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Multielectrode neurophysiological recording and high-resolution neu-
roimaging generate multivariate data that are the basis for under-
standing the patterns of neural interactions. How to extract directions of
information flow in brain networks from these data remains a key
challenge. Research over the last few years has identified Granger
causality as a statistically principled technique to furnish this capability.
The estimation of Granger causality currently requires autoregressive
modeling of neural data. Here, we propose a nonparametric approach
based on widely used Fourier and wavelet transforms to estimate both
pairwise and conditional measures of Granger causality, eliminating the
need of explicit autoregressive data modeling. We demonstrate the
effectiveness of this approach by applying it to synthetic data generated
by network models with known connectivity and to local field potentials
recorded from monkeys performing a sensorimotor task.
© 2008 Elsevier Inc. All rights reserved.

Introduction

Multivariate neural recordings are becoming commonplace. Such
recordings promise to offer unparalleled insights into how different
brain areas work together to achieve thought and behavior, and how
such coordinated brain activity breaks down in disease. While the
accumulation of data from all signal modalities, including electro-
encephalography (EEG), magnetoencephalography (MEG), func-
tional magnetic resonance imaging (fMRI), and positron emission
tomography (PET), continues at an astonishing rate, how to effec-
tively analyze these data to extract understandings of brain functions
presents a key challenge. Analytically, cross correlations and ordinary
coherence spectra have remained the main measures for assessing
statistical interdependence and functional connectivity among the
participating areas of a brain network. Thesemeasures, however, have
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not played a significant role in providing reliable information on
effective connectivity (Friston, 1994) which is primarily concerned
with the directions of neural interactions and how one neural system
exerts influence over another. Structural equation modeling (SEM)
has been used for this purpose in fMRI and PET. SEM theoretically
hypothesizes the directions of interactions among the set of measured
variables and quantifies the interaction strength via correlation
analysis. The shortcoming of SEM is that it depends critically on a
preexisting theoretical framework.

Granger causality (Granger, 1969; Geweke, 1982) has emerged
in recent years as a leading technique for inferring directions of
neural interactions and information flow directly from data. The
basic idea can be traced back to Wiener who is the first to recognize
the importance of temporal ordering in the inference of causal
relations (Wiener, 1956). Granger formalized Wiener's idea in terms
of autoregressive (AR) models of time series (Granger, 1969) and
the technique now bears his name. Consider two simultaneously
acquired time series. If the autoregressive prediction of the first time
series at present time could be improved by including the past
information of the second time series, we say that the second time
series has a causal influence on the first. The role of the two time
series can be reversed to address the causal influence in the opposite
direction. This pairwise time-domain approach was later generalized
in two important directions. First, the spectral decomposition of
Granger's time-domain causality was proposed by Geweke in 1982
(Geweke, 1982). The resultant Granger causality spectra are
important for the analysis of EEG and MEG data as these data are
rich in oscillatory content. Second, for a system with more than two
simultaneously acquired time series, conditional Granger causality,
both in the time domain and in the frequency domain (Granger,
1980; Geweke, 1984), was developed for distinguishing direct from
indirect causal influences. Recent work has demonstrated that this
measure plays an indispensable role in linking neural network
dynamics with the underlying neural network anatomy (Chen et al.,
2006; Ding et al., 2006). Neuroscience applications of Granger
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causality have begun to appear with increasing frequency in recent
years (Bernasconi and Konig, 1999; Liang et al., 2000; Brovelli
et al., 2004; Hesse et al., 2003; Kaminski et al., 2001; Harrison et al.,
2003; Goebel et al., 2003; Sato et al., 2006; Chen et al., 2006),
revealing insights not possible with traditional methods such as cross
correlation and ordinary coherence.

Autoregressive modeling, the basis of the current parametric
Granger causality techniques, has proven effective for data modeled
by low-order AR processes. However, AR methods sometimes fail
to capture complex spectral features in data that require higher order
AR models (Mitra and Pesaran, 1999). Additionally, the proper
determination of model order remains a concern, although this
concern may be mitigated by the recently proposed Bayesian
framework (Harrison et al., 2003).Widely used Fourier and wavelet-
transform-based nonparametric spectral methods have the advan-
tage of fewer assumptions and are free from the aforementioned
shortcomings (Mitra and Pesaran, 1999; Percival and Walden,
1993).

