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Abstract

A traditional assumption in quantitative ecology is that the asymptotic state of the model determines what can be observed in
the evolution of the system. It is suggested, however, that irregular transient behaviors may be more relevant than the long term
behaviors. Here we investigate how often transient dynamics can be expected in spatially extended ecological systems. Our
study suggests that although chaotic transient dynamics indeed exist, sustained dynamics may be more prevalent than transient
ones due to the high dimensionality of such systems. 2001 Published by Elsevier Science B.V.
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Understanding the factors generating and maintain-
ing the species diversity of ecological communities is
one of the central goals of the ecological sciences. In
the last several decades, ecologists have become in-
creasingly aware of the importance of processes oper-
ating at large temporal and spatial scales in explain-
ing patterns of species diversity in local communi-
ties [1]. This is particularly the case when considering
guilds of organisms utilizing limited resources in sim-
ilar ways. In spatially closed, homogeneous systems
which dynamically settle into a point equilibrium,
species sharing limited resources often show competi-
tive exclusion. Because any given spatial location has
a limited variety and quantity of resources, competi-
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tion is a local process which tends to limit local species
diversity. This local process in nature, however, inter-
acts with other processes. For instance, if local dynam-
ics do not achieve a point equilibrium (e.g., limit-cycle
behavior in multispecies resource-consumer interac-
tions [2]), consumer species can share resources yet
still coexist. Many ecologists contend that patterns in
species diversity cannot be understood without refer-
ence to nonequilibrial dynamics (for review, see [3]).
Indeed, many ecologists now believe thatspace is the
final frontier for addressing classical ecological prob-
lems [4,5].

Simultaneous with this increasing emphasis on spa-
tial dynamics, there has been an increasing interest in
the potential existence and importance of chaotic dy-
namics in ecological systems. Although much of the
general scientific interest in chaos is stimulated by
simple ecological models [6], early evidence suggests
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that natural populations, despite their seemingly ran-
dom fluctuations, do not have the kinds of parameter
values needed for chaos to be observed [7], so varia-
tion in population size is believed to be due to exter-
nally imposed fluctuations (e.g., in the weather). This
leads to a relative neglect of chaos by many ecolo-
gists. In recent years, there have been a reevaluation
of this issue, and sophisticated analyses of dynamics
in a wide range of natural communities, suggesting the
presence of chaos (e.g., see [6,8,9]). Since chaotic be-
havior is typical in nonlinear dynamical systems [10],
it is reasonable to search for causes of population fluc-
tuations in underlying nonlinear dynamics.

The interplay between spatial dynamics and chaotic
temporal dynamics is potentially of great importance
in ecology. An important contribution is made by
Hastings and Higgins [11] who report their finding
of very long transient behaviors in spatially extended
ecological models for a species with alternating repro-
duction and dispersal. They demonstrate, through nu-
merical computations, that if the nonlinearity in the
model is strong enough, then the time required to reach
the asymptotic dynamics can approach thousands of
generations — a time that is much longer than the
time scale of significant environmental perturbations
and therefore can be considered extremely long on
ecological time scales of the species where the typi-
cal time scale of interest is tens or hundreds of years.
Since the form of dynamics changes over long time
scales, it is argued that transient dynamics of ecolog-
ical models may be more relevant than long-term be-
havior [11]. This conclusion is quite surprising for the
field of quantitative ecology because traditionally, eco-
logical theory has been based on long-term behavior
of ecological models, with stability analysis of the as-
ymptotic state as primary tool [8,12,13]. The result is
also important because it provides a possible explana-
tion for the highly irregular dynamics of some species
with pelagic larvae such as sea urchins [14] and Dun-
geness crab [15]. Long transients may also be respon-
sible for the paradox of the plankton [16] or outbreaks
of insects [17].

In view of the ecological significance of the exis-
tence of extremely long transients, it is of interest to
understand the dynamical origin of the observed tran-
sients and, consequently, to establish how often we ex-
pect to observe complex (chaotic) transients in ecolog-
ical systems. These are the aims of this Letter. A good

