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Abstract

Musical improvisation offers an excellent experimental paradigm for the study of real-time human creativity. It
involves moment-to-moment decision-making, monitoring of one’s performance, and utilizing external feedback
to spontaneously create new melodies or variations on a melody. Recent neuroimaging studies have begun to
study the brain activity during musical improvisation, aiming to unlock the mystery of human creativity.
What brain resources come together and how these are utilized during musical improvisation are not well under-
stood. To help answer these questions, we recorded electroencephalography (EEG) signals from 19 experienced
musicians while they played or imagined short isochronous learned melodies and improvised on those learned
melodies. These four conditions (Play-Prelearned, Play-Improvised, Imagine-Prelearned, Imagine-Improvised)
were randomly interspersed in a total of 300 trials per participant. From the sensor-level EEG, we found that
there were power differences in the alpha (8–12 Hz) and beta (13–30 Hz) bands in separate clusters of frontal,
parietal, temporal, and occipital electrodes. Using EEG source localization and dipole modeling methods for
task-related signals, we identified the locations and network activities of five sources: the left superior frontal
gyrus (L SFG), supplementary motor area (SMA), left inferior parietal lobule (L IPL), right dorsolateral prefron-
tal cortex, and right superior temporal gyrus. During improvisation, the network activity between L SFG, SMA,
and L IPL was significantly less than during the prelearned conditions. Our results support the general idea that
attenuated cognitive control facilitates the production of creative output.
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Introduction

H ighly creative products represent the pinnacle of
human achievement, including scientific discoveries,

musical symphonies, and inventions. The study of creativity
has a long history and includes the analysis of creative peo-
ple (Gardner, 2011), products (Amabile, 1996), and the pro-
cesses used during creation (Simonton, 2010). Creative
thought has only recently been investigated using neurosci-
entific methods, and the results have been conflicting due
to the many diverse task paradigms used (Dietrich and
Kanso, 2010). Tasks include various divergent thinking par-
adigms (Fink et al., 2009a) and studies in which the moment
of insight during problem solving is investigated (Kounios
et al., 2006). Dietrich and Kanso (2010) specifically argued
that ‘‘only when the amorphous concept of creativity is sub-
divided into different types’’ would the field advance. One

such type of experimental creative paradigm is the study of
products created in real time where revision is not possible.
In this study, we studied musical improvisation as an exam-
ple of this type of creative task. Musical improvisation has
been used in several functional magnetic resonance imaging
(fMRI) studies involving the contrast between brain re-
sponses recorded while playing fixed melodies (less creative)
or improvised melodies (more creative) (Bengtsson et al.,
2007; Berkowitz and Ansari, 2008; de Manzano et al.,
2012a, 2012b; Limb and Braun, 2008). In this study, we con-
duct a controlled electroencephalography (EEG) study to ad-
vance our understanding of brain network oscillations and
activity during musical improvisation.

One consistent finding in the EEG creativity literature is a
change in alpha power (Fink et al., 2006, 2009a; Razumni-
kova et al., 2009). In one study of a real-time creative be-
havior, professional dancers were asked to imagine a very
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structured dance (less creative) and an improvisational dance
(more creative) (Fink et al., 2009a). The more creative con-
dition resulted in stronger alpha band synchronization in
frontal and parietal regions, especially in the right hemi-
sphere. These results align with some studies of creative
problem solving not performed under real-time constraints
where increased alpha synchronization has been observed
in the creative condition compared to controls (Fink et al.,
2006, 2009a; Lustenberger et al., 2015). However, other
studies using that same paradigm have found a significant de-
crease (Razumnikova et al., 2009).

Simultaneous EEG and fMRI recordings show that in-
creased alpha (*10 Hz) wave power is correlated with a de-
crease in the blood oxygenation level-dependent (BOLD)
signal and may therefore represent deactivation (Goldman
et al., 2002). It has been suggested that alpha waves represent
a top–down inhibitory process attenuating brain regions not
necessary for the current task (Klimesch, 2012; Klimesch
et al., 2007). In a visual perception task, increased posterior
alpha power was interpreted as attenuating the dorsal stream
when the ventral stream was engaged in face recognition
( Jokisch and Jensen, 2007). Similarly, alpha power increased
in posterior and bilateral central areas with memory load in a
working memory task, presumably because visual processing
was inhibited ( Jensen et al., 2002). Concerning creative
tasks, Fink and Benedek (2014) argue that alpha band
power is related to creative ideation and may reflect inter-
nally oriented attention in which external bottom–up stimu-
lation is attenuated (Fink and Benedek, 2014), but it is
unclear whether this explanation also applies to tasks per-
formed under real-time constraints. In this study, we ana-
lyzed alpha power and cohesion during a musical task
where participants played either prelearned or improvised
melodies. Should the account of increased alpha power for
a creative task also apply to real-time creative tasks, we
would expect increased alpha power in the improvised con-
dition (Fink et al., 2009a). However, should alpha power be
more related to increased working memory demands ( Jensen
et al., 2002; Jokisch and Jensen, 2007), we would expect to
see higher alpha power in the prelearned condition in
which participants were asked to play or imagine one of
four memorized melodies.

We used EEG source localization and dipole modeling
methods for task-related signals to identify sources and net-
work activities. One previous study used EEG to study net-
work properties during performance of composed and
improvised music (Wan et al., 2014). However, their goal
was to investigate this contrast in an actual performance set-
ting and included comparing both intrabrain and cross-brain
networks in performers and listeners. Although arguably
more ecologically valid, a performance setting introduces a
number of possible confounds. They only had one (exp. 1)
or three (exp. 2) musicians from which to construct intrabrain
networks, the composed and improvised performances were
not matched on tempo and note density, the EEG data were
only collected with 10 or less channels, and the prefrontal cor-
tex was not included in data acquisition and analysis. None-
theless, it is interesting to note that they found an expanded
distributed network during improvisation in the musicians.