In this paper, we propose a nonparametric approach to pairwise
and conditional Granger causality analyses. Combining spectral
densitymatrix factorizationwithGeweke's time series decomposition,
the new approach estimates both pairwise and conditional Granger
causality directly from Fourier and wavelet transforms, bypassing the
step of parametric data modeling. We validate the new approach by
applying it first to simulated data generated by networks with known
connectivity and temporal dynamics, and then to local field potential
data frommonkeys performing a sensorimotor task. It is expected that,
by basing the estimation of Granger causality on simple and widely
used data transformations, the nonparametric approach will provide
an alternative to the parametric approach, enabling a wider practice of
effective connectivity analysis, and eventually become a significant
addition to the repertoire of analytical tools for multivariate neural
data processing.

Materials and methods

In multivariate spectral analysis, the key quantity is the spectral
matrix from which one derives measures such as power, coherence,
multiple coherence, and partial coherence. There are two ways to
arrive at the spectral matrix: parametric and nonparametric. In the
parametric approach, autoregressive models are fit to the data. One
obtains the spectral matrix from the model transfer function and the
noise covariance matrix which are also used in the spectral
formulation of Granger causality. In the nonparametric approach,
one obtains the spectral matrix directly from Fourier or wavelet
transforms of data. The spectral matrix needs to be factorized to
yield the transfer function and the noise covariance matrix. This
step is the basis for the nonparametric approach to pairwise and
conditional Granger causality methods.

Experiment

The experiment was conducted in the Laboratory of Neuropsy-
chology at the National Institute ofMental Health during 1984–1988
and animal care was in accordance with the institutional guidelines
at that time. The monkey initiated each trial by pressing a lever with
its hand and keeping it pressed. After a random interval (uniformly
distributed between 120 and 2200 ms) from the time the lever was
pressed, a visual stimulus, either for a GO response (to release the
lever) or for a NO-GO response (to continue holding the lever), was
presented for 100 ms and the monkey made the required response
within 500 ms from the stimulus onset. Local field potential data
were acquired at a sampling rate of 200 Hz simultaneously from up
to 15 distributed cortical sites of one hemisphere in two macaque
monkeys (right hemisphere for subject GE and left hemisphere for
subject LU) using transcortical bipolar electrodes. The recording
took place over many sessions with each session comprising around
1000 trials (for further experimental details, see Bressler et al., 1993;
Brovelli et al., 2004; Ledberg et al., 2007). For the ensemble of trials
selected for this work, the ensemble mean time series from each
record site was subtracted from the individual single-trial time series
to ensure that the resulting data could be treated as coming from a
zero-mean stochastic process (Ding et al., 2006). Physiologically,
the data recorded from −90 ms to 500 ms could be considered as
reflecting several distinct cognitive states. From −90 ms to 35 ms
(0 ms being the stimulus onset), the monkey held the lever steady
while attending the screen and anticipating the imminent onset of
visuomotor processing. The visual information presented at 0 ms
arrived at various recording sites between 50 and 100 ms. The
monkeys made GO or NOGO decisions before 200 ms (Ledberg
et al., 2007). The average reaction time for a correct go response was
around 270 ms (Ledberg et al., 2007).

Multitaper spectral estimation

The multitaper spectral and cross-spectral method introduced by
Thomson (1982) is known to provide smooth spectral density
function estimates (Percival and Walden, 1993; Percival and
Walden, 2000; Walden, 2000; Mitra and Pesaran, 1999). It involves
the utilization of the discrete prolate spheroidal sequences (DPSS)
(Slepian and Pollak, 1961) known as tapers. To obtain average
spectral and cross-spectral estimates, the time series from each trial
is multiplied by a preselected number of orthogonal tapers, the
products are Fourier-transformed, and the resulting transforms are
cross-multiplied and averaged over individual tapers. Multiple
realizations or trials (experimental repetitions) further give rise to an
ensemble over which the expectation (averaging) is taken.
Specifically, consider simultaneously acquired multiple time series:
{xrt}(r=1,…, p;t=1,…,n), where r is the channel index and t is the
discrete time index. Then, for a single trial, the multitaper cross-
spectrum estimator between channels l and m at frequency f is
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K
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where w(k) (k=1, 2,…, K) are K orthogonal tapers of length n and Δ
is the sampling interval. For l=m, we obtain the auto-spectrum. The

spectral density matrix S fð Þ ¼
S11 fð Þ N S1p fð Þ

N N N
Sp1 fð Þ N Spp fð Þ
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@
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A is obtained by

averaging the cross-spectrum estimators for all pairs of channels
over individual trials. The diagonal terms of this matrix S(f) repre-
sent auto-spectra whereas the off-diagonal terms cross-spectra.

