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Generalized stability law for Josephson series arrays
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Abstract

By deriving anN-dimensional Poincare map, we explore the enhanced stability of Josephson series arrays using capacitive
junctions. The analytic expression for the critical Floquet multiplier has a direct physical interpretation, affording new insight
into the conditions that affect inphase stability. In particular, we generalize the well-known stability principle previously
established for arrays of zero capacitance junctions. Optimally capacitive junction arrays offer a much improved candidate
for experimental realization of the Kuramoto model. 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The study of Josephson junction arrays is almost as
old as the Josephson effect itself [1–3]. Interest in ar-
rays has remained high due to a number of potential
applications as detectors, oscillators and amplifiers in
very high frequency electronics [4,5]. For example,
Josephson arrays are currently used in high sensitiv-
ity magnetic flux detectors in biology and biomedi-
cine [6], and finding new applications in high sen-
sitivity scanning microscope to monitor aircraft cor-
rosion [7], in tunable local oscillators at millimeter
and submillimeter wavelengths [8] and in parametric
amplifiers [9]. They are also presently used to main-
tain the U.S. Legal Volt [10]. Since fast digital logic
circuits can be constructed from Josephson junctions,
there are other possibilities of new applications in the
areas of computers, telecommunications and remote
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sensing. In the meantime, Josephson arrays have be-
come a popular example in nonlinear dynamics, serv-
ing as an archetype of nonlinear coupled oscillators
and the various ordered and chaotic phenomena ex-
hibited by such systems.

These two motivations intersect in the phenom-
enon of spontaneous synchronization. Here, an array
is driven by a constant bias current which induces volt-
age oscillations in each junction, due to the nonlinear
nature of the Josephson effect. The simplest collective
behavior is also the most desirable (in most applica-
tions), wherein all junctions oscillate with the same
frequency and in phase. By far, theoretical progress
has been greatest for series arrays of zero-capacitance
junctions, a class of problems which has proved to
be surprisingly tractable. Such arrays can be mapped
onto the Kuramoto model familiar from dynamical
systems theory [11]; they also possess a remarkable
dynamical structure typically associated with Hamil-
tonian systems despite their manifestly dissipative na-
ture [12]. There is also a crisp physical condition for
when inphase oscillations are stable, hinging simply
on whether the coupling load looks inductive at the
operating frequency [13–15].
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Our understanding of spontaneous synchronization
of capacitive junctions is far less advanced. Although
the best power levels have been achieved for junc-
tions with zero capacitance [16,17], the potential ad-
vantage of using junctions with nonzero capacitance
is that they may perform better, simply because there
is another parameter to vary. Indeed, numerical stud-
ies by Hadley and co-workers [18], predicted that in-
phase stability is greatest for junctions with McCum-
ber parameters of about unity. This observation was
observed to be roughly independent of the load prop-
erties, and no physical explanation has ever been of-
fered for it. Nor does the physical condition for in-
phase stability carry over from the zero-capacitance
junction case, and sometimes dramatically: an array of
capacitive junctions with a purely capacitive load ad-
mits a range of inphase stability, even though the load
is (obviously) capacitive at all frequencies.

In this Letter, we are able to address all of these is-
sues. Extending the work of Chernikov and Schmidt
[19], we derive anN -dimensional return map, from
which we calculate the Floquet multipliers of the in-
phase solution. The multipliers provide a quantitative
measure of stability and thus allow us to find the con-
ditions corresponding to maximum stability. The re-
sulting expression admits a direct physical interpreta-
tion, providing fresh insight into the nature of sponta-
neous synchronization in these arrays. We also show
that the optimally stable array is a significantly bet-
ter candidate for experimental realization of the Ku-
ramoto model.

We first consider a purely capacitive load since the
analysis is relatively compact, and also best highlights
the role of junction capacitance in rendering the
inphase state stable. Consider a series array ofN

identical junctions, biased with a constant current and
shunted by a capacitor. The circuit equations can be
put into the following dimensionless form:

(1)βφ̈k + φ̇k + b sinφk + α

N∑
j=1

φ̈j = 1,

whereφk is the wave function phase difference across
the kth junction,β is proportional to the junction ca-
pacitance,b−1 is the bias current, andαN is the load
capacitance. Following Chernikov and Schmidt, we
expand in powers ofb, letting φk = φ

(0)
k + φ

(1)
k +

φ
(2)
k + · · · , whereφ(n)

k ∼ bn, thereby generating a se-

quence of differential equations for successive powers
of b. These admit the following solutions for theφ(n)

k :

