �13�.

Here, we propose a general strategy for achieving ampli-
tude death and a purely periodic motion through the design
of the coupling function in coupled chaotic systems. With
this approach, AD can be observed in both identical and
mismatched coupled oscillators, and with either instanta-
neous or time-delayed interactions. AD is thus generic in

coupled systems, and by proper choice of coupling function
essentially arbitrary specified fixed points can be stabilized.
Results are presented for coupled Rössler oscillators as well
as for model neurons with synaptic coupling. In a straight-
forward extension, specific periodic dynamics can also be
stabilized, thus enabling control of complex dynamical sys-
tems.

It is widely recognized that natural systems are rarely iso-
lated and that coupling interactions give rise to phenomena
such as synchronization, hysteresis, phase locking, phase
shifting, phase-flip, riddling or amplitude death �14,15�.
Since nonlinear systems arise in a variety of contexts, such
dynamics is of broad relevance a variety of areas of research
in the physical, biological, and social sciences. Existing sce-
narios of amplitude death pertain to the stabilization of ex-
isting fixed points that are unstable in the uncoupled systems.
Our approach, outlined below, offers a method for stabilizing
arbitrary fixed points or periodic orbits.

Consider the case of two coupled oscillators

dXi/dt = Fi�Xi� + �G�X�, i = 1,2, �1�

where Xi denotes the set of dynamical variables of the ith
oscillator, and G�X�=G�Xi ,X j� is the coupling function be-
tween ith and jth oscillators. If the dynamics is oscillatory
for �=0, then the situation of amplitude death occurs when
the coupling is sufficient to cause a stationary solution of the
above system, say Xi

�0�, to become stable and attracting.
When the coupling G is diffusive, these fixed points are typi-
cally also stationary solutions of the uncoupled system,
namely, they are determined by the condition,

Fi�Xi
�0�� = 0, �2�

since in this case the effective coupling also vanishes,

G�X�0�� = 0. �3�

The above scenario for AD has been studied extensively for
a variety of situations: when the systems are identical �13�,
when the parameters of the two oscillators are not identical
�6�, when the linear coupling function G includes time delay
�7,12�, and so on. The basic conditions under which AD
ensues are well understood �8�.
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The case when the coupling function G is nonlinear has
been less extensively studied �16�, although in a variety of
natural systems �10,11�, such coupling is unavoidable. While
AD can still occur—and is a desired goal of some studies
�11�—the fixed points that are stabilized no longer corre-
spond to the stationary points of the uncoupled system
�12,13�.

Here we find that new desired fixed point that can be
created and stabilized through an appropriate coupling func-
tion. The essence of the procedure is the following. Given a

set of desired fixed points, X̄i, these will be stationary points
of the coupled system with an additional constant source,
namely, of the modified dynamical system

dXi/dt = Fi�Xi� + �G�X� − Fi�X̄i� . �4�

The source function Fi�X̄i� takes a constant value that de-
pends on the desired fixed points. For suitable G it can be

arranged that G�X̄�=0. Upon variation of the coupling pa-
rameters such as the coupling strength � �or by including
time-delay � in G�, the new fixed point can be stabilized:
this, effectively, is targeted amplitude death.

As an illustration we consider coupling between two iden-
tical chaotic Rössler oscillators �17� through an exponential
term, G���xi−��exp�xj −�� ,0 ,0�T �16� where T denotes the
transpose. The resulting equations for the coupled system are
�i , j=1,2 , i� j�

ẋi = − yi − zi − ��xi − ��exp�xj − �� ,

ẏi = xi + ayi,

żi = b + zi�xi − c� . �5�

Here the coupling is via the variables x1 and x2, and we have
introduced the parameters � and � in G. Clearly, G=0 for
xi=� and examination of the dynamical equations suggests
that a fixed point x̄i=� , ȳi=−� /a and z̄i=−b / ��−c� can be
created by modifying the above equations to

ẋi = − yi − zi − ��xi − ��exp�xj − �� + �ȳi + z̄i� ,

ẏi = xi + ayi,

żi = b + zi�xi − c� . �6�

The stability of this fixed point can be examined �18� as a
function of � and �. In Fig. 1 the stable �S� and unstable �U�
regions are indicated: the unstable solution corresponds to
the unbounded motion of the system while stable regime
indicates the possibility of AD solution. Fixing �=1, we
compute the largest real part of eigenvalue, Re��� �18� at the
fixed point; this is shown in Fig. 2�a� and it is clear that
amplitude death can occur when Re��� becomes negative.
Similarly, shown in Fig. 2�b� are transients for different val-
ues of � with �=0.05. In all cases, the desired fixed point
x̄i=� is achieved.

It is a simple extension of this idea to stabilize arbitrary
x̄i , ȳi , z̄i via the modified dynamical equations

ẋi = − yi − zi − ��xi − ��exp�xj − �� + �ȳi + z̄i� ,

ẏi = xi + ayi − �x̄i + aȳi� ,

żi = b + zi�xi − c� − �b + z̄i�x̄i − c�� , �7�

and examining the dynamics as a function of the remaining
parameters, � and �. An example of such a targeted ampli-
tude death is shown in Fig. 3 for different desired fixed
points.

