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Generalized stability law for Josephson series arrays
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Abstract

By deriving anN-dimensional Poincare map, we explore the enhanced stability of Josephson series arrays using capacitive
junctions. The analytic expression for the critical Floquet multiplier has a direct physical interpretation, affording new insight
into the conditions that affect inphase stability. In particular, we generalize the well-known stability principle previously
established for arrays of zero capacitance junctions. Optimally capacitive junction arrays offer a much improved candidate
for experimental realization of the Kuramoto model. 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The study of Josephson junction arrays is almost as
old as the Josephson effect itself [1–3]. Interest in ar-
rays has remained high due to a number of potential
applications as detectors, oscillators and amplifiers in
very high frequency electronics [4,5]. For example,
Josephson arrays are currently used in high sensitiv-
ity magnetic flux detectors in biology and biomedi-
cine [6], and finding new applications in high sen-
sitivity scanning microscope to monitor aircraft cor-
rosion [7], in tunable local oscillators at millimeter
and submillimeter wavelengths [8] and in parametric
amplifiers [9]. They are also presently used to main-
tain the U.S. Legal Volt [10]. Since fast digital logic
circuits can be constructed from Josephson junctions,
there are other possibilities of new applications in the
areas of computers, telecommunications and remote
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sensing. In the meantime, Josephson arrays have be-
come a popular example in nonlinear dynamics, serv-
ing as an archetype of nonlinear coupled oscillators
and the various ordered and chaotic phenomena ex-
hibited by such systems.

These two motivations intersect in the phenom-
enon of spontaneous synchronization. Here, an array
is driven by a constant bias current which induces volt-
age oscillations in each junction, due to the nonlinear
nature of the Josephson effect. The simplest collective
behavior is also the most desirable (in most applica-
tions), wherein all junctions oscillate with the same
frequency and in phase. By far, theoretical progress
has been greatest for series arrays of zero-capacitance
junctions, a class of problems which has proved to
be surprisingly tractable. Such arrays can be mapped
onto the Kuramoto model familiar from dynamical
systems theory [11]; they also possess a remarkable
dynamical structure typically associated with Hamil-
tonian systems despite their manifestly dissipative na-
ture [12]. There is also a crisp physical condition for
when inphase oscillations are stable, hinging simply
on whether the coupling load looks inductive at the
operating frequency [13–15].
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Our understanding of spontaneous synchronization
of capacitive junctions is far less advanced. Although
the best power levels have been achieved for junc-
tions with zero capacitance [16,17], the potential ad-
vantage of using junctions with nonzero capacitance
is that they may perform better, simply because there
is another parameter to vary. Indeed, numerical stud-
ies by Hadley and co-workers [18], predicted that in-
phase stability is greatest for junctions with McCum-
ber parameters of about unity. This observation was
observed to be roughly independent of the load prop-
erties, and no physical explanation has ever been of-
fered for it. Nor does the physical condition for in-
phase stability carry over from the zero-capacitance
junction case, and sometimes dramatically: an array of
capacitive junctions with a purely capacitive load ad-
mits a range of inphase stability, even though the load
is (obviously) capacitive at all frequencies.

In this Letter, we are able to address all of these is-
sues. Extending the work of Chernikov and Schmidt
[19], we derive anN -dimensional return map, from
which we calculate the Floquet multipliers of the in-
phase solution. The multipliers provide a quantitative
measure of stability and thus allow us to find the con-
ditions corresponding to maximum stability. The re-
sulting expression admits a direct physical interpreta-
tion, providing fresh insight into the nature of sponta-
neous synchronization in these arrays. We also show
that the optimally stable array is a significantly bet-
ter candidate for experimental realization of the Ku-
ramoto model.

We first consider a purely capacitive load since the
analysis is relatively compact, and also best highlights
the role of junction capacitance in rendering the
inphase state stable. Consider a series array ofN

identical junctions, biased with a constant current and
shunted by a capacitor. The circuit equations can be
put into the following dimensionless form:

(1)βφ̈k + φ̇k + b sinφk + α

N∑
j=1

φ̈j = 1,

whereφk is the wave function phase difference across
the kth junction,β is proportional to the junction ca-
pacitance,b−1 is the bias current, andαN is the load
capacitance. Following Chernikov and Schmidt, we
expand in powers ofb, letting φk = φ

(0)
k + φ

(1)
k +

φ
(2)
k + · · · , whereφ(n)

k ∼ bn, thereby generating a se-

quence of differential equations for successive powers
of b. These admit the following solutions for theφ(n)

k :

(2a)φ
(0)
k = t + θk,

(2b)φ
(1)
k = Ak sint + Bk cost,

φ
(2)
k = 1

2
b(Ak sinθk − Bk cosθk)t

(2c)+Ck sin 2t + Dk cos2t,

whereθk is a constant of order unity,Ak,Bk,Ck,Dk

are constants of orderb. Sinceφ(n)
k ∼ bn, the higher

the bias current,b−1, the better the convergence of the
solutions. Determining explicit expressions for these
constants in terms of theθk is straightforward. For ex-
ample, one finds

1

2
b(Ak sinθk − Bk cosθk)

(3)

= ω − αω

K

[
r1

∑
j

sin(θj − θk)

+ r2

∑
j

cos(θj − θk)

]
,

whereω = b2/2(1 + β2), K = (β + αN)2 + (1 +
αN)2, r1 = 1 − β2 − βαN , andr2 = 1 − β2 + 2β +
αN .