Previous fMRI studies in which participants played a
piano keyboard have identified differences in motor and pre-
frontal regions in response to the prelearned/improvised con-

trast using various musical tasks, although the results are
inconclusive (Bengtsson et al., 2007; Berkowitz and Ansari,
2008, 2010; Limb and Braun, 2008). Berkowitz and Ansari
(2008) identified a network involving the dorsal premotor
cortex, the rostral cingulate zone, and the inferior frontal
gyrus that was involved in both rhythmic and melodic impro-
visation. In another study, the same team compared activa-
tion in musicians and nonmusicians performing the same
task and found that the right temporoparietal junction was
deactivated during improvisation in the musician group
only (Berkowitz and Ansari, 2010). Limb and Braun
(2008) identified a different area that was deactivated during
improvisation compared to the prelearned condition. They
saw extensive deactivation of the dorsolateral prefrontal cor-
tex (dlPFC) and lateral orbital regions accompanied by focal
activation of the medial prefrontal cortex. They argued that
the deactivation of the dlPFC facilitated creative responses
by lessening top–down control. Opposite this view, de Man-
zano and Ullen (2012b) saw activation of the dlPFC during a
more creative task and attributed this to the area actively
being engaged in inhibiting habitual responses. In a study
designed to resolve this contradiction, participants impro-
vised either using defined pitch sets or expressing specific
emotions (Pinho et al., 2015). They found improvisation
using a defined pitch set resulted in activation of the dlPFC
since subjects had to maintain available note choices in
working memory. Opposite they saw deactivation of the
dlPFC during the emotional improvisations as subjects pre-
sumably relied on implicit learned processes to create impro-
visations in which top–down control from dlPFC would be
disadvantageous. Finally, de Manzano and Ullen (2012a)
found that the presupplementary motor area (pre-SMA) is
more active in both rhythmic and melodic improvisation
compared to playing a given melody. Interestingly, func-
tional connectivity between the pre-SMA and the cerebellum
was higher during rhythmic improvisation only, indicating
the pre-SMA may be particularly important for timing.

In this study, we were interested in the underlying creative
process both for overt motor action and covert imagining.
We therefore investigated the prelearned/improvised con-
trast using both a motor condition in which participants
played a piano keyboard and performed a musical imagery
task. It is well established that auditory perceptual regions
are activated during internally generated covert auditory im-
agery. This phenomenon has been observed during internal
auditory discrimination (Zatorre et al., 1996), auditory im-
agery of a musical score (Yumoto et al., 2005), and even
during passive listening (Kraemer et al., 2005). In a study
with advanced pianists, Meister et al. (2004) found a bilat-
eral frontoparietal network was active during play. Much of
this same network was also active during imagining of the
music, with the exception of the contralateral primary
motor cortex and bilateral posterior parietal cortex (Meister
et al., 2004).

Based on previous fMRI research, we hypothesized that
EEG source localization would identify a network involving
frontal control regions and motor planning regions. We fur-
thermore expected that cognitive control regions would show
less connectivity to motor regions during played improvisa-
tion, thereby facilitating creative production. As improvisa-
tion has not previously been investigated using musical
imagery, we did not form a prediction for those conditions.
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Methods

Participants

Nineteen experienced musicians (16 male, 3 female; mean
age = 25.5 years, standard deviation [SD] = 6.7 years) were ex-
clusively recruited for this study. A criterion for participation,
piano was either the participant’s primary (5 participants) or
secondary (14 participants) instrument. All participants dem-
onstrated proficiency on the piano keyboard; however, their
primary instruments included piano (n = 5), guitar (n = 6),
voice (n = 3), drums (n = 2), bass guitar (n = 1), bouzouki
(n = 1), and trumpet (n = 1). Participants were also required
to know how to read music. Experience on the piano typically
began in early childhood; self-reported number of years expe-
rience on the piano (mean = 10.4 years, SD = 8.6 years) was
noted, shown in Table 1. All participants had experience on
their primary instrument for at least 2 years (mean = 14.3
years, SD = 6.6 years). Many of the participants were currently
enrolled or had previous education in a University System
School of Music (n = 8), but not exclusively; average school-
ing years for all participants were 15.2 years (SD = 1.4 years).
All participants were healthy with no self-reported neurologi-
cal disorders. Eighteen participants were right handed and one
was left handed in accordance with the Edinburgh handedness
inventory. All participants gave written informed consent, fol-
lowing all guidelines approved by the Institutional Review
Board of Georgia State University.

Experimental conditions

Before EEG recordings, participants were familiarized
with the five conditions: Play-Prelearned, Play-Improvised,
Imagine-Prelearned, Imagine-Improvised, and Rest. During
the prelearned conditions participants were prompted to play
or imagine one of four 8-quarter note melodies (CDEFGFED,
CEGEFDBD, EECCFFDD, and GFECBCDF), which were
memorized and rehearsed before the day of the experiment.

Participants were tested on competency upon arrival. Each
melody was within a six-note range to minimize hand move-
ment on the keyboard and not disrupt the EEG recording. Dur-
ing the Imagine-Prelearned condition, participants were
instructed to imagine one of the four prelearned eight-quarter
note melodies. These performances of memorized melodies
presumably require little to no creativity. Results from these
conditions could then be contrasted with the two improvised
conditions: Play-Improvised and Imagine-Improvised, during
which participants performed or imagined a spontaneously
created melody within the same six-note range. During all
of the conditions, except Rest, participants synchronized
their piano playing and imagining with an auditory metro-
nome playing every 0.7 sec. The improvised melodies there-
fore differed from the prelearned only with regard to the
chosen pitches. For the Rest condition, participants were
instructed to do nothing except listen to the metronome.