(2a)φ
(0)
k = t + θk,

(2b)φ
(1)
k = Ak sint + Bk cost,

φ
(2)
k = 1

2
b(Ak sinθk − Bk cosθk)t

(2c)+Ck sin 2t + Dk cos2t,

whereθk is a constant of order unity,Ak,Bk,Ck,Dk

are constants of orderb. Sinceφ(n)
k ∼ bn, the higher

the bias current,b−1, the better the convergence of the
solutions. Determining explicit expressions for these
constants in terms of theθk is straightforward. For ex-
ample, one finds

1

2
b(Ak sinθk − Bk cosθk)

(3)

= ω − αω

K

[
r1

∑
j

sin(θj − θk)

+ r2

∑
j

cos(θj − θk)

]
,

whereω = b2/2(1 + β2), K = (β + αN)2 + (1 +
αN)2, r1 = 1 − β2 − βαN , andr2 = 1 − β2 + 2β +
αN .

At this point we diverge from Ref. [19] and explic-
itly deduce anN -variable return map. From Eqs. (2),
we evaluateφk at timest = 0 and 2π :

(4)φk(0) = θk + Bk + Dk,

φk(2π) = 2π + θk +Bk

(5)+ 1

2
b(Ak sinθk − Bk cosθk)2π + Dk.

Using Eq. (3) and noting thatφj (0) = θj + O(b), we
arrive at a map correct throughO(b2):

φk → φk + Ω − K1

N

∑
j

sin(φj − φk)

(6)+ K2

N

∑
j

cos(φj − φk),

whereΩ = 2π + ω, K1 = 2παNωr1/K, andK2 =
2παNωr2/K. For the inphase solution,φj − φk = 0,
so thatφk = n(Ω + K2) for all k andn = 1,2,3, . . . .
To test its stability, we apply the perturbationsεk and
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Fig. 1. Comparison of (a) numerical computation and (b) analytical predictions: contours of the largest Floquet exponent are plotted as a
function of the junction capacitanceβ and the bias currentb−1 for a purely capacitive loadC = 3. Notice that there is excellent agreement
between (a) and (b) at higher bias currentb−1: the difference between the the values of the exponents in (a) and (b) reduces from 5.5% to
0.35% whenb−1 is changed from 1.4 to 2.8.

examine the linearized map for their evolution,

(7)ε′
k = (1+ K1)εk − K1

N

∑
j

εj .

The change of variablesδk = εk+1 − εk and H =∑
k εk diagonalizes this map, and the Floquet multipli-

ers can be read off. One multiplier equals to one and
the other(N − 1) are equals to 1+ K1, or expressed
in the original system parameters:

(8)µ = 1+ παNb2

1+ β2

1− β2 − βαN

(β + αN)2 + (1+ αN)2
.

SinceαN is the load capacitance,µ is independent
of N . The inphase orbit is stable ifµ has magnitude
less than one; the smaller its magnitude the greater
the stability. The associate Floquet exponent isρ =
(lnµ)(Ω/2π); physically, it gives the relaxation rate.
Fig. 1 shows contour plots of the largest (nonzero)
Floquet exponent as a function of the junction ca-
pacitanceβ and the bias currentb−1, comparing the
derived formula against the value determined from
Eq. (1) via direct numerical analysis. The agreement
is quite good. Surprisingly, agreement remains reason-
ably good even forb−1 near unity, a piece of good for-
tune remarked on by Chernikov and Schmidt in their
work on the stability boundary.

The contours corresponding to greatest stability
occur forβ ≈ 1, in agreement with earlier numerical

work [18,20]. The nearly vertical orientation of the
contour means that maximum stability is, for all
practical purposes, achieved over a range ofβ values.
This is a welcome feature since it is difficult in practice
to accurately “dial in” the junction capacitance.

In their work on anisotropic ladder arrays [21],
Trees and Hussain drew a useful correspondence be-
tween optimized stability as a function ofβ and crit-
ical damping in linear oscillators. The analogy is not
complete in our problem since although the transient
response damps out most rapidly, there is no transi-
tion between monotonic and oscillatory decay of tran-
sients.

Result (8) is complicated, but we can get substantial
insight by comparing the array problem with a single
junction driven by a periodic bias current:

(9)βφ̈ + φ̇ + b sinφ = 1+ f sin(t + ξ),

whereb andf are small and of the same order. Repeat-
ing the steps of the previous perturbation calculation
we generate, order by order, a sequence of differential
equations. We can write the corresponding solutions
this way:

(10a)φ(0) = t + θ,

φ(1) = −bC̃ sin(t + θ + ζ )

(10b)+ f C̃ sin(t + ξ + ζ ),

φ(2) = 1

2

[
b2C̃ sinζ − bf C̃ sin(ξ − θ + ζ )

]
t
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(10c)+ D̃ sin(2t + ψ),

where the quantitiesC̃ and ζ which characterize
the response for aunit amplitude sinusoidal forcing,
i.e., C̃ sin(t + ζ ), where C̃ = 1/

√
1+ β2 and ζ =

arctan(1/β), and D̃ and ψ are constants whose ex-
plicit forms are not needed here. The return map is

(11)φ → φ + 2π + πb2C̃2 + πf bC̃ sin(ξ + ζ − φ).

