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A small change in neuronal network 
topology can induce explosive 
synchronization transition and 
activity propagation in the entire 
network
Zhenhua Wang1, Changhai Tian1, Mukesh Dhamala2 & Zonghua Liu1

We here study explosive synchronization transitions and network activity propagation in networks of 
coupled neurons to provide a new understanding of the relationship between network topology and 
explosive dynamical transitions as in epileptic seizures and their propagations in the brain. We model 
local network motifs and configurations of coupled neurons and analyze the activity propagations 
between a group of active neurons to their inactive neuron neighbors in a variety of network 
configurations. We find that neuronal activity propagation is limited to local regions when network is 
highly clustered with modular structures as in the normal brain networks. When the network cluster 
structure is slightly changed, the activity propagates to the entire network, which is reminiscent of 
epileptic seizure propagation in the brain. Finally, we analyze intracranial electroencephalography 
(IEEG) recordings of a seizure episode from a epilepsy patient and uncover that explosive 
synchronization-like transition occurs around the clinically defined onset of seizure. These findings may 
provide a possible mechanism for the recurrence of epileptic seizures, which are known to be the results 
of aberrant neuronal network structure and/or function in the brain.

Explosive synchronization (ES) has received growing attention in network science since the discovery of its link 
with cascading failures of power grids1–10. This finding is important as it reveals a first-order synchronization 
transition in a network of phase oscillators where a second-order synchronization transition is predicted by the 
master stability function approach11. In their seminal work, Gomez and colleagues1 showed that ES occurs when 
(I) there is a positive correlation between the natural frequency of each oscillator and its degree and (II) the 
network is scale-free. Recently, a new framework for ES was suggested: ES occurs when the coupling strengths 
become proportional to the natural frequencies of coupled oscillators4. Furthermore, it was concluded that the 
condition for ES is in fact the suppression rule7 and has been confirmed in a system with local adaptation control8. 
Despite these successes in associating abrupt dynamical behaviors to a mechanism, to our knowledge, there is not 
much work to address the abrupt transition to abnormal synchronization at the onset of epileptic seizures12, 13. 
This problem is not trivial as the abnormal synchronization may happen due to explosive spreading of an initial 
neuronal firing at the onset zone, whereas ES is due to an adiabatic increasing of coupling. Here, by modeling 
neurons and their networks, we aim to provide new insights into the interplay of the network structure and its 
network dynamics.

Recent work utilizing dynamical systems theory and network science approaches has increased our knowl-
edge on brain functions and dysfunctions14–16. It is well accepted that synchronization of neurons play a major 
role in carrying out and sustaining the normal brain functions, such as perception, thoughts and motor behav-
iors17. For example, large-scale cortical synchronization18, 19 and synfire propagation occur in cognitive processes 
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and the signal is carried by a wave of synchronous neuronal activity within a subset of network neurons20–23. 
Abnormal synchronization of neurons, on the other hand, is also the hallmarks of certain brain disorders, such 
as Parkinsons disease and epilepsy. The network science approaches have lead to uncovering the nature of brain 
network topology and its functions. The brain has been found to have a small-world network property, which is 
necessary for optimal communication of cortical neurons24–28. Another property is the modular structure with 
high clustering coefficient, which undertakes the functions in different brain areas such as the visual, olfactory 
and auditory senses etc11, 14.

Motivated by these findings on both ES and brain network topology, here we aim to provide useful insights 
into abrupt behaviors of neuronal synchronization as in epileptic seizures from normal states by studying how 
the interactions of brain neurons and network structure can facilitate explosive collective behaviors of coupled 
neurons. ES can be induced by an adiabatic increase of coupling strength. However, there is no evidence to show 
that a large synaptic strength change is required for the transition of the normal brain state to epileptic seizures12. 
In fact, after a brief period of recurrent epileptic seizures, the brain always returns to the normal functioning and 
spends most time in normal state. With this line of reasoning, we hypothesize that a small change in network 
topology is enough to set the transition to explosive synchronization of neurons and seizure-like propagation 
of neuronal activity. We examine action potential firing spreading over the various modeled networks under a 
slight change from critical network topology. Here, we also examine experimental data of epileptic seizures for 
explosive synchronization-like transitions and propagation.