After the experimenter secured the EEG cap and familiarized
the participant with the task, participants began a 10-trial prac-
tice run. Recordings from the practice run were used only to en-
sure that all the electrodes were online; no data from practice
runs were used in analysis. The task was displayed on a com-
puter monitor directly in front of the seated participant through
a program written in the PsychToolbox extension in MATLAB.
All trials began with the trial cue, lasting four metronome beats
counting down to the performance phase. At the end of the
countdown, the metronome continued and participants com-
pleted the cued task. All trials followed the same structure
over time and were randomly selected from the five conditions.
Each experiment was composed of 15 runs, with 20 random-
ized trials in each run. Participants were instructed to look at
a fixation cross and try not to blink during the eight-count per-
formance phase. They could blink during the four-count trial
cue and countdown. Motor movement was limited to finger
presses across six notes of the piano keyboard.

Data acquisition and preprocessing

Behavioral data were recorded using a MIDI interface
with PsychToolbox in MATLAB. Specific key press and tim-
ing information was recorded and analyzed to determine par-
ticipants’ performance accuracy in reproducing the cued
melodies and their synchronization with the metronome.
Continuous EEG data were recorded using a 64-channel flex-
ible cap and Brain Vision’s actiCHamp System. A sampling
rate of 1000 Hz and a DC amplifier were used.

Raw data were read in BrainVision Analyzer 2.0 software.
EEG data were bandpass filtered of (0.1–70 Hz) and notch
filtered to remove 60 Hz AC-line noise. Data from bad elec-
trodes were discarded and replaced, when appropriate, by
spatial interpolation of the recordings from the neighboring
working electrodes. The preprocessed data from each run
were then read in EEGLAB, combined to form a single
data set for each participant, and then separated by each ex-
perimental condition based on behavioral trial sequences.
Standard statistical procedures ( Junghofer et al., 2000)
were used to identify outlier trials and discard them from
the subsequent analysis.

Data analysis

The analysis of the preprocessed EEG included the follow-
ing main steps: (1) computation of grand average from EEG

Table 1. The Table Lists the Age, the Primary

Musical Instrument, and the Years of Playing

(Experience) of the Participants in the Study

Participant
No.

Age
(years)

Primary
instrument

Years
of playing

01 21 Piano 7
02 20 Piano 15
03 21 Piano 7
04 26 Piano 8
05 37 Bass guitar 20
06 25 Piano 2
07 22 Voice 6
08 23 Voice 5
09 28 Guitar 23
10 28 Drums 2
11 23 Drums 4
12 30 Guitar 4
13 24 Guitar 19
14 22 Guitar 14
15 43 Voice 28
16 33 Bouzouki 24
17 19 Guitar 11
18 24 Trumpet 13
19 25 Guitar 3
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trials, (2) EEG source reconstruction based on grand average
of EEG trials and distributed dipole modeling, (3) recon-
struction of single-trial source waveforms based on the iden-
tified sources and discrete dipole modeling, and (4)
computation of spectral measures based on single-trial wave-
forms and the parametric spectral approach (Dhamala et al.,
2008a). Details are provided below.

Sensor level power analysis

The EEG trials were collected from all participants, and the
grand average waveforms were computed for each task condi-
tion. The peak amplitude values for the trials were calculated
and tested to find out the electrode locations where the sensor
level EEG signals differed significantly (t-tests, p < 0.05; with
multiple comparison correction) between Play-Prelearned
and Play-Improvised, and Imagine-Prelearned and Imagine-
Improvised conditions. All the sensor level EEG trials were
used to compute wavelet power to investigate when and how
the power changes during prelearned and improvised musical
conditions.

EEG source reconstruction

The grand average of EEG trials from four musical task
conditions, Play-Prelearned, Play-Improvised, Imagine-
Prelearned, and Imagine-Improvised, was used in the Brain
Electrical Source Analysis Research software version 6.0
(www.besa.de) to reconstruct EEG sources. We used the
minimum norm estimates (MNE) approach (Hamalainen and
Ilmoniemi, 1994; Wang et al., 1992) with a depth-weighting
scheme to find the localized sources generating the scalp
potentials. The technique estimates the source activity
without a priori assumptions about the sources’ location and
activity. The inverse problem is addressed by generating
dipole solutions of the sensor data with the smallest amount
of power for all dipole sources at each time point. Source
activities are computed from the sensor data with the help of
an inverse regularized estimation of the noise covariance
matrix of the sensor data. Tikhonov regularization constant
was set to 0.1 and applied to invert calculation. Spatial depth-
weighting method was also used to compensate for the
tendency of minimum-norm solution to favor superficial
sources. Depth weighting for the mean norm of the recursive
leadfields was applied using subspace correlation after single
source scan q2. The data with 15% lowest global field power
are selected for noise estimation. The source activity of each

regional location is estimated as the root mean square of the
sources’ components. The source activity of evenly distrib-
uted regional sources is computed at 10% and 30% below the
standard brain surface. The locations of the sources can be
constrained to the cortical surface and their orientations can
be restricted to be perpendicular to the local cortical surface
(Dale and Sereno, 1993). In this study, we used the grand
average sensor EEG data from all task conditions, subjects,
and notes to find out the EEG sources.

We then used these EEG sources as nodes for subsequent
spectral analysis of the network. For this, we used single-trial
EEG data and obtained single-trial source waveforms by fit-
ting dipoles at the peak activation locations of the localized
sources with the dipole orientations given in Table 2. The
source signals obtained from the single-trial EEG data
were used in the spectral analysis of the network activity.