Wavelet spectral estimation

The wavelet transform provides time-frequency representation of
a signal and is useful to analyze time-varying (nonstationary)
processes (Daubechies, 1990; 1992; Percival and Walden, 2000).
Convolution of a given signal x(t) with a scaled and translated version
of a prototype wavelet function ψ(η), which satisfies zero-mean
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where (⁎) indicates the complex conjugate. Scale s is related with
frequency f. By varying s and translating along time t, one can
construct a form of time-frequency representation of the signal. In this
work, we chose a complexMorlet wavelet, consisting of a plane wave
modulated by a Gaussian: w gð Þ ¼ p�1=4eixge�g2=2, as the prototype
wavelet with ω≥6 (Torrence and Compo, 1998). The Gaussian
envelope e�g2=2 localizes the wavelet in time and ω determines time/
scale resolution. Higher values of ω provide a better scale or
frequency resolution but poorer time resolution. The wavelet cross
spectrum between the signals recorded at channels l and m at time t
and scale s is then

WSlm t; sð Þ ¼ hWxl t; sð ÞW 4xm t; sð Þi; ð3Þ

where the expectation (denoted by b N) is taken over all the trials
recorded. Setting l=m, one obtains auto-wavelet spectra. The full
wavelet spectral matrix WS(t,s) is computed by using all pairs of
channels. Using the relationship between Fourier frequency f and
wavelet scale s for the prototype wavelet used (see Torrence and
Compo, 1998, for the complex Morlet wavelet), we obtained the full
wavelet spectral matrixWS(t,f) at time t and frequency f.

Spectral matrix factorization

Spectral matrix factorization is a procedure for constructing
a sequence of unique generating functions (or minimum-phase
spectral factors) out of spectral density matrices (Sayed and Kaylath,
2001). It was introduced by Wiener in 1949 (Wiener, 1949) for a
single time series and was later extended to multiple time series by
Wiener andMasani in 1957 (Wiener andMasani, 1957) and Youla in
1961 (Youla, 1961). Since then, it has found extensive applications
in the analysis and design of linear systems. It has been applied in the
fields of digital signal processing (Anderson and Moore, 1979),
control theory (Balakrishnan and Boyd, 1992), communications
(Fischer, 2005), geophysics (Fomel and Claerbout, 2003), and
helioseismology (Rickett and Claerbout, 2000).

The spectral density matrix, such as Fourier transform-based S(f)
or wavelet transform-basedWS(ti,s) at any time point ti that satisfiesR p
�p log det S fð Þð Þdf N�l, can be factored into a set of unique
minimum-phase functions:

S ¼ WW4; ð4Þ

where Ψ is the minimum-phase, spectral density matrix (left) factor
which has a Fourier series expansion in nonnegative powers of ei2πf:
W ¼ Pl

k¼0
Akeik2pf , and Ψ⁎ is its complex conjugate transpose. There

are several algorithms available for spectral matrix factorization
(see, for review, Sayed and Kaylath, 2001). For this work, we
implemented Wilson's algorithm (Wilson, 1972), which is noted for
its superb numerical efficiency (Goodman et al., 1997). A
convergence theorem for an iterative method used in this algorithm
guarantees the existence of factorization of rational spectral density
matrices (Wilson, 1978).
From the minimum-phase spectral factor Ψ, noise covariance
matrix Σ and minimum-phase transfer functionH(f) can be obtained asX

¼ A0A
T
0 ð5Þ

and

H ¼ WA�1
0 ð6Þ

such that ΨΨ⁎=HΣH⁎ (Dhamala et al., 2008). Here, T stands for
matrix transposition. As indicated earlier, spectral matrix factorization
is thus a key step in the estimation ofGranger causality as it provides the
quantities H and Σ that are readily available from the parametric data
modeling but not so from the traditional nonparametric spectral
analysis.

Granger causality measures

The measures of Granger causality are based on the notion that the
causal (driving) variable can help forecast the effect (driven) variable
(Granger, 1969; Geweke, 1982). The reduction in the unexplained
variance of the effect variable (say X: x1, x2,…, xn) as a result of
inclusion of the causal variable (say Y: y1, y2,…, yn) in linear

autoregressive modeling xn ¼
Pl
k¼1

akxn�k þ en; xn ¼
� Pl

k¼1
bkxn�kþPl

k¼1
ckyn�k þ gnÞ, that is, R2

R1
¼ var gnð Þ

var enð Þ b1, marks the existence of a

causal influence from Y to X in time domain. In the frequency domain,
the total spectral power (auto-spectrum) of the effect variable (X) is
decomposed into its intrinsic power and the causal contribution from Y
and the ratio of the total power to the intrinsic power indicates the
presence of causal influence (Geweke, 1982; see Ding et al., 2006, for a
review).

