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Amplitude death is the cessation of oscillations that occurs in coupled nonlinear systems when fixed points
are stabilized as a consequence of the interaction. We show here that this phenomenon is very general: it occurs
in nonlinearly coupled systems in the absence of parameter mismatch or time delay although time-delayed
interactions can enhance the effect. Application is made to synaptically coupled model neurons, nonlinearly
coupled Rössler oscillators, as well as to networks of nonlinear oscillators with nonlinear coupling. By suitably
designing the nonlinear coupling, arbitrary steady states can be stabilized.
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Coupled nonlinear dynamical systems have been exten-
sively studied from both theoretical and experimental points
of view in the past few decades. Natural systems are rarely
isolated, and thus studies of coupled dynamical systems
which arise in a variety of contexts in the physical, biologi-
cal, and social sciences have broad relevance to many areas
of research. Coupling gives rise to new phenomena such as
synchronization, hysteresis, phase locking, phase shifting,
phase-flip, or riddling �1,2�.

Amplitude death �AD� is an important phenomenon that
can also occur in strongly coupled nonlinear oscillators when
their interaction causes a pair of fixed points to become
stable and attracting �3–6�. First observed in chemical sys-
tems �3� it has become evident through a number of recent
theoretical and experimental studies that this phenomenon is
quite widespread. The work of Reddy et al. �5� showed that
amplitude death could occur in identical systems if the inter-
action was delayed, belying earlier ideas that AD could occur
only when the oscillators were mismatched �4�. Several the-
oretical and experimental studies of amplitude death in
delay–coupled systems �6–9� have further contributed to the
understanding of the effect. Very recently, a new setting for
the occurrence of AD was proposed by Karnatak et al. �10�:
when the coupling is through dissimilar or conjugate vari-
ables, oscillations can cease even when there is no time delay
in the coupling and when the oscillators are identical.

Existing scenarios of amplitude death involve the stabili-
zation of existing fixed points which are unstable in the un-
coupled system. This includes the situation when the fixed
points shift due to parameter mismatch. Since these are
largely dependent on the nature of the uncoupled system, an
important question in this context is thus one of control: is
there a general strategy by which AD can be achieved?

In this Brief Report, we show that AD commonly occurs
in nonlinearly coupled oscillators and can be achieved by
design in both identical or mismatched coupled oscillators
and via either instantaneous or delayed interactions. The re-
gime of AD can be found by choosing a proper nonlinear
coupling function, which can create new fixed points and
stabilize them. This nonlinear coupling may be a given—in
the sense that the systems under study are naturally coupled
in this manner—or can be constrained by what is possible

experimentally. Instances of both such nonlinear coupling
strategies are discussed below in applications to a neuronal
model with synaptic coupling, as well as to Rossler systems.

Consider a coupled system of N nonlinear oscillators.

Each oscillator when isolated follows Ẋ=F�X�, where X is
an m-dimensional vector of dynamical variables and F�X� is
the velocity field. The coupled system is described by the
following equations:

Ẋi = Fi�Xi� +
�

Ki
�
j=1

Ki

AijH�Xi,X j,��, i = 1, . . . ,N , �1�

where subscript i in Xi and Fi represents ith oscillator. Here
Ki is the number of connections to the ith oscillator, namely,
its degree and 1�Ki�N, and � is coupling strength. The
connection topology is given as Aij =1 if oscillators i and j
are connected to each other and Aij =0 otherwise. The cou-
pling function H :Rm→Rm specify the manner in which the
oscillators i and j are coupled, with H�Xi ,X j ,�� being a
function of Xi�t� and X j�t−��.

Our main result here is that it is possible to construct
coupling functions H such that any desired new fixed points
can be created and upon variation in coupling parameters �
and the time delay � these fixed points can often be stabi-
lized. The control and design of specific stable states can
offer considerable flexibility in a number of situations of
practical interest.