In this study, we calculated spectral measures: coherence
and Granger causality (GC). Coherence is a measure of sta-
tistical interdependence between two oscillatory processes
and is derived from the normalized cross-spectral density
function. Coherence between neural processes reflects
frequency-specific interareal synchrony between oscillatory
neuronal processes. Spectral GC measures the directional
causal influence from one oscillatory process to another
(Ding et al., 2006; Geweke, 1982). These measures can be
computed both by parametric and nonparametric methods
(Dhamala et al., 2008a, 2008b). In this study, we applied
the parametric method to single-trial EEG-source signals
and computed network activity among the EEG sources of
the observed scalp-recorded activity. The difficulty of find-
ing an optimal model order in the parametric approach was
circumvented by comparing power spectra from the nonpara-
metric and parametric approaches at different model orders
and choosing the model order yielding the lowest power dif-
ference (Adhikari et al., 2014; Dhamala et al., 2008a). We
evaluated the patterns of causality spectra by using pairwise
GC. We used the parametric spectral methods for all of these
calculations. The thresholds for statistical significance were
computed from surrogate data by using permutation tests
and a gamma function fit (Blair and Karniski, 1993; Brovelli
et al., 2004) under a null hypothesis of no interdependence at
the significance level p < 10�6.

Brain behavior relation

In the improvisation conditions, participants were asked to
make up isochronous melodies using the same six pitches

Table 2. The Table Lists the Names of the Electroencephalography Sources with Brodmann

Area, Their Anatomical Locations in Talairach (MNI) Coordinates, and Dipole Orientations

Region
Talairach (MNI) coordinates (mm) Diploe orientation (components)

x, y, z x, y, z

L SFG, BA 10 �18.0, 66.7, 7.0 (�18.2, 68.3, 11.2) 0.1, 1.0, 0.0
SMA, BA 6 0.0, 0.4, 65.3 (0, �2.9, 69.0) 0, 0.2, 1.0
L IPL, BA 40 �62.3, �31.6, 33.5 (�62.9, �34.3, 34.7) �0.9, 0.2, 0.4
R middle frontal gyrus, dlPFC, BA 46 49.6, 42.9, 6.1 (50.1 43.9 9.0) 0.7, 0.7, 0.1
R STG, BA 22 65.9, �42.8, 6.5 (66.6, �44.4, 4.7) 0.9, �0.4, 0.1

In this study, sources are obtained using the minimum norm estimates approach.
BA, Brodmann area; dlPFC, dorsolateral prefrontal cortex; L IPL, left inferior parietal lobule; MNI, Montreal Neurological Institute;

R STG, right superior temporal gyrus; SFG, superior frontal gyrus; SMA, supplementary motor area.
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used in the prelearned condition. To evaluate those impro-
visations, we calculated the average Simonton’s melodic
originality score for each improvisation from the Play-
Improvised conditions for each participant. This measure is
based on second order pitch class distribution of western
tonal music and has been derived from 15,618 classical
music themes (Simonton, 1984, 1994). The melodic original-
ity score is the inverse of averaged probability and scaled
between 0 and 10; higher value indicates higher melodic
originality. We computed coherence and GC spectra from
the source waveforms for the Play-Improvised condition
from all participants and extracted coherence and GC peak
values to correlate with the melodic originality score. The re-
lationship in the scatterplot was assessed by both Spearman’s
rank correlation and Pearson’s correlation. A correlation was
considered significant if the significance threshold was
p < 0.05 for both results. The results are reported here in
terms of Spearman’s rank correlation. A positive correlation
indicated that greater melodic originality related to higher
network coherence or GC.

Results

Behavioral results

Performance accuracy and asynchrony scores were evaluated
using the MIDI keyboard press data. Performance accuracy was
measured by marking each individual trial (each eight-note per-
formance) as either correct or failed. A failed trial received a
score of 0, while a correct trial received a score of 1. Correct tri-
als denote a perfect replication of the cued melody type with
each note played in the correct order. Accuracy per participant
ranged from 63.3% to 100% with average accuracy being
87.7% (SD = 11.7%). No feedback was given to participants in-
dicating whether the played note sequence replicated the cued
melody exactly. Asynchrony measured how well participants
were able to synchronize their piano key presses to the metro-
nome. Asynchrony was calculated as the difference between
the metronome onset time and the key press time divided by
the total time interval between metronome beats. An asyn-
chrony score close to 0 represents a note played better in syn-
chrony with the metronome; +1 represents a note played one
full beat late, and �1 represents a note played one full beat
early. Average asynchrony was �0.03, meaning the partici-
pants slightly anticipated the metronome.

Electrophysiological results

Group level average potentials. The average EEG wave-
forms were calculated from the trials from all participants for
musical task conditions: Play-Improvised, Play-Prelearned,
Imagine-Improvised, Imagine-Prelearned, and Rest sepa-
rately. When the peak amplitude of the scalp recorded
EEG signals from the trials was compared between pre-
learned and improvised conditions in musical play, the
group of electrodes shaded by transparent red color (Fig. 1)
showed statistically significant ( p < 0.05, t-tests) difference.
A similar comparison between prelearned and improvised
conditions in imagery condition showed the group of elec-
trodes shaded by transparent green color (Fig. 1) having
the significant difference in peak amplitude ( p < 0.05). This
p-value is the corrected p-value for multiple comparison cor-
rection, when applied across 64 electrodes.