Pairwise Granger causality
In the time domain, FYYX ¼ ln

P
1P
2

, where Σ1 is X's unexplained
variance in its autoregression, whereas Σ2 is X's unexplained vari-
ance in the joint (X and Y) regression. In the frequency domain,
YYYX fð Þ ¼ ln Sxx fð Þ

f
S xx fð Þ, where Sxx(f) is the total power and S

~
xx( f ) is

the intrinsic power. Using S( f )=H( f )ΣH⁎( f ), where the transfer
function H( f ) and the noise covariance matrix Σ are derived either
from spectral matrix factorization (nonparametric approach) or AR
data modeling (parametric approach, the causality from Y to X at
frequency f becomes:

IYYX fð Þ ¼ ln
Sxx fð Þ

Sxx fð Þ � P
yy�

P2
xy =

P
xx

� �
jHxy fð Þj2

; ð7Þ

where the term in the denominator is the total power minus the causal
contribution representing the intrinsic power.

Conditional Granger causality
In a system of three or more time series, it is often desirable to find

out whether a causal influence between any pair of time series is direct
or mediated by others, which cannot be identified by the bivariate (or
pairwise) measure of causality. An example of this scenario is
illustrated in Fig. 1, where Yexerts a causal influence on X only via Z.
A pairwise analysis will reveal a nonzero causality from Y to X
(dashed arrow). This is clearly an incorrect inference and was called a
‘prima facia cause’ (causality on its first appearance) by Granger
(1980). To resolve such ambiguity has led to the development of



Fig. 1. Three-node network model system. X, Y, and Z are stationary
stochastic processes interacting with each other in a network. Y has a causal
influence on Z and Z, in turn, has a causal influence on X (represented by
solid arrows). Y has an indirect influence on X via Z, as shown by a dashed
arrow. Direct and indirect directional influences can be distinguished by the
conditional Granger causality.
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conditional Granger causality (Granger, 1980; Geweke, 1984). In the
time domain, the Granger causality from Y to X conditional on Z is

defined as: FYYX jZ ¼ ln
P

xx
X ;Zð ÞP

xx
X ;Y ;Zð Þ, where Σxx(X,Z) is the variance of

the noise in the joint regression ofX and Z, andΣxx(X,Y,Z) the variance
in the regression of X, Y, and Z, both variances being associated withX
variable. In the frequency domain

IYYX jZ fð Þ ¼ ln
Rxx X ; Zð Þ

jQxx fð ÞR̂xx X ; Y ; Zð ÞQxx fð Þ4j ; ð8Þ

where the quantities in the denominator inside the logarithm are
functions of the transfer function and the noise covariance matrix (see
Ding et al., 2006).

Mathematically, the spectral measures are related to the time-
domain measures through

FYYX ¼ 2
fs

Z fs=2

0
IYYX fð Þdf ð9Þ

and

FYYX jZ ¼ 2
fs

Z fs=2

0
IYYX jZ fð Þdf ; ð10Þ

where fs is the data sampling rate.
Using the nonparametric approach, one can first compute IY→X( f )

and IY→X|Z(f) at all frequencies and perform the required integration to
obtain the corresponding time-domain quantities.

Results

The nonparametric approach for estimating pairwise and condi-
tional Granger causality consists of the following steps: (i) construct
spectral density matrix S from Fourier transforms or wavelet
transforms of multichannel time series data, (ii) factorize spectral
density matrix: S=ΨΨ⁎ where Ψ is the minimum-phase spectral
factor, (iii) derive noise covariance matrix Σ and transfer function H
from Ψ according to Eqs. (5) and (6), and (iv) use S, H, and Σ in
Geweke's formulae (Geweke, 1982, 1984) to arrive at Granger
causality spectra. The time-domain Granger causality can be obtained
by integrating the spectral representation over frequency. In our
implementation of the above steps, the multitaper method (Mitra and
Pesaran, 1999) is used to construct the spectral density matrix in the
Fourier transform-based approach and the Morlet wavelet (Morlet et
al., 1982; Torrence and Compo, 1998) is used in the wavelet
transform-based approach. Spectral density matrix factorization is
achieved by Wilson's algorithm (Wilson, 1972, 1978).

Below, we first demonstrate the excellent performance of the
nonparametric Granger causality techniques on simulated data
generated from stationary and nonstationary network models where
the interaction patterns are known. We then apply the techniques to
local field potentials recorded from monkeys performing a sensor-
imotor task for which a Granger causality analysis has been published
in the past with the parametric approach (Brovelli et al., 2004; Chen
et al., 2006; Ding et al., 2006). We stress that both the parametric and
the nonparametric approaches produce consistent findings that are
physiologically interpretable and yield new insights not possible with
other methods.