Results
ES in neuronal networks.  Overwhelming experimental evidence points to the idea that the brain and its 
functions can be best understood from a network perspective. The brain consists of a network of highly intercon-
nected populations of neurons, coordinated functions of which in local small-scale regions and/or extended large-
scale regions underlie our thoughts and actions. Brain networks can be derived from anatomical or physiological 
observations, resulting in structural or functional connectivity respectively. Structural connectivity (or network) 
describes anatomical connections (white matter projections) linking a set of neural elements. Functional connec-
tivity is generally derived from time series observations and describes patterns of statistical dependence among 
neural elements. Many dynamical behaviors are the results of the interplay between the structure and function 
of the networks11. The brain has preferentially formed network clusters with modular network structure to sup-
port various brain functions29, 30. Here, we model networks of neurons to understand the interplay between the 
network cluster structure and normal functions and transitions to sudden or uncontrollable behaviors, like the 
epileptic seizures, and their propagation in the entire network. We describe below the details of key ingredients of 
our study: network topology and neuronal firing activity.

Network topology.  We first construct a random Erdös-Rényi (ER) network31 with size N = 1000 and aver-
age degree 〈k〉 = 8 and then gradually increase its clustering coefficient C by the Kim’s rewiring approach32 (see 
Methods for details). We find that a clear clustering will show up when C is increased to 0.5 and then the network 
will gradually become a modular topology with the further increase of C to C ≈ 0.75. Figures 2–6 in SM show 
the detailed network topologies for C = 0.5, 0.6, 0.7, 0.72 and 0.75, respectively, where the degree of modularity 
increases with C.

Neuronal firing activity.  We set an initial firing at an arbitrary node-i by choosing its initial condition as 
u(i) = 0.2 and v(i) = 0 and let other nodes be in excitable state by choosing their initial conditions as u(j) = v(j) = 0 
with j ≠ i, i.e. only one initial firing node-i. Then, we let every node in the network be chosen as the initial firing 
node for one time. We pay attention to how this initial firing spreads to other parts of the network through the 
coupling links among the neurons.

After building the models of networks of neurons, we now discuss neuronal firing propagation and mainly 
pay attention to how the network topology influences its dynamics through varying the clustering coefficient. 
For each realization of an initial firing, we let f represent the fraction of ever being fired nodes among the total N 
nodes. Thus, f will be different for different realizations. We let p denote the histogram of f in an interval of 0.01 
for the N times realizations. Figure 1(a,b) show the results for C = 0.5 and 0.75, respectively. From Fig. 1(a) we see 
that there are only two parts with one with f ≤ 0.01 and another with f ≈ 1, indicating that the initial firing is either 
spread out globally or cannot spread out. From Fig. 1(b) we see that there are many different f but none of them 
with f ≈ 1, indicating that the firing spreadings are always limited in different local areas of the network for differ-
ent realizations. Comparing Fig. 1(a) with (b), we see that only Fig. 1(b) is of the feature of normal brain network 
with diversity of patterns and no global synchronization, i.e. no abnormal synchronization.

To get more information on how the clustering coefficient C influences the firing spreading, Fig. 1(c) shows 
a phase diagram of the dependence of p on the parameters f and C. It is interesting to notice that the dynamical 
behaviors can be classified into three regions. In the first region with C < 0.13, p is nonzero only for a small f, 
indicating that the firing cannot be spread out in all the N realizations. In the second region with 0.13 < C < 0.73, 
p is nonzero only for the two ends of f, i.e. f being either close to zero or close to unity, indicating that the firing is 
similar to the case of Fig. 1(a). While in the third region with 0.73 < C < 0.77, p is nonzero for all the range of f, 
indicating that the firing is similar to the case of Fig. 1(b). In sum, we have the diversity of firing patterns only for 
a larger C but not for a middle or small C, implying that only the network with larger C can be used as a candidate 
to simulate the dynamics of brain with the modular structure.