EEG sensor power spectra. Figure 2 shows the average
power spectra for the groups of channels, which are marked
in Figure 1. The displayed power spectra are for the left fron-
tal, left central, bilateral parietal (more electrodes on left
side), and bilateral parieto-occipital electrodes from top to
bottom; left column is for Play-Improvised condition,
whereas the right column is for Play-Prelearned condition
(Fig. 2A). The z-score power (based on the baseline power
from �500 to 0 ms) showed an increasing trend in alpha
power from frontal to central, then to parietal, and even
more to the parieto-occipital electrodes during Play-
Improvised condition. The power increased significantly
(z-score >3) starting from around 700 ms. Moreover, the av-
erage alpha (8–12 Hz) power was significantly higher
( p < 0.05) during Play-Prelearned condition compared to
Play-Improvised condition for all these electrode clusters,
shown in Figure 2B. A statistically significant ( p < 0.05)
beta (13–30 Hz) power difference existed for frontal and pa-
rietal electrode clusters, but there was no gamma (30–70 Hz)
power difference in these four electrode clusters (Fig. 2B).
We found the similar power difference trends when average
power calculation was done separately for five participants
(pianist) who reported the piano as their primary musical in-
strument and five participants (nonpianist) who reported any
other instrument except piano as their primary instrument.
Neither of the electrode clusters (left frontocentral and

FIG. 1. The schematic represents a 64-channel EEG re-
cording montage used in Brain Vision’s actiCHamp System.
The shaded regions covering two or more labeled electrodes
show the locations in sensor space where peak amplitude of
the trials differed significantly (t-tests, p < 0.05). Clusters
shaded by red transparent color show where the peak ampli-
tude between Play-Improvised and Play-Prelearned condi-
tions increased and clusters by transparent green color
show where peak amplitude differed between Imagine-
Improvised and Imagine-Prelearned conditions. EEG, elec-
troencephalography. Color images available online at
www.liebertpub.com/brain
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right central, shaded by transparent green color in Fig. 1)
showed significant alpha power difference when the alpha
power spectra from Imagine-Prelearned condition and
Imagine-Improvised condition were compared (figure not
shown). For these electrode clusters, we found no alpha
power difference between Imagine-Prelearned condition
and Imagine-Improvised condition for pianist and nonpianist.

EEG localized sources. The grand average EEG signals
for all musical tasks were used in the MNE approach to re-
construct the inverse EEG solutions. The EEG sources
were the left superior frontal gyrus (L SFG), SMA, left infe-
rior parietal lobule (L IPL), dorsolateral prefrontal cortex
(dlPFC), and right superior temporal gyrus (R STG;
Fig. 3A–E). Table 1 lists the location (Talairach coordinates)
of EEG sources; dipole orientations of the sources, names of
region, and Brodmann area (BA) are in accordance to Talair-
ach Client—Version 2.4.3 (www.talairach.org/client.html).
The fitted dipoles at these anatomical locations and orien-
tations explained *81% of the variance in the EEG signal
for trials in all task conditions. We fitted the diploes in these

locations with their corresponding orientations (Fig. 3F) and
computed the single trial source waveforms from single-trial
EEG data that were then used in calculation of spectral
measures.

GC spectra. We computed GC spectra to assess oscilla-
tory network interactions among the five nodes of activity:
SFG, SMA, IPL, dlPFC, and STG. The GC spectra were cal-
culated separately for each condition. Significant causal con-
nections (with maximum GC value) are shown in Figure 4.
Both Play-Improvised and Play-Prelearned conditions had
almost similar interaction patterns (Fig. 4A, B). The informa-
tion flow was bidirectional between SFG and IPL, IPL and
STG, and dlPFC and SMA and unidirectional from SFG to
SMA and SMA to IPL in both cases. The stronger causal in-
fluences were from SFG to IPL and dlPFC to SMA; STG to
IPL in improvised but equal in prelearned. In addition, sig-
nificant causal influence from dlPFC to SFG plus bidirec-
tional causal influences between dlPFC and IPL were
found in Play-Prelearned. The interaction patterns were sim-
ilar in both Imagine-Improvised and Imagine-Prelearned

FIG. 2. Sensor level power spectra. Wavelet power (z-power) during Play-Improvised condition is shown in the first col-
umn and during Play-Prelearned condition in the second column (A). Alpha power [first column (B)] is significantly higher
during the prelearned condition compared to improvised condition. In this study, the results shown in rows the first to the
fourth represent the average contribution of all the electrodes that lie on the frontal, central, parietal, and parieto-occipital
cluster, respectively. Color images available online at www.liebertpub.com/brain

BRAIN NETWORK IN NOVEL MELODY CREATION 777



FIG. 3. Spatial profiles of the peak source-level electrophysiological activity. Cortical sources (A–E) are calculated using
the MNE approach. The location and orientation of the fitted dipoles are given in (F). dlPFC, dorsolateral prefrontal cortex;
IPL, inferior parietal lobule; L, left; MNE, minimum norm estimates; R, right, SFG, superior frontal gyrus; SMA, supple-
mentary motor area; STG, superior temporal gyrus. Color images available online at www.liebertpub.com/brain

FIG. 4. Schematic repre-
sentation of the GC network
graph associated with Play-
Improvised (A), Play-
Prelearned (B), Imagine-
Improvised (C), and Imagine-
Prelearned (D) conditions.
All the connections (causal
influence strengths are repre-
sented by thickness of the line
with arrow heads) shown are
statistically significant for the
threshold level at significance
p < 10�6 by permutation tests.
For the schematic represen-
tation, network nodes (spher-
ical ROIs of 10 mm radius,
center coordinates’ are given
in Table 2) were overlaid on
render brain and cut out for
visualization of nodes, using
MRIcron. GC, Granger cau-
sality; ROIs, regions of in-
terest. Color images available
online at www.liebertpub
.com/brain
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conditions (Fig. 4C, D). Bidirectional network interactions
were found between SFG and IPL, SFG and SMA, SFG
and dlPFC, IPL and STG, STG and dlPFC, and dlPFC and
IPL. The stronger causal influences were found from SFG
to IPL, dlPFC to SMA, and dlPFC to IPL than the other
way around. The bidirectional causal interactions between
dlPFC and STG, SFG and dlPFC are of equal strength. The
causal influence was unidirectional from SMA to IPL. Consid-
ering these significant causal interaction directions (in the
play condition and imagine condition), we computed inte-
grated GC values (from 1.5 to 58 Hz) from individual partic-
ipants to compare whether the overall causal interactions
during improvised and prelearned conditions changed in
musical play and imagine situations. Among these network
sources, Play-Prelearned condition had significantly higher
( p < 0.001) causal interactions than Play-Improvised condi-
tion (Fig. 5A), whereas causal interactions did not differ
significantly ( p < 0.05) between Imagine-Prelearned and
Imagine-Improvised conditions (Fig. 5B). Among the sig-
nificant causal interactions, common to both play and imag-
ine conditions, the overall network interactions during
Imagine-Prelearned and Imagine-Improvised were signifi-
cantly higher ( p < 0.001) than Play-Prelearned and Play-
Improvised (Fig. 5C).