We first demonstrate these results in a synaptically
coupled network of identical Hindmarsh-Rose �HR� neurons
�11�, with Xi= �xi ,yi ,zi�T and H= �h�xi�t� ,xj�t−��� ,0 ,0�T,
where h is a nonlinear function and the superscript T denotes
the transpose. The equations describing the dynamics of a
network of N nodes are therefore

ẋi = axi
2 − xi

3 − yi − zi −
�

Ki
�
j=1

Ki

Aijh�xi,xj,�� ,

ẏi = �a + b�xi
2 − yi,
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żi = c�dxi + e − zi� , �2�

where

h�xi,xj,�� =
�xi − Vs�

�1 + exp�− ��xj�t − �� − �s���
. �3�

At each neuron i the notation is as follows: xi is the mem-
brane potential and yi and zi are the fast and slow currents
respectively. The external parameters are the synaptic cou-
pling strength � and delay �. In our simulations �12�, the
reversal potential Vs is fixed at Vs=2 at which the synapse is
excitatory, the spiking threshold is fixed at �s=−0.25 and the
synaptic coupling function is taken to be sigmoidal, and we
take a=2.8, b=1.6, c=0.001, d=9, and e=5 �13�.

First consider N=2 and �=0, namely, two neurons
coupled without delay. Shown in Fig. 1�a� is the variation in
largest two Lyapunov exponents �solid �black� and dashed
�green�� as a function of coupling strength �. The first zero
Lyapunov exponent becomes negative at �c�2.83. . ., after
which all Lyapunov exponents are negative: this corresponds
to the amplitude death regime. Trajectories before and after
this transition are shown in Figs. 2�a�–2�c�, respectively,
clearly showing that the system goes from an oscillatory re-
gime to amplitude death.

A further calculation shows that for two identical systems,
the fixed points should be symmetric, and these are
�x� ,y� ,z��, where x� is a real root of

x�3 + bx�2 + dx� + e + �h�x�,x�,0� = 0 �4�

and

y� = �a + b�x�2, �5�

z� = dx� + e . �6�

These fixed points are different from those of the uncoupled
system since h�0; their variation in � is shown in Fig. 1�b�.
At low � there is a single fixed point �open diamonds� but as
� is increased �around �=2.345� two new fixed points
�shown by the open triangles and open circles� are created
via a saddle-saddle bifurcation. On further increase in cou-
pling strength �at �=4.15� two of these collide and a single
fixed point remains.

The stability matrix of the system at these fixed points
turns out to be

	
P�x�� − 1 − 1 − �R�x�� 0 0

2�a + b�x� − 1 − 0 0 0 0

cd 0 − c 0 0

− �R�x�� 0 0 P�x�� − 1 − 1

0 0 0 2�a + b�x� − 1 0

0 0 0 cb 0 − c


 ,

where

P�x�� = 2ax� − 3x�2
− �Q�x�� , �7�

Q�x�� = 1/�1 + exp�− ��x� − �s��� , �8�

R�x�� = �x� − Vs��
exp�− ��x� − �s��

�1 + exp�− ��x� − �s���2 . �9�

The eigenvalues �14� of the stability matrix at the fixed
points can be computed, and for low values of the coupling
strength when only one fixed point exists, this is unstable
�open diamond� and the motion is oscillatory �Fig. 2�a��. The
fixed points created after �=2.345 are also unstable �open
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FIG. 1. �Color online� Variation in �a� the two largest Lyapunov
exponents, �i, and �b� the fixed points, x� of Eq. �2�, as a function of
coupling parameter, �. In �a�, the real part of the two largest eigen-
values at the lower fixed point shown in �b�. The inset gives an
expanded view of the curves near the bifurcation; see the text for
explanations.
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FIG. 2. Membrane potential x as a function of time for coupling
strength �a� �=2, �b� �=2.7, and �c� �=3.10. The insets give an
enlarged view of the spiking.
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circles and triangles—see Fig. 1�b��, but as the coupling
strength is further increased, around �c=2.83 the real parts of
all eigenvalues of one of the fixed points �upper fixed point,
circles� become negative: this is the regime of amplitude
death �although the other two fixed points �open diamond
and triangle� remain unstable�.

We plot the real part of the two largest eigenvalues corre-
sponding to the fixed point �which gets stabilized� in Fig.
1�a� �open circles � and stars ��. Before the bifurcation both
are equal and positive: the fixed point is unstable. After the
bifurcation both the largest eigenvalues are distinct and nega-
tive; there is therefore a fixed point solution, namely, ampli-
tude death. These eigenvalues coincide with the Lyapunov
exponents �see Fig. 1�a��; a typical trajectory before and after
the bifurcation is shown in Figs. 2�b� and 2�c�, respectively.

The nature of the dynamics prior to the saddle-saddle-type
bifurcation is shown in Fig. 2�a� while Fig. 2�b� is just prior
to amplitude death. The main difference is a change in the
frequency of bursting which is also accompanied by a
change in the spiking behavior �15� as can be seen in the
inset to Fig. 2.