Except how large fraction of the network can be reached by an initial firing, another important question is 
how fast the spreading is. Figure 2(a) shows the evolution of the fraction f of active neurons in a linear-log plot 
where the four lines denote the cases of C = 0.5, 0.6, 0.7 and 0.75, respectively. It is easy to see that the three cases 
of C = 0.5, 0.6 and 0.7 can reach f = 1 but the case of C = 0.7 is much slower than the other two cases. To see it 
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Figure 1.  (a,b) p vs f where f represents the fraction of nodes ever being fired in one realization and p denotes 
the histogram of f in an interval of 0.01 when every node in the network has been chosen as the source node 
for one time. (a,b) Denote the cases of C = 0.5 and 0.75, respectively. (c,d) The distribution of p in the phase 
diagram of network states. (c) Denotes the dependence of p on the two parameters C and f for 〈k〉 = 8; (d) 
Denotes the dependence of p on the two parameters k and f for C = 0.7.

Figure 2.  (a) Represents the typical cases for a chosen source node to spread its firing to the entire network 
where the four lines denote the situations of C = 0.5, 0.6, 0.7 and 0.75, respectively, and the inset is its log-log 
plot. (b) Δ versus N where the lines represent the cases of C = 0.5, 0.6, 0.7, 0.74 and 0.76, respectively. (c) The 
black line represents the case of C = 0.75 where the firing at chosen source node cannot be spread to the entire 
network. The red and blue lines represent the cases of rewiring the network with C = 0.75 for rt = 40 and 300, 
respectively, where the firing at chosen source node can be now spread to the entire network and the rewired 
networks have C ≈ 0.72 and 0.5, respectively. (d) 〈u〉m and p1 vs rt, where p1 represents the possibility for the 
firings at chosen source nodes to be spread to the entire network when every node in the network has been 
chosen as the source node for one time.
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more clearly, we make a log-log plot in the inset. The two lines with C = 0.5 and 0.6 are approximately straight 
lines in the linear-log plot while the lines with C = 0.7 is an approximate straight line in the log-log plot, indicating 
that f increases with t in exponential for the cases of C = 0.5 and 0.6 and in a power-law for the case of C = 0.7. 
Generally, the exponential increase means a cascading spreading, which is closely related to ES1, 7, 8. While the 
power-law increase means that it may be fast increase in a local community and then slowly spread to other com-
munities. For the case of C = 0.75, we see that f finally becomes stable and is smaller than 0.5, indicating that the 
firing spreading will be limited in local areas.

To provide a more rigorous definition of ES in Fig. 2(a), we recall that ES is in fact a process of explosive per-
colation (EP) in dynamical phase space7. An efficient approach to characterize the transition of EP is by two 
times33–35, the time t0 where the maximum cluster size equals N  and the time t1 where the maximum cluster size 
equals N/2. Let Δ = t1 − t0. It is found that Δ is proportional to Nβ, where β will be approximately unity for a 
second-order transition and smaller than unity for a first-order EP. That is, the value of β for the first-order tran-
sition of EP is much smaller than that of the second-order transition33–35. We here borrow this idea to characterize 
the firing spreading in Fig. 2(a). We keep t0 as the time for =f N N/  and replace t1 as the time for f = 0.3N/N. 
Figure 2(b) shows the results for C = 0.5, 0.6, 0.7, 0.74 and 0.76, respectively. We see that the slopes of the lines 
with C = 0.74 and 0.76 are much larger than that of the lines with C = 0.5, 0.6 and 0.7, confirming that their cor-
responding transitions are fundamentally different, i.e. the first-order and second-order transitions, 
respectively.

We now confirm that the network of C = 0.75 has the features of normal brain network. Then, an interesting 
question is how can we make this network show the firing ES? To figure out the answer, we randomly rewire a 
small fraction of its links without the condition of increasing network’s clustering coefficient, in contrast to the 
Kim’s rewiring approach32. We find that this randomly rewiring does not influence its modular structure very 
much, but results in more links between the communities and thus make the initial firing easily spread to the 
entire network. The red and blue lines in Fig. 2(c) show the results for the rewiring times rt = 40 and 300, respec-
tively. It is easy to see that both of them can reach f = 1, i.e. global spreading. From Fig. 2(c) we also notice that 
only the line with rewiring 300 times is an approximate straight line, i.e. exponential, indicating its equivalence to 
the cases of C = 0.5 and 0.6 in Fig. 2(a). Figures 7 and 8 in SM show the network topologies of rt = 40 and 300, 
respectively. We have to point out that it is also possible to have f < 1 for the cases of rt = 40 and 300 in other real-
izations. To see the relationship between the global spreading and rewiring times rt more clear, we let p1 represent 
the possibility of f = 1 when every node in the network has been chosen as the initial firing for one time. The 
“circles” in Fig. 2(d) shows the dependence of p1 on rt. It is easy to see that p1 has a big jumping at a critical point 