We were also interested in seeing how the individual net-
work interactions change during music play and imagine
conditions. We used paired t-tests and compared the inte-
grated GC values (improvised condition compared to pre-
learned condition) to evaluate the statistics of the change
of the interactions. We found significantly decreased causal
interactions from SFG to SMA, SMA to IPL, and IPL to
SFG ( p < 0.05) during improvisation in the play condition
as shown by a solid blue line with an arrowhead in
Figure 6A. During the imagine condition, we found signifi-
cantly decreased ( p < 0.05) causal interactions from SMA
to dlPFC (shown by blue line with an arrowhead), whereas
causal interaction was found significantly increased from
SFG to dlPFC (shown by red line with an arrowhead) as in
Figure 6B. Remaining interactions, which were significant
from group level interactions during separate prelearned
and improvised conditions in music play and imagine tasks
(Fig. 4), were not significantly different when comparison
was done between improvised and prelearned conditions.
The dotted line with an arrowhead (red represents the in-
crease in causal interactions and the blue represents the de-
crease in causal interactions) represents the statistically
insignificant ( p > 0.05) change in causal influences as
shown in Figure 6A and B.

FIG. 5. Network activity comparison. Considering the causal influences for all significant connections during musical play
(A), stronger network activity ( p < 0.001) was found for the prelearned condition than improvised condition. No difference
in network activity was found between the prelearned condition and improvised condition under consideration of all significant
causal connections during musical imagine conditions (B). Considering the causal influences for significant causal connections
that are common for both musical play and imagine conditions, we found that the network activity was significantly higher
( p < 0.001) in musical imagine than musical play situations (C). Color images available online at www.liebertpub.com/brain
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Brain behavior relation. Simonton’s melodic originality
score was correlated with spectral measures of network ac-
tivity, coherence, and GC in Play-Improvised conditions
(Fig. 7, only significant results are shown). The mean
melodic originality score calculated from all improvisation
conditions during music play from each participant was pos-
itively correlated ( p < 0.05) with coherence for SFG-SMA,
SFG-IPL, and SMA-IPL node pairs (first row, Fig. 7A–C).

Similarly, the melodic originality score was also negatively
correlated with GC from SFG to SMA, IPL to SFG, and
IPL to STG (second row, Fig. 7D–F).

Discussion

In this study, we investigated electrophysiological re-
sponses during musical improvisation using simple isochronous

FIG. 6. Network modulation during play and imagine conditions. Network interactions during improvised compared to
prelearned in musical play (A) and imagine (B) conditions. Lines with arrowhead (dotted plus solid) represent the significant
causal connections among the four nodes in the network during Play-Improvised and Play-Prelearned conditions in (A) and
Imagine-Improvised and Imagine-Prelearned condition in (B) from the spectral interdependency measures, as shown in Fig-
ure 4. In this study, solid lines with arrowhead represent the significant change ( p < 0.05) in network interactions between
nodes, while dotted lines with arrowhead represent for insignificant ( p > 0.05) change. Red color represents the increase
in causal strength, whereas blue color represents the decrease in causal strength. For the schematic representation, network
nodes (spherical ROIs of 10 mm radius) were overlaid on render brain and cut out for their better visualization, using MRI-
cron. Color images available online at www.liebertpub.com/brain

FIG. 7. Relation between
spectral measures and me-
lodic originality score during
Play-Improvised condition.
Pairs of nodes showing sig-
nificant positive correlations
( p < 0.05) with coherence
(A–C) and significant nega-
tive correlations ( p < 0.05)
with GC (D–F) are shown.
Causal interactions SFG /
SMA, IPL / SFG, and IPL
/ STG are negatively cor-
related ( p < 0.05) to melodic
originality score. Color
images available online at
www.liebertpub.com/brain
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melodies that were either prelearned or improvised and ei-
ther played on a piano keyboard or imagined. In the current
paradigm, improvised and prelearned conditions both gave
rise to similar motor actions, only the mode of creation
was different. The neural correlates behind this difference
were the focus of the current research. We found that the pre-
learned melodies elicited significantly stronger alpha waves
in frontal, central, parietal, and parietal–occipital electrodes
compared to improvisation in the play conditions. Using
EEG sources we identified a network consisting of the L
SFG, SMA, L IPL, R dlPFC, and R STG. In the play condi-
tion, a causal directional link was significantly decreased
during improvisation from the SFG to the SMA to the IPL
to the SFG compared to the prelearned. The connectivity
strength of these links was also negatively correlated with
the melodic complexity of the improvisations.

