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Abstract

By deriving anN-dimensional Poincare map, we explore the enhanced stability of Josephson series arrays using capacitive
junctions. The analytic expression for the critical Floquet multiplier has a direct physical interpretation, affording new insight
into the conditions that affect inphase stability. In particular, we generalize the well-known stability principle previously
established for arrays of zero capacitance junctions. Optimally capacitive junction arrays offer a much improved candidate
for experimental realization of the Kuramoto model2002 Elsevier Science B.V. All rights reserved.

1. Introduction sensing. In the meantime, Josephson arrays have be-
come a popular example in nonlinear dynamics, serv-
ing as an archetype of nonlinear coupled oscillators

The study of Josephson junction arrays is almost as and the various ordered and chaotic phenomena ex-
old as the Josephson effect itself [1-3]. Interest in ar- hibited by such systems.

rays has remained high due to a number of potential These two motivations intersect in the phenom-

applications as deteCtorS, oscillators and amplifiers in enon of Spontaneous Synchronization_ Here' an array

very high frequency electronics [4,5]. For example, s driven by a constant bias current which induces volt-

Josephson arrays are currently used in high sensitiv- age oscillations in each junction, due to the nonlinear

ity magnetic flux detectors in biology and biomedi- nature of the Josephson effect. The simplest collective

cine [6], and finding new applications in high sen- pehavior is also the most desirable (in most applica-
sitivity scanning microscope to monitor aircraft cor-  tjons), wherein all junctions oscillate with the same
rosion [7], in tunable local oscillators at millimeter frequency and in phase_ By far, theoretical progress
and submillimeter wavelengths [8] and in parametric has been greatest for series arrays of zero-capacitance
amplifiers [9]. They are also presently used to main- junctions, a class of problems which has proved to
tain the U.S. Legal Volt [10]. Since fast digital logic  be surprisingly tractable. Such arrays can be mapped
circuits can be constructed from Josephson junctions, onto the Kuramoto model familiar from dynamical
there are other pOSSibiIitieS of new applications in the Systems theory [11], they also possess a remarkable
areas of computers, telecommunications and remotedynamical structure typically associated with Hamil-
tonian systems despite their manifestly dissipative na-
ture [12]. There is also a crisp physical condition for
* Corresponding author. when inphase oscillat_ions are stable_, hingi_ng simply
E-mail address: kurt.wiesenfeld@physics.gatech.edu on whether the coupling load looks inductive at the
(K. Wiesenfeld). operating frequency [13-15].
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Our understanding of spontaneous synchronization quence of differential equations for successive powers
of capacitive junctions is far less advanced. Although of . These admit the following solutionsfortbé”):
the best power levels have been achieved for junc-
tions with zero capacitance [16,17], the potential ad- ¢](CO) =t 46, (2a)
vantage of using junctions with nonzero capacitance , (1) :
is that they may perform better, simply because there i = Aisint + By cos, (2b)
is another parameter to vary. Indeed, numerical stud- 42 _ }b(Ak Sind, — By oSOy )t
ies by Hadley and co-workers [18], predicted that in- 2
phase stability is greatest for junctions with McCum- + CySin2Z + Dy cos 2, (2¢)
ber parameters of aboqt unity. This observation was whered, is a constant of order unityls. By. Cy. D
observed to be roughly independent of the load prop- : ) ; ;
erties, and no physical explanation has ever been of- are c_onstants of order. Since¢, ™ ~ b", the higher
fered for it. Nor does the physical condition for in- the bias currenty™, the better the convergence of the
phase stability carry over from the zero-capacitance solutions. _Determlnlng e>§pI|C|t expressions for these
junction case, and sometimes dramatically: an array of Constants in terms of tig is straightforward. For ex-
capacitive junctions with a purely capacitive load ad- ample, one finds
mits a range of inphase stability, even though the load 1 )
is (obviously) capacitive at all frequencies. 5b(AkSING — By COSy)

In this Letter, we are able to address all of these is- o
sues. Extending the work of Chernikov and Schmidt = — va [rl Zsin(ej —6k)
[19], we derive anN-dimensional return map, from j

which we calculate the Floquet multipliers of the in-
phase solution. The multipliers provide a quantitative +r2 Z cos0; — Qk)]f ®3)
measure of stability and thus allow us to find the con- J

ditions corresponding to maximum stability. The re- \yhare ) — p2/2(1+ B2, K = (B + aN) + (1 +
sulting expression admits a direct physical interpreta- aN)2, ri=1— B2 — BaN, andrp=1— 2+ 28 +
tion, providing fresh insight into the nature of sponta- /-

neous synchronization in these arrays. We also show  a¢ inis point we diverge from Ref. [19] and explic-

that the _optimally stablg array is a sig_nificantly bet- itly deduce anw-variable return map. From Egs. (2),
ter candidate for experimental realization of the Ku- ;o evaluate; at timesr = 0 and 2

ramoto model.