An entrained solution satisfiesφ∗ → φ∗ + 2π . There
is one such stable solution and the associated Floquet
multiplier is easily determined:

(12)µ = 1− πf bC̃ cos(ξ + ζ − φ∗).

We see that the degree of stability depends on the prod-
uct of the drive amplitudef and the response ampli-
tudeC̃, and on two other quantities: (1)ξ −φ∗, which
is the external drive phase relative to the overturning
phase, and (2) the response phase shiftζ .

Now compare the array problem. The key step
is to identify what corresponds to the ac-drive term
of the single junction problem. This is readily done
by considering theO(b) differential equation for the
array problem, which is

(13)βφ̈
(1)
j + φ̇

(1)
j = −b sinφ(0)

j − α
∑
k

φ̈
(1)
k .

The last term is just the current through the load, which
we denote byJ . Rather than being an externally im-
posed oscillation,J is self-consistently generated as
the load response to the activated junctions. Multiply-
ing Eqs. (13) through byα, summing over allj and
differentiating twice yields

(14)(β + αN)J̈ + J̇ = αb
∑
k

sin(t + θk).

Note that this depends on both the junction and load
capacitances,β andα, and so describes the load re-
sponse in situ, and not its response disembodied from
the junction array. As before, we can write the solution
for J in terms of the response if instead the right-hand
side was a unit amplitude oscillation sin(t +θ). Denot-
ing the amplitude of response bỹD and the phase shift
of response byγ , we haveD̃ = 1/

√
1+ (β + αN)2

and sinγ = 1/D̃, so that

(15)J = αbD̃
∑
k

sin(t + θk + γ ).

Equating this to the driving termf sin(t + ξ) from the
single junction problem, we have in the inphase state
f = αbD̃N andξ = θ + γ . We can immediately write
down the expression for the Floquet multiplier using
Eqs. (12):

(16)µ = 1− πb2NαC̃D̃ cos(γ + ζ ).

This result is quite interesting: the overturning
phase has completely dropped out! The reason is that,
in the array, the junctions are driven by the load oscil-
lations, but those in turn are generated by the junction
oscillations. Thus, the driverelative to the overturning
phase is justξ − θ = γ .

Suppose the load is not purely capacitive. As writ-
ten, result (16) is unchanged for a generalRLC load
[22], where now

D̃−2 = [
(1− µ1)

2 + µ2
2

]

(17)

×
[(

β + αN(1 − µ1)

(1− µ1)2 + µ2
2

)2

+
(

1+ αNµ2

(1− µ1)2 + µ2
2

)2
]
,

whereµ1 is the dimensionless load inductance,µ2 the
resistance, and again sinγ = 1/D̃. The pure capac-
itive load is properly recovered whenµ1 = µ2 = 0.
Eq. (16) gives a unified law for inphase stability,

cos(γ + ζ ) > 0,

which generalizes the well-known result in theβ = 0
limit. We recover that narrower result by noting that if
β = 0, the phase-shiftζ = π/2, and the inphase state
when sinγ < 0, which is equivalent to the condition
that the system oscillation frequency is higher than the
load’sLC frequency.

Our generalized rule is almost as simple, but in-
volves the physical properties of both the junction and
the load, through their intrinsic phase shifts.

Finally, we return to the point that theN -dimen-
sional return map (6) is valid for arbitrary sets of
phases. If we allow small (O(b2)) disorder in the junc-
tion parameters, the map is equivalent to the Kuramoto
model [23]. This generalizes anotherβ = 0 result first
noted a few years ago [11], that the Josephson series
array is a physical realization of the Kuramoto system.
This raised the possibility that the two order–disorder
transitions of the Kuramoto model could be seen for
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Fig. 2. Numerical simulations of disordered arrays using junctions withβ = 0 andβ = 1, showing fraction (f ) of frequency-locked oscillators
versus average bias currentb−1 for N = 100,L = 1.0, C = 3.0 andR = 1.0 at (a) 0.1% and (b) 5.0% of disorder level inb−1. (The disorder
in b−1 is generated by a normally distributed random variable with mean atb−1 and variances of 0.1% and 5.0% for (a) and (b), respectively.)

the first time in a laboratory setting. The theory indi-
cated that the second transition (onset of complete syn-
chronization) was attainable using existing fabrication
technology, though barely so. Our results broaden sub-
stantially the possibility of observing the Kuramoto
transitions. With capacitive junctions, there are sub-
stantial regions in parameter space where the Floquet
exponent is less than−0.4 with values reaching−1.5
in spots, compared with a best value of about−0.15
for zero-capacitance junctions (see Fig. 1). Since the
exponent is directly proportional to the Kuramoto cou-
pling constant [11], the transition to complete synchro-
nization should occur for significantly higher levels of
disorder. The numerical simulations shown in Fig. 2
underscore this point, with the transitions shifted by
some factor and a higher number of locked junctions
with β = 1 at the same level of disorder. This puts
the required tolerances well within presently achiev-
able limits.