understanding of the complex transient behavior is
particularly important for spatially extended ecologi-
cal systems, which are usually described by discrete-
time maps in continuous spatial domains and, hence,
even numerical simulations of which can be highly
nontrivial. For instance, one can ask whether the long
transients observed by Hastings and Higgins are sim-
ply numerical artifacts. As we will describe in detail
below, our careful integration of the Hastings–Higgins
model using different numerical procedures, and our
systematic analysis of bifurcation diagrams, Lyapunov
spectrum, and lifetimes of chaotic behaviors over a
wide range of parameter values, indicate that chaotic
transients do occur in the model, but not so often. Care
should also be exercised when claiming that the tran-
sients are extremely long because the transient lifetime
depends on the choice of the parameters in the model
and long chaotic transients are rare. In particular, say
we fix a parameter region in which we expect chaotic
behaviors to arise. We then ask: what is the probability
that a randomly chosen parameter value yields chaotic
transient behavior? We find that the probability can be
quite low. In fact, for the same parameter setting as in
Ref. [11], we find that, approximately, 5% of the pa-
rameter values yield chaotic transients, meaning that
majority of the parameter values actually leads to sus-
tained chaotic behavior (chaotic attractors). In a sense,
our results are consistent with those of Hastings and
Higgins, but we go beyond by establishing a clear dy-
namical picture for the observed transient behaviors
and thus are able to address how often chaotic tran-
sients can occur in spatially extended ecological sys-
tems.

The Hastings–Higgins model describes the popula-
tion dynamics of a biological species having features
of intertidal or subtidal organisms with pelagic lar-
vae along a coast. That is, the production of larvae is
density dependent. After production, larvae are redis-
tributed along the coast with a center at the point of
release. Let the length of favorable habitat along the
coast beL = 1 andx be the position along the coast:
0 < x < 1. The dynamical variable of the model is
the populationN(t, x) of the species along the coast,
where t is the discrete time variable (in year). The
number of larvae produced at positionx in year t ,
l(t, x), is then given by [18,19]

(1)l(t, x) = N(t, x)er[1−N(t,x)],
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Fig. 1. For the Hastings–Higgins model, time series plots of local population (N(t,0.5)) of species, growth rates beingr = 2.75, 3.50, 3.75,
and 4.00, respectively, atD = 100 (integrated by the Gaussian quadrature technique).

wherer is the growth rate of local population. Spatial
interaction among the populations along the coast
is caused by dispersal that follows reproduction. In
particular, the number of individuals at pointx is
given by the total number of larvae releasedabout the
positionx:

(2)N(t + 1, x) =
1∫

0

l(t, y)g(y, x) dy,

whereg(y, x) is the probability that a larva released at
locationy settles atx. Hastings and Higgins assumed
the following Gaussian distribution forg(y, x):

(3)g(y, x) = e−D(y−x)2

√
π/D

,

whereD is a parameter measuring the dispersal dis-
tance, or the “coupling strength” among populations
in space. The boundary condition is such that larvae
that disperse outside the region of interest ([0,1]) are
considered lost. Due to the spatial interaction and the
boundary condition, the effective growth rate is not
uniform in space. Eqs. (1)–(3) represent a spatially ex-
tended dynamical system that is discrete in time and

continuous in space. To numerically evolve Eqs. (1)–
(3), we divide the unit intervalx ∈ [0,1] into 100
subintervals, distribute random initial populations at
these sites, and at each time step, evaluate the integral
Eq. (2) by using the Gaussian quadrature method [20].
To assure that the numerical results are reliable, we
also utilize the Simpson’s composite rule [20] to eval-
uate Eq. (2). Both integration methods have the pre-
cision of about 10−10, and they yield essentially the
same spatial time seriesN(t, x) that agree with those
reported by Hastings and Higgins [11]. While long
chaotic transients can indeed be observed, for exam-
ple, at largeD values (say atD = 800) [11], we no-
tice thatsustained chaotic behavior seems more com-
mon whenD is decreased. For instance, Fig. 1 shows
the time trace of the populationN(t,0.5) for different
values of the growth rater. There is apparently chaos
for r � 2.75, which is consistent with the transition to
chaos of the Moran–Ricker model which occurs, via a
cascade of period-doubling bifurcations, atrc ≈ 2.67.
The chaotic behavior observed forr � 2.75, however,
seems sustained. We note that the spatial range of
coupling is proportional to 1/

√
D. Therefore, large

(small)D values correspond to small (large) range of,
or weak (strong), coupling. Numerical results obtained
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Fig. 2. (a) Pr(τ ) versusτ and (b)PD(τ) versusτ . See text for
details.

at a large number ofD values suggest that chaotic
transients become rare asD is increased (the coupling
is reduced).