The simulation models

Two models are considered for generating simulated time series.
The first model is a 3-node network where X, Y, and Z are jointly
stationary stochastic processes described by the following autore-
gressive (AR) process: X(t)=0.8 X(t−1)−0.5 X(t−2)+0.4⁎Z(t−1)+
η(t), Y(t)=0.53 Y(t−1)−0.8 Y(t−2)+ξ(t), and Z(t)=0.5 Z(t−1)−0.2
Z(t−2)+0.5 Y(t−1)+ε(t). Here t is a discrete time index, η(t), ξ(t),
and ε(t) are independent white noise processes with zero means and
nonzero variances. As illustrated by the solid arrows in Fig. 1, Y has a
causal influence on Z, and Z, in turn, drives X. The dashed arrow
implies that Y has an indirect influence on X which is mediated by Z.
The pairwise approach cannot distinguish direct from indirect causal
effects; the conditional Granger causality is required for unequivocal
resolution. The second model is a two-node network with nonstation-
ary dynamics: Y1(t)=0.53 Y1(t−1)−0.8 Y1(t−2)+ε1(t) Y2(t−1)+
ξ(t) and Y2(t)=0.53 Y2(t−1)−0.8 Y2(t−2)+ε2(t) Y1(t−1)+η(t),
where ε1(t) and ε2(t) are time-varying coupling strengths.

Analysis of simulated time series

Fourier transform-based methods
For the first 3-node networkmodel, letting var(η)=0.25, var(ξ)=1,

and var(ε)=0.25, we obtained a data set of 4000 trials (i.e. realizations)
with each trial consisting of 4000 data points. The discrete time steps
are assumed to be equivalent to a sampling rate of 200 Hz. Fig. 2(a)
shows a comparison between the parametric (P) and nonparametric
(NP) calculations of pairwise Granger causality between Yand Z. It is
clearly seen that both approaches yield identical results, recovering the
correct network connectivity pattern of unidirectional Y→Z driving.
Since the data set consists of many realizations of long time series, the
parametric analysis results can be considered as the theoretical results
(Ding et al., 2000). Fig. 2(b) shows that there is significant pairwise
Granger causal influence from Y to X, but the conditional Granger
causality measure Y→X|Z (causal influence from Y to X conditional
on Z) confirmed that the causal influence from Y to X was completely
mediated by Z, since Y→X|Z was zero at all frequencies. This is again
consistent with the design of themodel network. Expected resultswere
also found for other combinations of variables.

Wavelet transform-based methods
The simulated data above were also subjected to the wavelet

transform-based pairwise and conditional Granger causality analy-
sis. Results identical to that in Fig. 2 were obtained (not shown),
demonstrating that wavelet-based methods are fully capable of un-
covering network connectivity from multiple stationary time series.
Their ability to reveal temporal patterns of causal influences was



Fig. 3. Wavelet-based Granger causality: a means for studying time-varying
causal influences. The first panel shows the time course of coupling
strengths in the model system consisting of Y1 and Y2 interacting with each
other. In the first half of the simulated time interval, Y1 exerts causal
influence on Y2, and, in the second half, it is the opposite. The slow
transitions between the two driving modes have been modeled by the tangent
of hyperbolic functions in the time-interval t=1.5 to 3 s. The coupling
reversal occurs at t=2.25. The second and third panels of time-frequency
Granger causality maps show that the wavelet-based Granger causality
technique is able to recover the temporal dynamics of the causal influences.

Fig. 2. Comparison between Fourier-based nonparametric and parametric measures of Granger causality: (a) spectra of pairwise causality between Y and Z, and
(b) spectra of causality from Y to X, both pairwise and conditional on Z. The parametric (P) and nonparametric (NP) measures demonstrate excellent agreement.
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tested by simulating the second 2-node nonstationary network
model consisting of interacting variables Y1 and Y2. Letting
variances be 0.25 and letting the coupling strengths ε1(t) and ε2(t)
vary according to the profiles given in Fig. 3(a), we obtained 1000
trials of data with each trial containing 900 points. From the model
design, we see that Y1 drives Y2 (Y1→Y2) in the first half of the
simulation time interval, Y2 drives Y1 (Y2→Y1) in the second half,
and the slow transitions between the two modes of causal influences
occur during 1.5b tb3 s. As shown in Figs. 3(b) and (c), the wavelet-
based Granger causality technique clearly recovers these predicted
patterns with high temporal precision.