At this point we diverge from Ref. [19] and explic-
itly deduce anN -variable return map. From Eqs. (2),
we evaluateφk at timest = 0 and 2π :

(4)φk(0) = θk + Bk + Dk,

φk(2π) = 2π + θk +Bk

(5)+ 1

2
b(Ak sinθk − Bk cosθk)2π + Dk.

Using Eq. (3) and noting thatφj (0) = θj + O(b), we
arrive at a map correct throughO(b2):

φk → φk + Ω − K1

N

∑
j

sin(φj − φk)

(6)+ K2

N

∑
j

cos(φj − φk),

whereΩ = 2π + ω, K1 = 2παNωr1/K, andK2 =
2παNωr2/K. For the inphase solution,φj − φk = 0,
so thatφk = n(Ω + K2) for all k andn = 1,2,3, . . . .
To test its stability, we apply the perturbationsεk and
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Fig. 1. Comparison of (a) numerical computation and (b) analytical predictions: contours of the largest Floquet exponent are plotted as a
function of the junction capacitanceβ and the bias currentb−1 for a purely capacitive loadC = 3. Notice that there is excellent agreement
between (a) and (b) at higher bias currentb−1: the difference between the the values of the exponents in (a) and (b) reduces from 5.5% to
0.35% whenb−1 is changed from 1.4 to 2.8.

examine the linearized map for their evolution,

(7)ε′
k = (1+ K1)εk − K1

N

∑
j

εj .

The change of variablesδk = εk+1 − εk and H =∑
k εk diagonalizes this map, and the Floquet multipli-

ers can be read off. One multiplier equals to one and
the other(N − 1) are equals to 1+ K1, or expressed
in the original system parameters:

(8)µ = 1+ παNb2

1+ β2

1− β2 − βαN

(β + αN)2 + (1+ αN)2
.

SinceαN is the load capacitance,µ is independent
of N . The inphase orbit is stable ifµ has magnitude
less than one; the smaller its magnitude the greater
the stability. The associate Floquet exponent isρ =
(lnµ)(Ω/2π); physically, it gives the relaxation rate.
Fig. 1 shows contour plots of the largest (nonzero)
Floquet exponent as a function of the junction ca-
pacitanceβ and the bias currentb−1, comparing the
derived formula against the value determined from
Eq. (1) via direct numerical analysis. The agreement
is quite good. Surprisingly, agreement remains reason-
ably good even forb−1 near unity, a piece of good for-
tune remarked on by Chernikov and Schmidt in their
work on the stability boundary.

The contours corresponding to greatest stability
occur forβ ≈ 1, in agreement with earlier numerical

work [18,20]. The nearly vertical orientation of the
contour means that maximum stability is, for all
practical purposes, achieved over a range ofβ values.
This is a welcome feature since it is difficult in practice
to accurately “dial in” the junction capacitance.

In their work on anisotropic ladder arrays [21],
Trees and Hussain drew a useful correspondence be-
tween optimized stability as a function ofβ and crit-
ical damping in linear oscillators. The analogy is not
complete in our problem since although the transient
response damps out most rapidly, there is no transi-
tion between monotonic and oscillatory decay of tran-
sients.

Result (8) is complicated, but we can get substantial
insight by comparing the array problem with a single
junction driven by a periodic bias current:

(9)βφ̈ + φ̇ + b sinφ = 1+ f sin(t + ξ),

whereb andf are small and of the same order. Repeat-
ing the steps of the previous perturbation calculation
we generate, order by order, a sequence of differential
equations. We can write the corresponding solutions
this way:

(10a)φ(0) = t + θ,

φ(1) = −bC̃ sin(t + θ + ζ )

(10b)+ f C̃ sin(t + ξ + ζ ),

φ(2) = 1

2

[
b2C̃ sinζ − bf C̃ sin(ξ − θ + ζ )

]
t
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(10c)+ D̃ sin(2t + ψ),

where the quantitiesC̃ and ζ which characterize
the response for aunit amplitude sinusoidal forcing,
i.e., C̃ sin(t + ζ ), where C̃ = 1/

√
1+ β2 and ζ =

arctan(1/β), and D̃ and ψ are constants whose ex-
plicit forms are not needed here. The return map is

(11)φ → φ + 2π + πb2C̃2 + πf bC̃ sin(ξ + ζ − φ).