Networks of such oscillators coupled without time delay
continue to show global amplitude death. Shown in Fig. 3
are bifurcation diagrams for networks of N=10 oscillators
coupled in different topologies. Three cases considered here
include �a� complete connection, namely, Ki=N−1 in Eq.
�2�, �b� a linear chain with periodic boundary conditions,
Ki=2 as well as �c� random connections with Ki=3. The
motion goes from being oscillatory to amplitude death as the

coupling strength is increased, though the threshold depends
on the coupling topology. In general, though, the approach to
the amplitude death regime is gradual with the range of os-
cillation becoming narrower with increasing coupling. The
random coupling case �Fig. 3�c�� also suggests that AD can
occur in the small world topology �16�.

For nonzero � the effect persists although it is more dif-
ficult to analyze since the system becomes effectively infinite
dimensional. However, delay coupling is appropriate in
many situations—for instance, in the study of spatially dis-
tributed biological systems—since signals are transmitted
with finite velocity. As a representative case numerical re-
sults are presented for the above coupled Hindmarsh-Rose
model, namely, Eq. �2� with �=5. The Lyapunov exponents
as a function of the coupling strength are shown in Fig. 4
�12,17�, and in comparison to the zero delay case, it can be
seen that the transition to AD occurs for a lower coupling
threshold. The effect is quite general and has been verified in
delay-coupled Rössler oscillators as well.

It is also possible to design the coupling function in order
to create new fixed points that may be required. As an ex-
ample, consider two identical coupled Rössler systems �18�
without time delay,

ẋi = − yi − zi − �h�xi,xj,0� ,

ẏi = xi + 0.1yi,

żi = 0.1 + zi�xi − 14� , �10�

with h�xi ,xj ,0� chosen so as to vanish for specific values of
xi and xj. For h�xi ,xj ,0�= �xi−����−xj�, with �=1 and �
=2, shown in Fig. 5 are the three largest Lyapunov expo-
nents, with the transition to AD occurring at �=0.096. A
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FIG. 3. �Color online� Bifurcation diagrams for the system of
N=10 coupled oscillators with �a� global coupling, �b� nearest-
neighbor coupling with periodic boundary conditions, and �c� a
small-world network where each neuron is randomly connected to
two others �shown in the insets�. Xm corresponds to the maxima of
x.
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FIG. 4. �Color online� The largest three Lyapunov exponents as
a function of the coupling � for two HR neurons, Eq. �2� with �
=5. Time-delayed interactions appear to lower the coupling thresh-
old at which AD occurs in a given topology.
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FIG. 5. �Color online� The largest three Lyapunov exponents as
a function of the coupling � for Rössler oscillators �Eq. �10��.
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variety of different coupling forms can stabilize fixed points
in this system; for instance h�xi ,xj ,0�= �0.01xi

2+xi−2��3.1
−xj −0.0001xj

2� is also equally effective in achieving AD
with other fixed points �15�. Since these fixed points do not
exist in the uncoupled system, the nature of amplitude death
in such instances differs from the case when AD is created
with linear coupling �3,5,6,8�.

In general, the nonlinear coupling functions, when not
constrained by the natural manner in which systems interact,
as in Eq. �2�, can be designed in order to create new fixed
points. For example, in the coupling function H�Xi ,X j ,��
= �Xi−��g�Xi ,X j ,��−Fi�Xi

�� for nonzero g�Xi ,X j ,�� the
only fixed point solution that is possible is Xi

�=�. Thus by
choosing appropriate point � one can control the amplitude
death point as required �details will be presented elsewhere
�15��.

In summary, we have examined the phenomenon of am-
plitude death in model nonlinear dynamical systems with
nonlinear coupling. We have studied the effect in instanta-
neous as well as delay coupled systems and observe that AD
is a general phenomenon that can occur in either situation.
Typically, new fixed points are created and these get stabi-
lized when parameters are varied. The same strategies are
successful for networks of neuronal oscillators coupled in

different topologies. We also make application to coupled
Rössler oscillators wherein we design the coupling so as to
achieve specific and arbitrary fixed points. Our results apply
quite generally and have been verified both analytically as
well as numerically for the coupled HR neuronal model. We
have verified the persistence of AD in mismatched neuronal
model �19� oscillators, as well as in other chaotic systems
�15�.