≈r 25t
c  where the clustering coefficient is slightly reduced to C ≈ 0.72, indicating that a slight change of network 

results in a big change in firing propagation.
Furthermore, we have calculated the evolution of the average = ∑ =u u i( )

N i
N1

1 . The active (firing) nodes at 
time t will not be a large fraction of the total nodes if 〈u〉 is a small quantity, but a large fraction if 〈u〉 is large. 
Especially, there will be a strong firing synchronization if 〈u〉 has a regular oscillatory behavior, like the spikes of 
a single neuron. Figure 3(a–c) represent the evolution of 〈u〉 for the cases of rt = 0, 40 and 300, respectively, from 
the network with C = 0.75. From Fig. 3(a) we see that 〈u〉 becomes zero after t = 150, indicating that the firings are 
restricted in local areas and finally dead, see Fig. 9(b) in SM for details. From Fig. 3(b) we see that the oscillation 
death in Fig. 3(a) is replaced by a self-sustained oscillation. Especially, we observe a strong or abnormal synchro-
nization in Fig. 3(c) where most of the neurons have in step firing and refractory, see Fig. 9(d) in SM for details. 
We should point that the neurons cannot be all synchronized at the same time as that will make them go to the the 
refractory at the same time and then result in death.

Figure 3.  (a) How a stimulating firing at the network of C = 0.75 spreads to other nodes where 〈u〉 is the 
average on all the N nodes. (b,c) Represent the cases of rewiring the network with C = 0.75 for rt = 40 and 300, 
respectively, where the rewired network has C ≈ 0.72 and 0.5, respectively.
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We notice from Fig. 3(b,c) that the average 〈u〉 is an oscillation with multiple peaks and the heights of peaks 
are related to the firing synchronization of the network. Thus, we introduce 〈u〉m to measure the degree of firing 
synchronization, with 〈u〉m being the average of the heights of peaks. A large 〈u〉m represents the case of strong 
firing synchronization and global firing spreading. The “squares” in Fig. 2(d) shows the dependence of 〈u〉m on rt. 
We see that 〈u〉m can be separated into two parts, i.e. smaller 〈u〉m for rt < 250 and larger 〈u〉m for rt > 290, indicat-
ing that the case with rt > 290 is of both exponential fast spreading (see Fig. 2(c)) and abnormal synchronization 
(see Fig. 3(c)).

It is maybe also interesting to investigate how the average degree influences the firing spreading, as this type 
of networks can undergo phase transitions in their dynamics at some critical average connectivity36. For this pur-
pose, we have fixed the clustering coefficient at C = 0.7 (smaller than the critical C ≈ 0.73 for 〈k〉 = 8 in Fig. 1(c)) 
and then change the average degree. We find that there is a critical 〈kc〉 ≈ 5.0 to separate the first-order and 
second-order propagation. Figure 1(d) shows the result where there is a diversity of firing patterns for k < 〈kc〉 and 
only two or a few patterns for k > 〈kc〉. Comparing Fig. 1(d) with Fig. 1(c), we see that they are similar, indicating 
that the average degree has the similar effect as the clustering coefficient.

Explosive synchronization-like transitions to epileptic seizures in an experimental data.  To 
connect the above theoretical results of explosive synchronization-transitions, we re-analyzed previously reported 
de-identified IEEG data during an epileptic seizure13 and looked at the nature of the seizure onset (Fig. 4). 
Figure 4(a) shows multichannel IEEG recordings with a seizure event clinically determined to be at around 
9.0 seconds. The IEEG recordings were done with combinations of depth and subdural electrodes at a sampling 
rate of 500 Hz from a patient undergoing clinical evaluation for epilepsy surgery at Emory University Hospital 
in Atlanta. This study was approved by the local Institutional Review Board. Typically, most of the patients with 
medication resistant epilepsy undergo IEEG recordings and surgery for the treatment.