Music improvisation requires the performer to create a
novel output under significant constraints. Specifically,
tonal music improvisations typically must fit a given timing
and harmonic structure (Berliner, 1994). The ability to im-
provise over complicated timing and harmonic structures
therefore requires a high level of expertise (Limb and
Braun, 2008; Pinho et al., 2014). These elements make
music improvisation an ideal setting for the study of creative
behavior that unfolds in real time. Previous research has sug-
gested that expert improvisation relies partly on learned
mechanisms for response selection without conscious medi-
ation (Limb and Braun, 2008; Liu et al., 2012). Similar to ex-
pertise in other domains, conscious mediation may inhibit
performance (Beilock and Gonso, 2008; Beilock et al.,
2002; Ford et al., 2005). Specifically, a pattern of deactiva-
tion in the frontal areas has been suggested as central to ex-
pert improvisation (Limb and Braun, 2008; Liu et al.,
2012) and the generation phase in other creative tasks
(Liu et al., 2015). Our results align well with this research
as we identified a network where top–down control is at-
tenuated during improvisation. We discuss our results in
detail below.

Contrasting event-related time frequency responses, we
found significantly stronger alpha waves in the Play-
Prelearned condition compared to Play-Improvisation. This
appears to contradict previous research showing a link be-
tween stronger alpha waves and creative ideation (Fink and
Benedek, 2014; Fink et al., 2009b; Lustenberger et al.,
2015). However, this research was nearly exclusively done
with creative tasks that did not involve response selection
within a structured time constraint (Dietrich and Kanso,
2010). The one exception is a study in which stronger
alpha waves were seen as advanced dancers imagined a cre-
ative dance (Fink et al., 2009a). Here the divergent results
may simply be due to the imagery task. Indeed, we did not
see a significant difference in alpha power in our Imagine-
Prelearned Imagine-Improvised contrast. So why did we
see such strong alpha power in the Play-Prelearned condition
compared to Play-Improvisation? Stronger alpha waves have
been linked to inhibition in which alpha power reflects atten-
uation of areas that could interfere with the task at hand (Kli-
mesch et al., 2007). Here the Play-Prelearned task involved
playing one of four memorized melodies necessitating sup-
pression of the other three melodies. Similar to a visually
presented working memory task ( Jensen et al., 2002), this
alpha band power increase appeared with a slight delay

(Fig. 2). It is possible that after about 1 sec, the motor se-
quence for the correct melody has been selected and con-
firmed by initial auditory and proprioceptive feedback
(Baumann et al., 2007; Katahira et al., 2008). The alpha
band increase could therefore reflect a top–down suppres-
sion of input from visual and auditory areas that could in-
terfere with the melody performance already in progress.
However, during the improvisation task, no such melody
is specified and the participant may therefore incorporate
feedback throughout the eight-note sequence. Nonetheless,
this conclusion should be interpreted with caution as our
results directly contradict the commonly referenced asso-
ciation between alpha waves and creativity. Indeed this lit-
erature argues that alpha waves cause attenuated top–down
control, which facilitates creative ideation (Lustenberger
et al., 2015). This explanation is in line with our network
analysis in the current experiment, but does not appear to
align with the observed changes in alpha power between
conditions.

Beta oscillations are associated with alertness, active task
engagement, and motor behavior (Neuper and Pfurtscheller,
2001). Previous studies showed beta waves are more syn-
chronous during general consciousness (Teplan, 2002; Wil-
liam and Harry, 1985) and may be a useful measure of
appropriate cognitive and emotional processes (Ray and
Cole, 1985). Furthermore, beta activity was widely recog-
nized to be linked with motor behavior and response inhibi-
tion, top–down signaling associated with selective attention
(Gross et al., 2005), working memory (Tallon-Baudry
et al., 2001), perception (Donner et al., 2007), or sensorimo-
tor integration (Brovelli et al., 2004; Brown and Marsden,
2001; Witham and Baker, 2007). Considering its wide in-
volvement, beta power increase during the prelearned con-
dition may indicate an improvement in cerebral integrative
and motor functions, further supporting the motor idling hy-
pothesis (Pfurtscheller et al., 1996). As a beta frequency
band is related to movement, we assumed that the frontal
and parietal areas be associated with planning and execu-
tion of motor movements. Further research, in detail, will
help explore the functional significance of beta activity in
musical creativity.

Using EEG source localization, we identified a network con-
sisting of the L SFG, SMA, L IPL, right dorsolateral prefrontal
cortex (R dlPFC), and R STG. The SMA, including in particu-
lar the pre-SMA, has been implicated in several fMRI studies
of musical improvisation (Beaty, 2015). The SMA is responsi-
ble for planning motor movements as evidenced by the readi-
ness potential, which is present before the related movement
is initiated (Cunnington et al., 2003). The area has specifically
been implicated in internally selected actions designed to pro-
duce an effect on the external environment (Jenkins et al.,
1994; Mueller et al., 2007). In addition to tasks that involve
motor action, the area has been implicated in motor imagery
(Cunnington et al., 2005) and is activated by musical recogni-
tion tasks that may involve covert vocalization (Halpern and
Zatorre, 1999; Halpern et al., 2004). In a study of anticipatory
musical imagery during silence just before a known melody,
Leaver et al. (2009) found strong activations of premotor
areas as well as rostral prefrontal cortex. Specifically in the cur-
rent task, the SMA is probably involved in continuous monitor-
ing of current and planned motor movements. Interestingly,
new research suggests this monitoring function of the SMA
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is stronger during spontaneous creation of a musically ambig-
uous emotional output, while a highly practiced overlearned
output requires less monitoring (McPherson et al., 2016).
Since participants in the current study included participants
who were musicians but not necessarily pianists and not
advanced improvisers, it is likely that our task mirrored
more closely the ambiguous condition in McPherson et al.
(2016). In other words, since the majority of the current par-
ticipants were not pianists, the necessary movements were
not overlearned and therefore required more engagement
by the SMA.