Application to experimental data

Local field potentials (LFPs) were sampled at a rate of 200 Hz
from up to 15 distributed sites of one hemisphere in two macaque
monkeys (right hemisphere in monkey GE and left hemisphere in
monkey LU) performing a GO/NOGO visual pattern discrimina-
tion task. The sites chosen for analysis are located in the sensori-
motor cortex, including primary somatosensory area (S1), primary
motor area (M1), posterior parietal areas 7a and 7b for monkey GE,
and S1, M1, and 7b for monkey LU. Our focus here is network
activity during the prestimulus stage when the monkey maintained
steady pressure on a depressed hand lever and anticipated the
imminent onset of visuomotor processing. Parametric power,
coherence, and Granger causality analysis of these data (Brovelli
et al., 2004; Chen et al., 2006; Ding et al., 2006) has reported the
following findings: (i) synchronized beta-frequency (15–30 Hz)
oscillations linked together diverse sensorimotor areas to form a
large-scale cortical network, (ii) strong Granger causal influences
(information) flowed from S1 to M1 and to 7a and 7b, (iii) 7b
exerted further Granger causal influences on M1, and (iv) Granger
causal influences from the motor cortex into the post-central areas
were small and statistically insignificant. The causal influence from
S1 to 7a was further subjected to a conditional Granger causality
analysis as anatomical considerations suggested that such influence
could be mediated by area 7b and this was found to be indeed the
case.
The above results led to the hypothesis that the beta oscillation
network in the sensorimotor cortex facilitates the maintenance of
steady pressure on the depressed hand lever. The directionality pro-
vided by Granger causality is consistent with the known functional



Fig. 4. Fourier-based pairwise Granger causality spectra for experimental
data: nonparametric measures of Granger causality between primary
somatosensory (S1) and primary motor (M1) areas. There is a significant
causal influence from S1 to M1 at about 22 Hz, which falls within the beta
frequency range (14–30 Hz). The significance thresholds (shown by dotted
lines) have been numerically obtained under a null hypothesis of no inter-
dependence at a level pb10−6.

Fig. 6. Fourier-based pairwise and conditional Granger causality spectra for
the network of areas S1, 7a, and 7b: (a) pairwise spectrum for S1→7a (solid
line) and conditional Granger causality spectra S1→7a|7b (dashed line) and
(b) revised Granger causality network based on direct causal influences.
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roles of the involved cortical areas, and has played an instrumental
role in the formulation of this hypothesis. To further test this
hypothesis, Zhang et al. (2005) studied the temporal evolution of the
beta oscillation network, employing a moving window parametric
analysis. For GO trials, as the monkey prepared and carried out the
lever-releasing hand movement following stimulus presentation, the
need for pressure maintenance was removed and the beta oscillation
as well as the causal influences underlying the oscillation network
vanished as a result. Below we test the nonparametric Granger
causality techniques on the same data with the goal of validating these
new techniques in the context of the previous parametric findings and
a well-established interpretational framework.

All pairwise combinations were first analyzed for each monkey
subject in the prestimulus time period (−90 to 35 ms) by the
Fourier-based methods. Fig. 4 shows the Granger causality spectra
for one such pair, M1 and S1, in GE. A random permutation
approach (Blair and Karniski, 1993; Brovelli et al., 2004), which
involved creating 1000 permutations of the local field potential
data set by random shuffling of the trial order independently for
Fig. 5. Granger causality graphs in the beta frequency range for monkeys GE
and LU obtained by the Fourier-based nonparametric approach. These
significant pairwise connectivity patterns are identical to the ones obtained
by the parametric technique.
each site, was used to find thresholds for statistical significance.
Significant S1→M1 (solid) causal influence is seen in the beta
frequency range (~22 Hz) while M1→S1 (dotted) is below sig-
nificance threshold. Fig. 5 summarizes the pairwise analysis by
displaying the Granger causality graphs for the beta oscillation
network in both monkey subjects. These graphs are identical to the
ones obtained by the parametric techniques reported in (Ding et al.,
2006). The causal influence from S1 to 7a is further analyzed with
the conditional Granger causality and the result is shown in Fig. 6.
While pairwise S1→7a is statistically significant, the conditional
causality S1→7a|7b (dashed lines) is below the corresponding
significance thresholds (dotted lines), suggesting that the causal
influence from S1 to 7a is most likely mediated by 7b. Fig. 6(c)
shows a refined Granger causality graph involving S1, 7b, and 7a.
This graph is identical to the one obtained by the parametric
method and can be interpreted in terms of the known anatomical
pathways linking these areas (Felleman and Van Essen, 1991; Ding
et al., 2006). The wavelet-based methods are also considered for
the same data. The results are qualitatively the same as those
shown in Figs. 4–6. We next performed a time-frequency Granger
causality analysis based on wavelet transforms for the entire GO
Fig. 7. Wavelet-based time-frequency analysis of Granger causality for GO
trials. The causal influence from S1 to M1 in the GO condition disappeared
during movement preparation and execution, supporting the hypothesis that
the beta oscillations exist to facilitate motor maintenance behavior. The plot
on the right side shows the average causal influence over time (solid curve)
and the significance threshold at pb10−6 (dotted line) computed from the
time period −90 to 35 ms.
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trial. The result revealed that the causal influence from S1 to M1 in
the beta frequency range disappeared during movement preparation
and execution (Fig. 7). This is in agreement with the parametric
results reported by Zhang et al. (2005).