An entrained solution satisfiesφ∗ → φ∗ + 2π . There
is one such stable solution and the associated Floquet
multiplier is easily determined:

(12)µ = 1− πf bC̃ cos(ξ + ζ − φ∗).

We see that the degree of stability depends on the prod-
uct of the drive amplitudef and the response ampli-
tudeC̃, and on two other quantities: (1)ξ −φ∗, which
is the external drive phase relative to the overturning
phase, and (2) the response phase shiftζ .

Now compare the array problem. The key step
is to identify what corresponds to the ac-drive term
of the single junction problem. This is readily done
by considering theO(b) differential equation for the
array problem, which is

(13)βφ̈
(1)
j + φ̇

(1)
j = −b sinφ(0)

j − α
∑
k

φ̈
(1)
k .

The last term is just the current through the load, which
we denote byJ . Rather than being an externally im-
posed oscillation,J is self-consistently generated as
the load response to the activated junctions. Multiply-
ing Eqs. (13) through byα, summing over allj and
differentiating twice yields

(14)(β + αN)J̈ + J̇ = αb
∑
k

sin(t + θk).

Note that this depends on both the junction and load
capacitances,β andα, and so describes the load re-
sponse in situ, and not its response disembodied from
the junction array. As before, we can write the solution
for J in terms of the response if instead the right-hand
side was a unit amplitude oscillation sin(t +θ). Denot-
ing the amplitude of response bỹD and the phase shift
of response byγ , we haveD̃ = 1/

√
1+ (β + αN)2

and sinγ = 1/D̃, so that

(15)J = αbD̃
∑
k

sin(t + θk + γ ).

Equating this to the driving termf sin(t + ξ) from the
single junction problem, we have in the inphase state
f = αbD̃N andξ = θ + γ . We can immediately write
down the expression for the Floquet multiplier using
Eqs. (12):

(16)µ = 1− πb2NαC̃D̃ cos(γ + ζ ).

This result is quite interesting: the overturning
phase has completely dropped out! The reason is that,
in the array, the junctions are driven by the load oscil-
lations, but those in turn are generated by the junction
oscillations. Thus, the driverelative to the overturning
phase is justξ − θ = γ .

Suppose the load is not purely capacitive. As writ-
ten, result (16) is unchanged for a generalRLC load
[22], where now

D̃−2 = [
(1− µ1)

2 + µ2
2

]

(17)

×
[(

β + αN(1 − µ1)

(1− µ1)2 + µ2
2

)2

+
(

1+ αNµ2

(1− µ1)2 + µ2
2

)2
]
,

whereµ1 is the dimensionless load inductance,µ2 the
resistance, and again sinγ = 1/D̃. The pure capac-
itive load is properly recovered whenµ1 = µ2 = 0.
Eq. (16) gives a unified law for inphase stability,

cos(γ + ζ ) > 0,

which generalizes the well-known result in theβ = 0
limit. We recover that narrower result by noting that if
β = 0, the phase-shiftζ = π/2, and the inphase state
when sinγ < 0, which is equivalent to the condition
that the system oscillation frequency is higher than the
load’sLC frequency.

Our generalized rule is almost as simple, but in-
volves the physical properties of both the junction and
the load, through their intrinsic phase shifts.

Finally, we return to the point that theN -dimen-
sional return map (6) is valid for arbitrary sets of
phases. If we allow small (O(b2)) disorder in the junc-
tion parameters, the map is equivalent to the Kuramoto
model [23]. This generalizes anotherβ = 0 result first
noted a few years ago [11], that the Josephson series
array is a physical realization of the Kuramoto system.
This raised the possibility that the two order–disorder
transitions of the Kuramoto model could be seen for
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Fig. 2. Numerical simulations of disordered arrays using junctions withβ = 0 andβ = 1, showing fraction (f ) of frequency-locked oscillators
versus average bias currentb−1 for N = 100,L = 1.0, C = 3.0 andR = 1.0 at (a) 0.1% and (b) 5.0% of disorder level inb−1. (The disorder
in b−1 is generated by a normally distributed random variable with mean atb−1 and variances of 0.1% and 5.0% for (a) and (b), respectively.)

the first time in a laboratory setting. The theory indi-
cated that the second transition (onset of complete syn-
chronization) was attainable using existing fabrication
technology, though barely so. Our results broaden sub-
stantially the possibility of observing the Kuramoto
transitions. With capacitive junctions, there are sub-
stantial regions in parameter space where the Floquet
exponent is less than−0.4 with values reaching−1.5
in spots, compared with a best value of about−0.15
for zero-capacitance junctions (see Fig. 1). Since the
exponent is directly proportional to the Kuramoto cou-
pling constant [11], the transition to complete synchro-
nization should occur for significantly higher levels of
disorder. The numerical simulations shown in Fig. 2
underscore this point, with the transitions shifted by
some factor and a higher number of locked junctions
with β = 1 at the same level of disorder. This puts
the required tolerances well within presently achiev-
able limits.
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