The L IPL is part of the parietal association area and is
commonly seen in fMRI studies involving musical improvi-
sation (Beaty, 2015). Specifically, the area is probably in-
volved in the interpretation of perceived somatosensory
proprioceptive information from the contralateral hand
used during the task. In addition, the area may also be in-
volved in perception of auditory output. The IPL is likely in-
volved in a feedback loop that also includes the R STG and is
most likely related to perception of incoming auditory sig-
nals as participants depressed piano keys. Even when imag-
ining music, activation is commonly observed in the auditory
cortex within the STG (Meister et al., 2004; Zatorre et al.,
1996). The right lateralization is commonly seen in pitch per-
ception as opposed to left lateralization seen for speech input
(Zatorre et al., 2007). In addition, the R STG has been linked
to the storage of familiar melodies (Peretz et al., 2009).

Both frontal areas identified through source localization are
likely involved in cognitive control in general (Hutcherson
et al., 2012) and music improvisation tasks specifically
(Limb and Braun, 2008; McPherson et al., 2016). This
would include online evaluation of behaviors compared to
overall goals both in nonmusic (Gerlach et al., 2011) and mu-
sical improvisation tasks (de Manzano and Ullen, 2012b). The
R dlPFC in a network also including the SMA and the IPL
may contain a working memory representation of the notes
available for improvisation (Koelsch et al., 2009). Impor-
tantly, the same size pitch set was used in both the pre-
learned and improvised conditions. It is therefore likely
that the changes observed in functional connectivity were
due to the way the pitches were used. Furthermore, the
size of the pitch sets during improvisation appears to have
no influence on brain activity (de Manzano and Ullen,
2012b). The specific activity of the dlPFC in musical impro-
visation tasks appears to be modulated by whether or not
improvisers were restricted to a defined pitch set during im-
provisation (Pinho et al., 2015).

The current research identified of a causal link from the L
SFG to the SMA to the L IPL and back to the L SFG. The
GC values were significantly higher combining all identified
paths during the Play-Prelearned than Play-Improvisation
(Fig. 5), specifically in the path going from L SFG to the
SMA to the L IPL and back to the L SFG (Fig. 6A). This aligns
well with previous research in which activation of frontal areas
(Limb and Braun, 2008) was attenuated during improvisation.
This was explained by the idea that top–down control may in-
hibit a creative process driven by bottom–up processes. How-
ever, other studies of musical improvisation saw conflicting
results (Bengtsson et al., 2007; de Manzano and Ullen,
2012b). The only other EEG study to date that has compared
networks between improvised and prelearned conditions also
found increased connectivity during improvisation; however,

this study was not done in a controlled experimental setting
(Wan et al., 2014). This discrepancy has recently been inves-
tigated in two studies where two types of improvisations
were compared (McPherson et al., 2016; Pinho et al.,
2015). In the current study, we wanted to return to a contrast
that more specifically addressed the question of creative
versus prelearned actions using the same pitch set for
both conditions. The decrease of network activity in the
Play-Improvisation condition supports the earlier work
and the idea that spontaneous music creation is supported
by bottom–up processes.

The contribution of the three areas in which significant de-
creases in GC values are seen could be interpreted as follows.
During the initiation of a trial in which subjects are asked to
play a memorized melody, they likely retrieve the melody
from long-term memory and then maintain it in working
memory. This process involves both frontal and motor
areas (Koelsch et al., 2009). As they play, the melody in
working memory is compared to the actual output involving
a network controlled by frontal areas. In a trial in which par-
ticipants are asked to play an improvisation using the same
pitch set, the frontal control is less important (Limb and
Braun, 2008). Although participants still perceive impro-
vised melodies, these melodies do not have to fit a given rep-
resentation in working memory.

One of the most intriguing findings in the current study re-
late to the correlations between GC values and the melodic
complexity behavioral measure. The participants who played
more varied improvisations appear to use less cognitive con-
trol as evidenced by significantly smaller GC values from
SFG to SMA and from IPL back to SFG (Fig. 7). Since the
coherence values show the opposite trend, it appears the
causal influence is simply reversed. In other words, the infor-
mation is coming from the SMA and going to the SFG in par-
ticipants who play more varied improvisations. This could be
because those participants rely on more bottom–up pro-
cesses. These processes could be guided by learned musical
rules and patterns for melody creation ( Johnson-Laird, 2002;
Norgaard, 2014).

We hypothesized that we would find similar results in the
imagine conditions, which turned out not to be true. A com-
parison of overall integrated GC values for Imagine-
Prelearned and Imagine-Improvise did not reveal a signifi-
cant difference. There GC for connectivity from L SFG to
R dlPFC was significantly higher in the imagine improvisa-
tion condition compared to the prelearned. This difference
may simply be due to higher cognitive demand when imag-
ining an improvised melody.

In the experimental questionnaire template, we did not ask
the participants about their years of improvisation experi-
ence. Therefore, our manuscript lacked the information re-
garding improvisation experience of the participants.

In conclusion, the network identified here reveals the un-
derpinnings of creative performance in a real-time musical
improvisation task and involves regions that may function
outside of the top–down control networks usually seen in
traditional decision-making tasks (Dalley et al., 2011; Dos-
enbach et al., 2008; Gold and Shadlen, 2007; Heekeren
et al., 2008). This is likely because individual notes in the
current improvisation task were not chosen deliberately
and align with the general idea of attenuation in top–down
control during creative tasks (Limb and Braun, 2008;
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López-González and Limb, 2012). Due to the time constraints,
there simply was not time for participants to contemplate
each note choice. Therefore, the network underpinning this
task probably relies on bottom–up processes to control
note choices using aesthetic rules that our advanced musi-
cian participants have internalized during a lifetime of
music engagement.
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