Acknowledgement

This work was sponsored by the Office of Naval
Research under contract No. N00014-99-1-0592.

References

[1] B.D. Josephson, Phys. Lett. 1 (1962) 251.
[2] T.D. Clark, Phys. Lett. A 27 (1968) 585.
[3] D.R. Tilley, Phys. Lett. 33A (1970) 205.

[4] K.A. Delin, T.P. Orlando, Foundations of Applied Supercon-
ductivity, Addison-Wesley, 1991.

[5] T. van Duzer, C.W. Turner, Principles of Superconductive
Devices and Circuits, Elsevier, New York, 1981.

[6] J.P. Wikswo, IEEE Trans. Appl. Supercond. 5 (1995) 74;
L.N. Vu, D.J. van Harlingen, IEEE Trans. Appl. Supercond. 3
(1993) 1918;
J.R. Kirtley, M.B. Ketchen, C.C. Tsuei, J.Z. Sun, W.J. Gal-
lagher et al., IBM J. Res. Dev. 39 (1995) 655;
F.C. Wellstood, Y. Gim, A. Amar, R.C. Black, A. Mathai, IEEE
Trans. Appl. Supercond. 7 (1996) 3134;
W.G. Jenks, S.S.H. Sadeghi, J.P. Wikswo, Physica D 30 (1997)
293.

[7] J.R. Kirtley, J.P. Wikswo, Ann. Rev. Mater. Sci. 29 (1999) 117.
[8] S. Han, B. Baokang, W. Zhang, J.E. Lukens, Appl. Phys.

Lett. 64 (1994) 1424;
P.A.A. Booi, S.P. Benz, Appl. Phys. Lett. 68 (1996) 3799.

[9] E. Terzioglu, M.R. Beasley, IEEE Trans. Appl. Supercond. 5
(1995) 3349;
B. Yurke, M.L. Roukes, R. Movshovich, A.N. Pargellis, Appl.
Phys. Lett. 69 (1996) 3078.

[10] C.A. Hamilton, C. Burroughs, K. Chieh, J. Res. Natl. Inst.
Stand. Technol. 95 (1990) 219.

[11] K. Wiesenfeld, P. Colet, S.H. Strogatz, Phys. Rev. Lett. 76
(1996) 404;
K. Wiesenfeld, P. Colet, S.H. Strogatz, Phys. Rev. E 57 (1998)
1563.

[12] S. Watanabe, S.H. Strogatz, Physica D 74 (1994) 197.
[13] A.K. Jain, K.K. Likharev, J.E. Lukens, J.E. Sauvageau, Phys.

Rep. 109 (1984) 309.
[14] P. Hadley, M.R. Beasley, Appl. Phys. Lett. 50 (1987) 621.
[15] K. Wiesenfeld, J.W. Swift, Phys. Rev. E 51 (1995) 1020.
[16] S. Han, B. Bi, W. Zhang, J.E. Lukens, Appl. Phys. Lett. 64

(1994) 1424.
[17] P.A.A. Booi, S.P. Benz, Appl. Phys. Lett. 68 (1996) 3799.
[18] P. Hadley, Ph.D. thesis, Stanford University (1989);

P. Hadley, M.R. Beasley, K. Wiesenfeld, Phys. Rev. B 38
(1988) 8712.



274 M. Dhamala, K. Wiesenfeld / Physics Letters A 292 (2002) 269–274

[19] A.A. Chernikov, G. Schmidt, Phys. Rev. E 52 (1995) 3415.
[20] G.S. Lee, S.E. Schwarz, J. Appl. Phys. 55 (1984) 1035.
[21] B.R. Trees, N. Hussain, Phys. Rev. E 61 (2000) 6415.

[22] M. Dhamala, K. Wiesenfeld, unpublished.
[23] Y. Kuramoto, Lect. Notes Phys. 39 (1975) 420;

H. Sakaguchi, Y. Kuramoto, Prog. Theor. Phys. 76 (1986) 576.


	Generalized stability law for Josephson series arrays
	Introduction
	Acknowledgement
	References