In Fig. 4(a), we show the 118 electrode recordings of IEEG time series with an epileptic seizure starting at 
around 9 sec. It is easy to see that the amplitudes of time series are small when t < 9 and then they rapidly increase 
to larger values between 9 < t < 9.5, marking the onset of seizure. This kind of rapidly increasing closely resembles 
with the process of explosive synchronization (ES)1, 7, 8. To assess the nature of the seizure onset, here, we compute 
the overall phase coherence across all electrode recordings (Fig. 4(b)) and cross-correlation based and pairwise 
phase-difference (Rij) based measures of fractions fs(t) of recording pairs that are significantly above the baseline 
level or threshold R0 = 0.4 (Fig. 4(c)). See Methods for details. We find that most elements of the matrix Rij are of 
small values before the onset of seizure and then they quickly increase to close to unity at the onset of seizure, 
indicating the appearance of abnormal synchronization. Figure 10 in SI show the results at different times. To 
measure how fast the abnormal synchronization is developed from the local synchronization, we set a threshold 
R0 = 0.4 and calculate how many pairs of Rij are larger than R0 at time t. Let fs(t) represent the fraction of Rij ≥ R0 
in the possible N(N − 1) pairs, see Methods for details. Figure 4(b,c) shows the evolution of phase coherence and 
fs(t) with t. It is easy to see that fs(t) has an abrupt behavior around the onset of epileptic seizure with t ≈ 9.5, mim-
icking the main feature of ES. The abrupt transitions in Fig. 4(b,c) are similar to Fig. 2(d).

Network topology and neuronal activity spreading between clusters of interacting neu-
rons.  To understand the mechanism of the influence of network topology revealed in Figs 1, 2 and 3, first, we 
have to understand how a firing activity spreads to its neighboring nodes. For this purpose, we consider different 
connection patterns and then figure out the rules for successful spreading. The insets of Fig. 5(a–c) show three 

Figure 4.  Shows (a) 118 channel time series of IEEG recordings from an epilepsy patient with an epileptic 
seizure event occurring at around 9 seconds, (b) Kuramoto phase coherence over time, and (c) cross-correlation 
based (blue) and phase-difference-based (green) fs(t) versus time t by setting the threshold R0 = 0.4, where fs(t) 
represents the fraction of Rij ≥ R0 in the possible N × N pairs.
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typical patterns of connection where the “blue” node represents the source node with a firing from the initial 
condition of u(0) = 0.2 and v(0) = 0 and the “red” node denotes the target or acceptor with the initial condition 
of u(0) = v(0) = 0. We want to see if there is a successful transmission of firing activity from the source neuron to 
the acceptor neuron. Our numerical simulations show that a firing activity is induced at the acceptor in Fig. 5(a) 
but not in Fig. 5(b,c), where the blue and red curves represent the evolution of u(t) at the source and acceptor 
nodes, respectively. Comparing Fig. 5(a) with (b) we see that their source nodes have the same degree k0 = 1 but 
their acceptors have different degrees, i.e. k1 = 6 in (a) and k1 = 12 in (b), indicating that a smaller k1 supports the 
firing activity spreading while a larger k1 does not. While comparing Fig. 5(a) with (c), we see that their acceptors 
have the same degree k1 = 6 but their source nodes have different degrees, i.e. k0 = 1 in (a) and k0 = 7 in (c), indi-
cating that a smaller k0 supports the firing spreading activity while a larger k0 does not. Thus, both k0 and k1 are 
the key elements to the firing spreading activity. Further, we also notice that k0 and k1 have different functions in 
preventing the firing spreading activity. A larger k0 reduces the amplitude of the initial firing activity (see the blue 
curve in Fig. 5(c)) and thus makes the firing spreading to be more difficult, while a larger k1 makes the acceptor 
neurons difficult to firing activity.