Exponential coupling �as taken in Eq. �5�, for example�
arises naturally in neuroscience where it has been extensively
studied in the context of synaptic coupling. Consider
Hindmarsh-Rose �HR� �19� neurons,

ẋi = d1xi
2 − xi

3 − yi − zi − �g�xi,xj� − f�X̄i� ,

ẏi = �d1 + d2�xi
2 − yi,

żi = d3�d4xi + d5 − zi� , �8�

with

g�xi,xj� =
�xi − ��

1 + exp�− ��xj − �s��
, �9�
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FIG. 1. Schematic phase diagram in the �-� plane for the
coupled Rössler system, Eq. �6�.
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FIG. 2. �Color online� �a� Real part of the largest eigenvalue as
a function of the coupling strength � at �=1. �b� Transient trajec-
tories, x1 vs time for �=0.8 �dashed line� and 1.1 �solid line� at
coupling strength �=0.05.
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f�X̄i� = d1x̄i
2 − x̄i

3 − ȳi − z̄i. �10�

where G�X�= �g�xi ,xj� ,0 ,0�T. Here the x’s are membrane
potentials while the variables y and z are associated with fast
and slow currents, respectively. The external parameter is the
strength � of the sigmoidal synaptic coupling. The reversal
potential, � and the spiking threshold is held fixed. � is a
synaptic threshold and � controls the slope in the exponential
function. The fixed points of the coupled system are x̄i
=� , ȳi= �d1+d2��2 , z̄i=d2�+d5. This fixed point differs
from those of the uncoupled system. Eigenvalues �18� of the
stability matrix at this fixed point reveals that, as shown in
Fig. 4, there is a small region where oscillatory motion �OS�
persist for small coupling strength while AD occurs in the
remaining region. The details of largest eigenvalue of the
fixed point is plotted in Fig. 5�a� which clearly shows that for
small value of coupling strength there oscillating motion
�Re���0� while at higher values there is existence of AD
�having negative values��. The transient trajectories for con-
trolled fixed point �=1 and 2 are shown in Fig. 5�b� at cou-
pling strength �=2. Note that in both systems, Eqs. �6� and
�8�, AD occurs even though the subsystems are identical and
instantaneously coupled �16�.

Here we also show that it is possible to target periodic
orbits by this method. Modification of the coupling function
G→ �xi−� sin�	t�� gives a targeted periodic orbit of fre-

quency 	 in a specific range of parameters. Shown in Figs.
6�a� and 6�b� are the variation of resulting common fre-
quency 
 of the two oscillators for a given forcing frequency
	 in a coupled Rössler system, Eq. �6� and HR system, Eq.
�8�, respectively. Here, the parameters are fixed such that in
the absence of periodic forcing, amplitude death will result.
The input and output frequencies are identical, showing that
one can indeed target periodic motion as desired. The inset
figures in Fig. 6 shows the time series �x1 vs time� associated
with such a target periodic motions for 	=5.

In summary, the main result presented here is that, with
specific coupling, the stabilization of the new fixed points
can occur in the absence of time delay even when the inter-
acting systems are identical. Recognition of the manner in
which coupling causes amplitude death leads to a strategy for
the stabilization of arbitrary fixed points by a suitable modi-
fication of the coupling function �21�. A straightforward ex-
tension of the procedure is effective in stabilizing networks:

1 1.2 1.4 1.6 1.8 2 2.2
y

1

1

1.5

2

z 1
(1,2)

(2,1)

FIG. 3. �Color online� Transient trajectories in the y-z plane
leading to the specified values of ȳ1 and z̄1 at x̄1=�=1 and �
=0.05 for the coupled Rössler system, Eq. �7�.
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FIG. 4. Schematic phase diagram in the �-� plane for the
coupled HR system, Eq. �8�. The other parameters are fixed at d1

=2.8, d2=1.6, d3=0.001, d4=9, d5=5, �=−0.25, and �=10
�20�.
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FIG. 5. �Color online� �a� Real part of the largest eigenvalue as
a function of the coupling strength � at �=1 for HR system, Eq. �8�.
�b� Transient trajectories, x1 vs time for �=2 �dashed line� and 1
�solid line� at coupling strength �=2.
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FIG. 6. The variation of the output frequency of coupled �a�
Rössler ��=0.4 and �=0.01� and �b� HR ��=1 and �=2� oscillators
forced harmonically with targeted frequency 	.

BRIEF REPORTS PHYSICAL REVIEW E 82, 027201 �2010�

027201-3



we have also verified this for sets of 10 coupled oscillators
�both Rössler and HR� with nearest-neighbor interactions
and periodic boundary conditions �figures not included here�.
We have also observed similar phenomena with finite delay
and mismatched oscillators. Furthermore, this strategy is ef-
fective in creating oscillatory periodic motion of desired fre-
quency. The control schemes presented here can be of con-
siderable interest in controlling undesirable dynamic
fluctuations in the output of a coupled physical or engineer-
ing system. A specific example is the case of semiconductor

lasers where different coupling schemes have been proposed
to stabilize low-frequency chaotic fluctuations �11�. Simi-
larly, creating a periodic oscillation at a specific frequency
can be of tremendous interest for a variety of physical and
biomedical applications.
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