We first consider a purely capacitive load since the ¢ (0) =6y + By + Dy, (4)
analysis is re!ative_ly compac_t, and a!so best hi_ghlights d(21) = 27 + 6x + By
the role of junction capacitance in rendering the 1
inphase state stable. Consider a series array of + —b(AgSinO; — By c0S9y)2m + Di.  (5)
identical junctions, biased with a constant current and 2
shunted by a capacitor. The circuit equations can be Using Eq. (3) and noting that; (0) = 6; + O (b), we

put into the following dimensionless form: arrive at a map correct through(s?):
N K1 .
. . ) . 0 — — sin PR
ﬁ¢k+¢k+b5|n¢k+az¢j=17 (1) ¢k_>¢k+ NZI: | (¢] ¢k)
j=1 '
K
wheregy is the wave function phase difference across + WZ Z cos¢; — ¢x), (6)
the kth junction, 8 is proportional to the junction ca- j

pacitanceb 1 is the bias current, an@n is the load where 2 = 27 + , K1 = 2raNowr1/K, andKy =

capacitance. Following Chernikov and Schmidt, we 27aNwra/K . For the inphase solutiog, — ¢ = 0
. . 0) 1 . ) — Y
expand in powers ob, letting ¢ = ¢;§ )+ ¢;§ '+ so thatg, =n(2 + K») forallk andn=1,2,3,....

¢>,§2) +-- where¢>,§”) ~ b", thereby generating a se- To test its stability, we apply the perturbationsand
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(@) (b)

Fig. 1. Comparison of (a) numerical computation and (b) analytical predictions: contours of the largest Floquet exponent are plotted as a
function of the junction capacitangg and the bias currerit—1 for a purely capacitive load” = 3. Notice that there is excellent agreement
between (a) and (b) at higher bias currént': the difference between the the values of the exponents in (a) and (b) reduces.586no5

0.35% whenb—1 is changed from 4 to 28.

examine the linearized map for their evolution, work [18,20]. The nearly vertical orientation of the
contour means that maximum stability is, for all
/ K1 tical hieved ot
€ =1+ K)e — — ZEJ" ) practical purposes, achieved over a rangg oalues.
N ; This is a welcome feature since it is difficult in practice

to accurately “dial in” the junction capacitance.

In their work on anisotropic ladder arrays [21],
Trees and Hussain drew a useful correspondence be-
tween optimized stability as a function gfand crit-
ical damping in linear oscillators. The analogy is not
complete in our problem since although the transient
TaNb2 1—B2— BaN o response damps out r_nost rapid_ly, there is no transi-
1182 B+aN?+ (A t+aN)? (©) gzr:]ssetween monotonic and oscillatory decay of tran-
SinceaN is the load capacitance, is independent Result (8) is complicated, but we can get substantial
of N. The inphase orbit is stable jf has magnitude insight by comparing the array problem with a single
less than one; the smaller its magnitude the greaterjunction driven by a periodic bias current:
the stability. The associate Floquet exponenp is- .. ) .

(In ) (2 /27); physically, it gives the relaxation rate. A® +@ +bsing =1+ fsin +§), (©)

Fig. 1 shows contour plots of the largest (nonzero) whereb and f are small and of the same order. Repeat-
Floguet exponent as a function of the junction ca- ing the steps of the previous perturbation calculation
pacitanceg and the bias currerit—1, comparing the ~ we generate, order by order, a sequence of differential
derived formula against the value determined from equations. We can write the corresponding solutions
Eq. (1) via direct numerical analysis. The agreement this way:

is quite good. Surprisingly, agreement remains reason- | g

ably good even fob—1 near unity, a piece of good for- 9O =1+ ? (10a)
tune remarked on by Chernikov and Schmidt in their ¢¥ = —bCsin(t +6 +¢)

work on the stability boundary. + fCsint + £+ ), (10b)

The contours corresponding to greatest stability 1. .. .
occur forg ~ 1, in agreement with earlier numerical ¢@ = E[bzc sin¢ —bfCsinE —60 4 ¢)]r

The change of variable§; = ¢,41 — ¢¢ and H =

>« €k diagonalizes this map, and the Floquet multipli-
ers can be read off. One multiplier equals to one and
the other(N — 1) are equals to ¥ K1, or expressed

in the original system parameters:

n=1+
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+ Dsin(2 + ),

where the quantities” and ¢ which characterize
the response for anit amplitude sinusoidal forcing,
i.e., Csin(t + ¢), whereC = 1/,/1+ B2 and ¢ =
arctar{l/g), and D and ¢ are constants whose ex-
plicit forms are not needed here. The return map is