Discussion

Granger causality, structural equation modeling (SEM) (McIntosh
andGonzalez-Lima, 1994), and the recently proposed dynamic causal
modeling (DCM) (Friston et al., 2003; Lee et al., 2006) are the main
statistical methods for effective connectivity analysis. Other techni-
ques, including phase-dynamics approach (Rosenblum and Pikovsky,
2001) and transfer entropy (Schreiber, 2000; Lungarella and Sporns,
2006), have also been attempted for the same purpose. SEM and
DCM rely on the existence of a neural theoretical framework and are
often limited by the lack of precise anatomical and physiological
constraints. Since Granger causality is a more data-driven method,
it has witnessed rapid growth in recent years in applications to
neurophysiological and neuroimaging data. To date, parametric
modeling remains the basis for Granger causality inference in the
frequency domain. While nonparametric Granger causality tests have
appeared in the past, they are all formulated in the time domain (Bell
et al., 1996; Diks and Panchenko, 2006; Hiemstra and Jones, 1994).
As the parametric spectral approach requires the autoregressive
models of data, concerns have been raised regarding the strong
underlying assumptions and its suitability for data with complex
power spectral content (Mitra and Pesaran, 1999; see Supplementary
Fig. 1). In this paper, we propose a nonparametric spectral approach in
which Granger causality is estimated directly from Fourier and
wavelet transforms of data, removing the need for autoregressive
models. The mathematical basis of our method is a combination of
spectral matrix factorization and Geweke's spectral formulation of
Granger causality. Although there are other spectral measures for
inferring causal influences, including directed transfer function (DTF)
(Kamiski and Blinowska, 1991; Kaminski et al., 2001), partial
directed coherence (PDC) (Bacala and Sameshima, 2001), and
directed DTF (Korzeniewska et al., 2003), Geweke's measure is
expressed in terms of variance explained and is thus more statistically
interpretable.

The new nonparametric approach was tested on simulated data.
Two examples were considered. In the first example, multiple
realizations of time series were generated by a 3-node networkmodel.
The pattern of network connectivity was correctly recovered by both
the Fourier- and wavelet-based methods. The second example
simulated a nonstationary process in a 2-node network model. The
wavelet-based methods were able to resolve the fine temporal
dynamics by capturing the rapid reversal of causal influences built
into the model. The nonparametric approach was further tested on
recordings of local field potentials from monkeys performing a
sensorimotor task. The previously reported causal network dynamics
in the beta frequency range obtained with the parametric techniques
(Brovelli et al., 2004; Chen et al., 2006; Ding et al., 2006) were
reproduced by both the Fourier- and wavelet-based methods. This
provides a validation for the new approach. Although, unlike simu-
lations, the true answer in an experimental situation is not a priori
known, a strong support for such an assertion is that the information
flow patterns reported before are both physiologically and anatomi-
cally interpretable, and have led to a testable hypothesis regarding the
function of the beta oscillation network in the sensorimotor cortex. In
addition to electrophysiological signals, we also applied the proposed
nonparametric approach to fMRI time series obtained in a complex
rhythmic finger-tapping task (Dhamala et al., 2003; see Supplemen-
tary Fig. 2). There, the causal influence pattern was found to be in
agreement with the direction of information flow postulated in the
movement control literature.

Evaluating causal relations from multivariate neural data is an
important problem and is attracting increasing research interest. An
important caveat that is applicable to any technique in the area of
multivariate data analysis concerns the issue of hidden variables. For
two measured variables, if their relationship is caused by a third
variable that is not observed, the analysis result will be ambiguous.
This is a distinct possibility in systems as complex as the brain and
cannot be easily remedied. This hidden variable problem impacts not
only Granger causality analysis but also every other multivariate
statistic used in neuroscience today. In this regard, well thought-out
experiments combined with strategic placements of electrodes hold
the key to avoid ambiguous analysis interpretations.