Moreover, Fig. 5(c) tells us an important information that its initial firing is different from that in Fig. 5(a,b), 
indicating that the initial firing can be also influenced by its neighbors. This difference asks us a key question: 
what are the right initial conditions for an arbitrary node in the network to be induced for action potential firing? 
Its answer is related not only to the initial firing but also to the spreading of activity. To figure out this answer, we 
turn to the neuron’s dynamics Eq. (2). To stimulate action potential firing of a node-i, we choose initial conditions 
of u(i) ≥ u0 and v(i) ≥ v0 so that dui/dt > 0 and dvi/dt > 0 in Eq. (2). For simplicity, we set v(i) = v0 = 0 as an exam-
ple. For a single neuron, dui/dt > 0 of Eq. (2) gives u0 ≥ b/a ≈ 0.083. For a node-i in the network with ki, dui/dt > 0 
of Eq. (2) gives ε− − + <u u b a c k( 1)( / ) 0i i i . Taking ki = 〈k〉 = 8 as an example, we obtain u0 ≈ 0.147. In our 
numerical simulations, we use the initial conditions u(i) = 0.2 > u0 and v(i) = 0 for the source node so that an 
initial firing can be successfully generated.

Figure 5(d) shows the dependence of firing spreading on k0 and k1 where the line with “squares” is the bound-
ary, i.e. a firing at the acceptor can be induced in the region below the boundary but not in the region above the 
boundary. A slight complicated connection patterns are the cases where two source nodes connect one acceptor 
or one source node connects two acceptors. For the former, Fig. 6(a) shows a typical example where both the 
“blue” and “green” nodes are the source nodes with firings and they work together to drive the “red” acceptor to 
generate action potential firing. We notice that the acceptor’s degree k1 = 12 is much larger than the boundary 
k1 < 7 in Fig. 5(d), implying that two source nodes can extend boundary k1 to a larger value. Figure 6(b) shows a 
different case where there is only one source node (the “blue” one), but it induces a firing at the “green” node first 
and then they work together to induce a firing at the “red” node. We notice from Fig. 6(b) that there is an overlap 
between the blue and green firing curves, which is equivalent to the function of two source nodes in Fig. 6(a) and 
thus can induce a firing at the “red” node. For the latter, Fig. 6(c,d) show two examples where each acceptor has 
the degree k1 = 7 and there is a connection between the two acceptors in Fig. 6(c) but no connection in Fig. 6(d). 

Figure 5.  (a–c) How a stimulating firing (blue) induces a firing (red) at the acceptor for different configurations 
where the inset represents the configuration of the two connected neurons with the “blue” node being the 
source and the “red” node being the acceptor. The source and acceptor nodes have their degrees k0 = 1 and 
k1 = 6 in (a), respectively, k0 = 1 and k1 = 12 in (b), respectively, and k0 = 7 and k1 = 6 in (c), respectively. (d) 
The line with “squares” represents the boundary where the firing at the “red” node can be induced below the 
boundary but not above the boundary.
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Notice that k1 = 7 is the boundary degree for k0 = 1 in Fig. 5(d). Thus, the connection between the two acceptors 
in Fig. 6(c) influences the boundary condition, indicating that the connection has produced a positive effect on 
the firing spreading.

Based on these results, we can now explain the observations in Fig. 1(c). When C < 0.13, the network is ran-
dom homogeneous with no modularity. Both its k0 and k1 are around 8, which is located in the region of no firing 
in Fig. 5(d) and thus the initial firing cannot spread out. When 0.13 < C < 0.73, the network becomes random and 
homogeneous with modular structure. In each module or community, the initial firing node is likely to display 
similar activity as in Fig. 6(b,c), which results in the global firing spreading. When 0.73 < C < 0.77, the network 
is highly modular with only one or a few connections between different communities, see Fig. 6 in SM. In this 
sense, for a neuron network, its firing spreading in a community is similar to the cases of 0.13 < C < 0.73 while the 
firing spreading between communities is similar to the cases of C < 0.13, which results in the diversity patterns 
but with no global spreading in the cases of 0.73 < C < 0.77. In sum, these results tell us that in a real neuronal 
network, the induced firing is not only related to the initial firing node but also related to the activity from the 
surrounding neurons.

Discussion
Here, we use a simple model of networks of neurons (2) and show that the abrupt dynamical behaviors of the 
networks and network activity resemble what really happens in real brain during a course of an epileptic seizure 
event. The normal brain network is highly clustered with modular structure and has small world topology for 
optimal communication as many recent studies suggest. Here, we show that these features in (2) occur when C is 
around 0.75, see Fig. 6 in SI. Figures 1 and 2 also tell us that the highly clustered topology is necessary for the 
stability of local sustained activities. Another key feature of brain network is its self-organization criticality 
(SOC)37, 38, implying that the brain network works at its critical point. This feature can be confirmed in Fig. 2(d) 
by the narrow range of <r rt t

c, i.e. before the jumping of p1. Once >r rt t
c, firing propagation will be substantially 

different, indicating that a small change of network results in a big change of system’s behavior, i.e. the marking of 
SOC.