To quantitatively assess how often chaotic transients
are, to the extent allowed by our available computa-
tional resource, we define the quantityP(τ), which
is the probability that a chaotic transient of duration
(lifetime) larger thanτ is observed, whereP(0) = 1.
Apparently,P(τ) is a nonincreasing function ofτ .
Since sustained chaos has lifetimeτ = ∞, we expect
P(τ) to reach a plateau, say, atτ = τc, as a function
of τ . The probability for sustained chaos is thenP(τc)

and that for transient chaos is 1− P(τc). To numer-
ically determineτc and P(τc), we fix an interval in
the parameter space in which chaos can arise (say, af-
ter the accumulation of the period-doubling bifurca-
tions), randomly choose a large number of parameter
values in this interval, define a numerically achiev-
able range for the lifetime (say, 0� τ � 106), and
compute the fraction of parameter values with life-
time larger thanτ . To numerically distinguish sus-
tained chaos from the transient one, we make use of
the largest Lyapunov exponent [21]. In particular, for
a given parameter value, a trajectory is produced from
a random set of initial conditions and the largest Lya-
punov exponentλ1 is computed as a function of time.
At a given timet , if λ1 is positive (negative), the tra-
jectory is chaotic (nonchaotic). Ifλ1 remains nega-
tive for a number of iterations, say 1000, the trajec-

Fig. 3. Typical bifurcation diagrams of the Hastings–Higgins model:
(a) N(t,0.5) versusr and (b)N(t,0.5) versusD.

tory is considered having settled into a stable attrac-
tor. If this happens, the lifetime of the chaotic tran-
sient is taken to be the time during whichλ1 remains
positive. Two sets of simulation results are shown in
Figs. 2(a) and (b), where for Fig. 2(a),D = 800 is
fixed and 800 values ofr are chosen from the inter-
val r ∈ [3,6], and for Fig. 2(b),r = 4 is fixed and
800 values ofD are chosen fromD ∈ [100,1400]. We
see from both figures thatP(τ) plateaus atτc ∼ 104

andP(τ), whereτ > τc, is about 0.955, which indi-
cates that the probability for observing transient chaos
is less than 5% in the parameter space. The behavior
depicted in Figs. 2(a) and (b) appears typical in para-
meter regions with chaos.

To understand why transient chaos is rare in the
Hastings–Higgins model, we note that the local dy-
namics is governed by the Moran–Ricker map, which
is bounded in the phase space. Thus, transient chaos
occurs in periodic windows in the bifurcation diagram.
In such a window, one typically finds a stable peri-
odic attractor and a nonattracting chaotic set that leads
to transient chaos. Figs. 3(a) and (b) show two typi-
cal bifurcation diagrams obtained from the Hastings–
Higgins model, where in Fig. 3(a), the asymptotic be-
havior ofN(t,0.5) is plotted versus the growth rater
for fixed D = 800, while in Fig. 3(b),N(t,0.5) ver-
susD is shown for fixedr = 3.75. These bifurcations
indicate the existence of chaos, but they are qualita-
tively different from that of, say, the logistic map or
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Fig. 4. ForD = 800, the Lyapunov dimensionDL versus the growth
rater .

the Moran–Ricker map, in that there is a lack of struc-
ture of periodic windows, indicating the rareness of
transient chaos. To give a more concrete argument, we
recall that a low-dimensional chaotic system such as
the Moran–Ricker map possesses an infinite number
of periodic windows. Chaotic sets in the Hastings–
Higgins model, which is essentially a system of an in-
finite number of coupled Moran–Ricker maps, is most
likely to be high-dimensional. To determine the di-
mension of the chaotic attractor, we compute the Lya-
punov spectrum and make use of the Kaplan–Yorke
formula to obtain the Lyapunov dimensionDL, which
is conjected to the information dimension [22]. Fig. 4
shows, forD = 800, DL versusr. We see that for
r > rc ≈ 2.67, there is chaos but the dimensions of the
chaotic attractor for most parameter values are larger
than 10, resulting from Lyapunov spectra with, ap-
proximately, 6 positive exponents. By a mathemati-
cal conjecture proposed in Ref. [23], which states that
there is only a finite set of bounded periodic win-
dows if the number of positive Lyapunov exponents
are larger than the number of independent parameters
of the system, we see that periodic windows in the
Hastings–Higgins model are finite in number because
it has only two independent parameters. Computation
of the Lyapunov dimension versus the coupling para-
meter for fixed growth rater yields a consistent re-
sult. Transient chaos is thus rare, compared with low-
dimensional chaotic systems such as the logistic map

or the Moran–Ricker map which possesses an infinite
set of periodic windows.

In summary, we have analyzed the spatiotemporal
chaotic dynamics for a class of spatially extended
ecological model and present evidence that transient
chaos is rare in such systems. Although our results do
not contradict the previous claim that transient chaos
can occur in ecological systems, we do wish to convey
the message that one should be extremely cautious
when claiming that transient chaos is more relevant
than sustained chaos in spatiotemporal ecological
systems.
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