Although the nonparametric approach removes the need for
extracting AR models from data, it has its own initial choices of
parameters, including the number of tapers, wavelet prototype, and
the time-frequency resolution trade-off (ω for the Morlet wavelet).
The number of tapers determines the amount of smoothing necessary
to reduce the variance of the spectral estimates. The results included
in this article were obtained by using 3 tapers. We varied the number
of tapers up to 12 and found that the results were not very sensitive to
the number of tapers used. However, at a very high number, the
spectral peak gets distorted, e.g., a single peak splits into two. The
general guideline is that the number of tapers should be chosen to
reduce the variance while not overly distorting the spectrum (see
Mitra and Pesaran, 1999). For the wavelet applications, we used the
complexMorlet wavelet withω≥6 in the form proposed by Torrence
and Compo (1998), where the higher ω ensures a good frequency
resolution at the cost of time resolution. This choice of wavelet is for
convenience and our wavelet-based techniques can be implemented
for any wavelet base. The test of the nonparametric Granger
causality techniques is performed on simulated data sets with a large
number of long trials. These methods can also be used reliably with
fewer trials. An increased number of trials contribute to a smaller
variance in the spectral estimates. A single, sufficiently long
stationary time series can be segmented into smaller epochs, each of
which can be regarded as an individual trial. The use of multitaper
techniques can further reduce estimation bias in case of a dataset
with shorter length. However, when there is too little data (short
length and few trials), both parametric and nonparametric estimates
may not be reliable.

The foregoing discussion suggests that the proposed nonpara-
metric approach provides an alternative way for estimating Granger
causality that complements rather than replaces the parametric
approach. In the parametric methods, the model order parameter is
often selected based on standard criteria such as the Akaike infor-
mation criterion (Akaike, 1974) or the Bayesian information criterion
(Schwarz, 1978). In case these criteria are not effective due to finite
data length or other reasons, one can choose the model order which
gives the best possible match between the parametric and nonpara-
metric power spectra. In addition, it is known that for short time series,
nonparametric spectral methods produce biased estimates. (A
systematic study of how data length influences Fourier-based Granger
causality estimation is presented in the appendix.) In this case, the
parametric methods hold a distinct advantage when multiple realiza-
tions (trials) of the same process are available (Ding et al., 2000).
However, for reasonably long time series, which are usually available
in most electrophysiological or imaging experiments, the proposed



Fig. 8. Effect of data length: (a) nonparametric and parametric pairwise Granger causality spectra and (b) integrated parametric and nonparametric Granger
causality as a function of data length. Even for a short segment of data, nonparametric measure provides the correct direction of causal influences. The
nonparametric estimate can rapidly approach the true value as the data length is increased.
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nonparametric Granger causality techniques for pairwise and condi-
tional measures are robust and yield excellent results.
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Appendix A

In a typical cognitive neuroscience experiment, the brain under-
goes rapid state change, from anticipation to sensation to decision-
making to movement execution, all within a few hundreds of
milliseconds. This dynamical process can be captured on a fine time
scale by performing spectral analysis with short moving windows.
When data of multiple trials are treated as coming from the same
underlying stochastic process, the AR model-based parametric
approach yields reliable spectral estimates for power and coherence
within each short window. For very short time series, spectral esti-
mates with Fourier-based nonparametric approach are biased (Ding
et al., 2000). To determine the reliability and asymptotic behaviors of
the proposedGranger causalitymethods, we compared nonparametric
and parametric estimates using simulated time series data of various
trial lengths while keeping the number of trials fixed. The data came
from the Yand Z channels of the 3-node networkmodel (Fig. 1). Fig. 8
(a) shows nonparametric and parametric pairwise Granger causality
spectra when each trial is 70 time points long. Fig. 8(b) is the time-
domain Granger causality by integrating parametric and nonpara-
metric spectra as a function of trial length. The number of trials for all
cases was 4000. As indicated earlier, parametric spectral estimates
from a large number of trials are known to approach true theoretical
values (Ding et al., 2000), which is the basis for these comparisons.
From Fig. 8(a), it is clear that even for relatively short segments of
data, besides a slight underestimate of the peak value, the
nonparametric technique can recover the correct direction (Y→Z)
and peak location (40 Hz) of causal influences. The nonparametric
estimate rapidly approaches the parametric or true value as the data
length is increased (Fig. 8(b)).

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.neuroimage.2008.02.020.
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