A key result from (2) is that firing ES can be induced by slightly rewiring the network links, which can be 
considered as an alternative way to the coupling induced ES1, 7, 8. There is a common point between firing ES and 
the coupling induced ES. For the former, high clustering guarantees firing ES; while for the latter, the suppression 
rule prevents the appearance of ES7, i.e. clustering corresponding to suppression rule. This finding also tells us 
that the brain network is more complicated than what is generally thought of. Considering that communication 
between two neighboring neurons is implemented through their firing activities and interactions, the spreading 
of synchronization can be thought of equivalent to the spreading of firings, i.e. the spreading of an initial firing 
from a focal region to the entire network. In this sense, we may assume that the appearance of firing ES in our 
neural network corresponds to the onset of epileptic seizure in brain network.

Figure 6.  (a) Two source nodes (the “blue” and “green” nodes) drive a common acceptor (the “red” node) 
where the acceptor has degree k1 = 12. The blue and green lines represent the two stimulating firings while the 
red line denotes the induced firing. To distinguish the two stimulating firings, we let their initial conditions 
as u(0) = 0.2, v(0) = 0 (for the “blue” node) and u(0) = 0.18, v(0) = 0 (for the “green” node), respectively. (b) 
A source node (the “blue” node) drives a “green” node first and then they work together to drive a common 
acceptor (the “red” node) where the acceptor has degree k1 = 12. (c,d) A source node (the “blue” node) drives 
two acceptors (the “red” and “green” nodes) where each acceptor has degree k1 = 7. The two acceptors are 
connected in (c) but separated in (d).

http://6
http://6
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We have to point that the x axis in Fig. 4(a–c) is neither coupling strength nor rewiring times, but time. The 
coupling strengths (i.e. synaptic strengths) between neurons are not directly accessible, therefore there is no direct 
link experimentally established between coupling strength and epileptic seizure events. Traditionally, a big change 
in dynamics needs a big external force. Using this idea to brain, the onset of epileptic seizure will need a big inter-
action, which will result in unrecoverable damages and thus cannot be recovered in a short time. This is definitely 
not true as patients generally return to a normal state after a brief period of a seizure. This notion is consistent 
with what we found from our simulation: the firing ES can be induced by a small change in network structure and 
thus the system can get back to the previous normal state.

The next key question is: how an acceptor neuron-j with u(j) = v(j) = 0 can be induced to firing an action 
potential? To figure out the answer, we consider a specific case with a condition with one of its neighbors, node-i′, 
is in firing mode. The condition duj/dt > 0 in Eq. (2) gives

∑ε− − + − + − >
≠ ′

′u u u b a c u u A u u(1 )( / ) [( ) ( )] 0
(1)j j j i j

i i
ij i j

When uj is small and ki = 1, the first term of Eq. (1) can be approximately taken as uj (uj − b/a) and the second 
term of Eq. (1) can be approximately taken as ε ε≈′c u ci . Eq. (1) becomes ε− + >u bu a c/ 0j j

2 , which is always 
true as ε− <b a c( / ) 4 02  for the chosen parameters in Eq. (2). Thus, uj will increase with time. After uj > b/a, a 
firing will be induced. While for the case of ki > 1, the term ∑ −≠ ′A u u( )i i ij i j  will be negative when uj becomes 
positive, which make the second term of Eq. (1) be less than cε such as becoming δcε with δ < 1. In this sense, for 
a larger ki, it is possible for (b/a)2 − 4δcε = 0 and then uj will stop to increase, implying no firing will be induced. 
More complicated cases can be similarly analyzed. In sum, active neighbors take a positive role in firing spreading 
while the inactive neighbors take a negative role. Therefore, a successful spreading from node-i to node-j depends 
on both the number of firing neighbors and the number of inactive neighbors.