AD can be of considerable importance in controlling os-
cillatory dynamics, and thus the present methods are of po-
tential utility in devising appropriate design strategies when
irregular chaotic fluctuations need to be suppressed. For in-
stance in laser modulation, different forms of coupling can
be used to stabilize undesirable low-frequency chaotic fluc-
tuations �9,20�. This transition also has a broad relevance in
neuroscience applications: networks of neurons are known to
have either instantaneous or time-delayed nonlinear cou-
pling. The knowledge of how AD arises in such systems can
therefore be useful in designing hybrid systems to control
neuronal outputs �21�.

A.P. acknowledges support from Georgia State University,
Atlanta, the Abdus Salam ICTP, Trieste, and the DST, India.

�1� A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A
Universal Concept in Nonlinear Science �Cambridge Univer-
sity Press, Cambridge, 2001�.

�2� K. Kaneko, Theory and Applications of Coupled Map Lattices
�John Wiley and Sons, New York, 1993�; E. Ott, Chaos in
Dynamical Systems �Cambridge University Press, Cambridge,
1993�; L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821
�1990�; G. B. Ermentrout, and N. Koppel, SIAM J. Appl.
Math. 50, 125 �1990�; A. Prasad et al., Pramana, J. Phys. 64,
513 �2005�.

�3� K. Bar-Eli, Physica �Amsterdam� 14D, 242 �1985�.
�4� R. E. Mirollo and S. H. Strogatz, J. Stat. Phys. 60, 245 �1990�;

G. B. Ermentrout, Physica �Amsterdam� 41D, 219 �1990�; D.
G. Aronson et al., ibid. 41D, 403 �1990�.

�5� D. V. Ramana Reddy, A. Sen, and G. L. Johnston, Phys. Rev.
Lett. 80, 5109 �1998�.

�6� F. M. Atay, Phys. Rev. Lett. 91, 094101 �2003�; R. Dodla, A.
Sen, and G. L. Johnston, Phys. Rev. E 69, 056217 �2004�; D.
V. Ramana Reddy, A. Sen, and G. L. Johnston, Phys. Rev.
Lett. 85, 3381 �2000�; R. Herrero, M. Figueras, J. Rius, F. Pi,
and G. Orriols, ibid. 84, 5312 �2000�; J.-W. Ryu et al., Phys.
Rev. E 70, 036220 �2004�; J. Zhou and Z. Liu, ibid. 77,
056213 �2008�; S. H. Strogatz, Nature �London� 394, 316
�1998�.

�7� Fixed points having odd number of real positive eigenvalues
cannot be stabilized in time-delay systems; see K. Konishi,
Phys. Lett. A 341, 401 �2005�.

�8� A. Prasad, Phys. Rev. E 72, 056204 �2005�; A. Prasad, J.
Kurths, S. K. Dana, and R. Ramaswamy, ibid. 74, 035204�R�
�2006�.

�9� P. Kumar, A. Prasad and R. Ghosh, J. Phys. B 41, 135402
�2008�; 42, 145401 �2009�.

�10� R. Karnatak, R. Ramaswamy, and A. Prasad, Phys. Rev. E 76,
035201�R� �2007�; Chaos 19, 033143 �2009�.

�11� J. L. Hindmarsh and R. M. Rose, Proc. R. Soc. London, Ser. B
221, 87 �1984�.

�12� The flows �Eqs. �2� and �10�� are integrated using Runge-Kutta
fourth order scheme with integration step 	t=0.005 for �=0
and with 	t=� /N where N=300 is fixed for delay coupling.

�13� I. Belykh, E. de Lange, and M. Hasler, Phys. Rev. Lett. 94,
188101 �2005�.

�14� This matrix turns out to be ill-conditioned. Therefore we com-
pute the eigenvalues numerically using balancing, Hessenberg
reduction, followed by QR algorithm techniques. Details can
be found in W. H. Press et al., Numerical Recipes �Cambridge
University Press, Cambridge, 2007�.

�15� A. Prasad et al. �unpublished�.
�16� Z. Hou and H. Xin, Phys. Rev. E 68, 055103�R� �2003�.
�17� J. D. Farmer, Physica �Amsterdam� 4D, 366 �1982�.
�18� O. Rössler, Phys. Lett. 57A, 397 �1979�.
�19� P. Channell et al., Phys. Rev. Lett. 98, 134101 �2007�.
�20� A. Prasad et al., Phys. Lett. 314A, 44 �2003�.
�21� M. Sorensen et al., J. Neurosci. 24, 5427 �2004�.

BRIEF REPORTS PHYSICAL REVIEW E 81, 027201 �2010�

027201-4