(10c)

¢ — ¢+ 27 +7b°C*>+ 7 fbCsinE +¢ —¢). (11)

An entrained solution satisfies® — ¢* + 2. There
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Equating this to the driving terrfi sin(z + &) from the
single junction problem, we have in the inphase state
f =abDN andé = 6 + y. We can immediately write
down the expression for the Floquet multiplier using
Egs. (12):

nw=1-—7b’NaCDcosy + 7). (16)

This result is quite interesting: the overturning
phase has completely dropped out! The reason is that,
in the array, the junctions are driven by the load oscil-

multiplier is easily determined:

pu=1-mfbCcosé +¢ —¢*). (12)

oscillations. Thus, the driveslative to the overturning
phaseisjust — 6 = y.
Suppose the load is not purely capacitive. As writ-

We see that the degree of stability depends on the prod-ten, result (16) is unchanged for a gendRalC load

uct of the drive amplitudeg’ and the response ampli-
tudeC, and on two other quantities: (§)— ¢*, which
is the external drive phase relative to the overturning
phase, and (2) the response phase ghift

Now compare the array problem. The key step
is to identify what corresponds to the ac-drive term
of the single junction problem. This is readily done
by considering thed (b) differential equation for the
array problem, which is
BEY + 9P = —bsing® —a > Y. (13)

k

The last termis just the current through the load, which
we denote byJ. Rather than being an externally im-
posed oscillation/ is self-consistently generated as
the load response to the activated junctions. Multiply-
ing Egs. (13) through by, summing over all; and
differentiating twice yields
(B+aN)J +J=ab sin+06). (14)
k

Note that this depends on both the junction and load

capacitances and«, and so describes the load re-

sponse in situ, and not its response disembodied from

the junction array. As before, we can write the solution
for J in terms of the response if instead the right-hand
side was a unit amplitude oscillation &iR-6). Denot-

ing the amplitude of response Byand the phase shift

of response by, we haveD = 1//1+ (8 +aN)2
and siny = 1/D, so that

J =ozb[)Zsin(t + 60+ ).
k

(15)

[22], where now
D2 =[1-p0)®+u]

aN(1— 2

» (ﬁ L ( 2Ml) 2)
(1—p1)e+us
N 2
n <1+ %) ,
(1—p)*+ Ko

wherepu is the dimensionless load inductanpe,the
resistance, and again sin= 1/D. The pure capac-

itive load is properly recovered whem; = up = 0.
Eq. (16) gives a unified law for inphase stability,

(17)

coqy +¢) >0,

which generalizes the well-known result in the=0
limit. We recover that narrower result by noting that if
B =0, the phase-shit = /2, and the inphase state
when siny < 0, which is equivalent to the condition
that the system oscillation frequency is higher than the
load’'sLC frequency.

Our generalized rule is almost as simple, but in-
volves the physical properties of both the junction and
the load, through their intrinsic phase shifts.

Finally, we return to the point that th&¥-dimen-
sional return map (6) is valid for arbitrary sets of
phases. If we allow small§(b2)) disorder in the junc-
tion parameters, the map is equivalent to the Kuramoto
model [23]. This generalizes anothge= 0 result first
noted a few years ago [11], that the Josephson series
array is a physical realization of the Kuramoto system.
This raised the possibility that the two order—disorder
transitions of the Kuramoto model could be seen for
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Fig. 2. Numerical simulations of disordered arrays using junctions gvith0 andg = 1, showing fraction () of frequency-locked oscillators
versus average bias current! for N = 100,L = 1.0, C =3.0 andR = 1.0 at (a) 01% and (b) 50% of disorder level irb—1. (The disorder

in b~ 1 is generated by a normally distributed random variable with m

the first time in a laboratory setting. The theory indi-
cated that the second transition (onset of complete syn-
chronization) was attainable using existing fabrication
technology, though barely so. Our results broaden sub-
stantially the possibility of observing the Kuramoto
transitions. With capacitive junctions, there are sub-

stantial regions in parameter space where the Floquet

exponent is less than0.4 with values reaching-1.5

in spots, compared with a best value of abet15

for zero-capacitance junctions (see Fig. 1). Since the
exponentis directly proportional to the Kuramoto cou-
pling constant[11], the transition to complete synchro-
nization should occur for significantly higher levels of
disorder. The numerical simulations shown in Fig. 2
underscore this point, with the transitions shifted by
some factor and a higher number of locked junctions
with 8 = 1 at the same level of disorder. This puts
the required tolerances well within presently achiev-
able limits.
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