In conclusion, we have presented a model of neuronal networks to study abrupt seizure-like propagation 
induced as a result of the interplay of network topology and neuronal activity in the neighborhood. Through this 
model, we show that firing spreading is limited in one or a few local regions when the network is highly clustered 
with modular structures as in the normal brain function. However, this local behavior is fragile and can easily 
induce a firing ES in a slightly rewired network. This behavior is similar to the onset of epileptic seizure which can 
originate in a focally local region and then spreads to other regions of brain network. A correspondence between 
the firing of ES and the onset of seizure is shown by using real experimental data. These findings provide useful 
insights into the mechanism for the recurrence of epileptic seizures.

Methods
Neuron model.  Let each node on the constructed network represent an excitable neuron and the coupling 
be bidirectional. In this way, each neuron-i will be connected to its ki neighbors. In detail, we let each node be a 
modified version of a piecewise linearized FitzHugh-Nagumo model as follows39, 40

∑ε
= − −





−
+ 


 + −

= −

=

du
dt

u u u v b
a

c A u u

dv
dt

f u v

1 ( 1) ( )

( )
(2)

i
i i i

i

j

N

ij j i

i
i i

1

where Aij is the conjunction matrix with Aij = 1 if two neurons i and j are connected, and Aij = 0 otherwise. f(u) is 
chosen as the following function: f(ui) = 0 for ui < 1/3, = − . −f u u u( ) 1 6 75 ( 1)i i i

2 for 1/3 ≤ ui ≤ 1, and f(ui) = 1 
for ui > 1. ui and vi represent the fast and slow variables, respectively. ε is a small parameter which warrants a clear 
separation between the slow and fast time scales. The system parameters are kept throughout this paper as 
ε = 0.04, a = 0.84, b = 0.07, and c = 0.17 just for the sake that the local cell follows excitable dynamics.

Experimental IEEG data.  De-identified IEEG data from one epilepsy patient, previously published in ref. 13 
was re-analyzed in this current study. The data were recorded at a sampling rate of 500 Hz by using combination 
of depth, subdural grid and strip electrodes, a total of 118 electrodes. In this segment, the clinically defined onset 
of seizure occurred at around 9 sec (Fig. 4(a)). For further information about the data and patients, see refs 13, 41.

To measure the phase correlation between time series si and sj, we first extract their phases θi(t) and θj(t) by 
using the approach in ref. 42. We compute three quantities: Kuramoto’s phase coherence (Fig. 4(b)), fraction 
of phase-synchronized or cross-correlated oscillator pairs (Fig. 4(b,c)). The phase-difference base local order 
parameter

∫= θ θ

→∞

+ 
 − 

R
T

e dtlim 1 ,
(3)ij

T t

t T i t t( ) ( )i j

where T is the time window to measure the correlation. Rij will be in between 0 and 1 and a larger value of Rij 
represents a stronger phase synchronization.

To measure how fast the abnormal synchronization is developed from the local synchronization, we set a 
threshold R0 = 0.4 and calculate how many pairs of Rij are larger than R0 at time t. Letting fs(t) represent the frac-
tion of Rij ≥ R0 in the possible N(N − 1) pairs, we have
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∑∑=
−

−
= ≠

f t
N N

H R R( ) 1
( 1)

( )
(4)

s
i

N

j i
ij

1
0

where H(x) is the step function with H(x) = 1 if x ≥ 0 and H(x) = 0 otherwise. Figure 4(c) is calculated by Eq. (4).

Clustering coefficient.  The network is constructed as follows. We first construct a random ER network31 
with size N = 1000 and average degree 〈k〉 = 8. Its clustering coefficient can be calculated as follows31

∑=
−=

C
N

E
k k

1
( 1)/2 (5)i

N
i

i i1

where ki is the degree of node-i and Ei is the number of edges among the neighbors of node-i.

Kim’s rewiring approach.  Then, we change its clustering coefficient by the Kim’s rewiring approach32, 
which has the advantage that the degree of each node will remain unchanged when we change its clustering 
coefficient. The algorithm of the rewiring approach can be stated as follows: randomly choose two links, one 
connecting nodes A and B, and the other C and D. Each node changes its partner and the original links A–B and 
C–D are altered to A–D and B–C. The link exchange trial is accepted only when the new network configuration 
goes to a higher clustering coefficient.
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