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a b s t r a c t 

It is shown how the brain’s linear transfer function provides a means to systematically analyze brain connectivity and dynamics, and to infer connectivity, eigenmodes, 

and activity measures such as spectra, evoked responses, coherence, and causality, all of which are widely used in brain monitoring. In particular, the Wilson spectral 

factorization algorithm is outlined and used to efficiently obtain linear transfer functions from experimental two-point correlation functions. The algorithm is tested 

on a series of brain-like structures of increasing complexity which include time delays, asymmetry, two-dimensionality, and complex network connectivity. These 

tests are used to verify the algorithm is suitable for application to brain dynamics, specify sampling requirements for experimental time series, and to verify that 

its runtime is short enough to obtain accurate results for systems of similar size to current experiments. The results can equally well be applied to inference of the 

transfer function in complex linear systems other than brains. 
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. Introduction 

The relationships between brain activity and structure are of cen-

ral importance to understanding how the brain carries out its functions

nd to interrelating and predicting different kinds of experimental mea-

urements. Several important characteristics of this structure-function

elationship have been established. Firstly, mesoscale brain activity is

pproximately linear under normal conditions; experimental modalities

ike EEG and fMRI measure perturbations from mean levels of activity

nd are also approximately linear in these perturbations ( Nunez, 1995;

obinson, 2012; Robinson et al., 2016 ). This is notwithstanding the fact

hat the dynamics of neurons and their substructures are highly non-

inear because linearity with respect to perturbations arises via averag-

ng over large numbers of neurons ( Robinson et al., 2002; 1997 ). Sec-

ndly, it has been increasingly recognized that if activity is to be cor-

ectly related to structure, temporal delays must be included in order

o account for dynamics and causality, as a precursor to understand-

ng signal processing in the brain ( Babaie-Janvier and Robinson, 2018 ).

hirdly, mesoscale anatomical connectivity is approximately symmet-

ic, with connections between pairs of points in both directions, but

ith some asymmetry; e.g., in the cortex, sensorimotor areas tend to

roject more strongly to frontal areas than vice versa, indicating a flow

f signals during processing ( Henderson and Robinson, 2014; Markov

t al., 2012; Scannell et al., 1995 ). This work addresses the problem of

ow to systematically describe these characteristics of the brain and re-

ate them to existing analyses, and how to obtain these characteristics

rom data. 
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The transfer function of a system contains complete information

bout its linear properties, responses, and dynamics. This includes rela-

ionships to impulse responses, spectra, and correlations. In the case of

rain dynamics, it has been shown that the transfer function is closely re-

ated to brain connectivity, including time delays ( Friston et al., 2014;

ehta-Pandejee et al., 2017; Robinson, 2012; 2019; Robinson et al.,

014; 2016 ), and we note that linear coupling is widely used to model

he spatial interactions of locally nonlinear dynamics ( Breakspear et al.,

010 ). Additionally, the eigenfunctions of the transfer function are nat-

ral modes of the system dynamics and thus underlie all spatial pat-

erns of excitation in the cortex. Hence, the transfer function is well

uited to describing and analyzing structure-function relationships in the

rain. 

The transfer function is equivalent to the Green function, or prop-

gator, of the system ( Robinson, 2012; 2019 ) and is thus given by the

esponse 𝑇 ( 𝐫, 𝑡, 𝐫 0 , 𝑡 0 ) at position 𝐫 and time 𝑡, to a delta function input

t 𝐫 0 and 𝑡 0 . If the structure of the system is static, the value of 𝑡 0 is im-

aterial; however, direct measurement of 𝑇 would involve stimulating

t each point 𝐫 0 and measuring the response at all other points r and

ater times 𝑡 — a task of order 𝑀 

2 for an 𝑀-point discretization, with

he additional complication that it is difficult, or impossible to stimu-

ate every part of the cortex, for example, with equal intensity and a

patiotemporal delta function input. 

Assumption of uniform white noise inputs has been shown to provide

 good approximation to the electroencephalographic (EEG) spectrum

ver nearly three decades, a finding that has been tested in cohorts of
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p to 2100 subjects ( Abeysuriya et al., 2014; Abeysuriya and Robinson,

016; Robinson et al., 2002; van Albada et al., 2007, 2010 ). A number of

uthors have since shown that it is possible to infer the transfer function

rom observed activity correlations if the spectrum of inputs is known,

r if the white-noise approximation can be made ( Friston et al., 2014;

ehta-Pandejee et al., 2017; Robinson, 2012; Robinson et al., 2014 ).

hese results reduce the problem to order 𝑀 but have generally only

een applicable to symmetric connectivities for which 𝑇 ( 𝐫, 𝑡, 𝐫 0 , 𝑡 0 ) =
 ( 𝐫 0 , 𝑡, 𝐫, 𝑡 0 ) . One exception was the work in MacLaurin and Robin-

on (2019) , which applied the methods of Ephremidze et al. (2008) to

actorize the spatially discretized correlation function into the product

f the transfer function and its Hermitian conjugate, which are not equal

n general. Broadly, the algorithm of T. Wilson (1972) has a shorter run-

ime than Ephremidze et al. (2008) , but has comparable error for a well-

ehaved spectral matrix. The spectral factorization method of T. Wil-

on (1972) has been used to obtain Granger causality ( Dhamala et al.,

008a,b ), with the transfer function being an intermediate byproduct

hat was not studied in its own right. 

The aim of this work is to describe the transfer function and its re-

ationships to many existing forms of brain analysis. Then, to describe

ethods for obtaining the transfer function, with emphasis on spectral

actorization using the Wilson algorithm ( Dhamala et al., 2008; T. Wil-

on, 1972 ) applied to correlations of time series measurements. Criteria

or time series sampling frequencies and durations are described for the

lgorithm to accurately estimate the transfer function. The algorithm

s applied to a series of examples of increasing complexity and simi-

arity to real brain structure in order to test and verify that it is free

f numerical errors and instabilities (and modifying the method where

equired to ensure this), robust, and able to infer realistic structures

rom correlation functions, including asymmetry, time delays and com-

lex network connectivity. The algorithm’s runtime is verified to be

uch that it can feasibly be applied to systems composed of hundreds

f points as in high spatial resolution experimental modalities, and is

hus relevant for connection matrices containing up to 10 6 entries or

ore. 

In this work we focus on the step of estimating the transfer function

ssuming a clean cross spectral density matrix of the system dynamics

as been obtained. Application of spectral factorization to experimen-

al data and interpretation of the resulting transfer function requires

omain-specific analysis of the noise components, biases and artefacts,

nd sampling characteristics of the measurement modality used. For this

eason we leave applications to data and detailed analysis of the impacts

f noise, artefacts and biases for future work. 

In Section 2 we outline the theory of the transfer function and its

elationship to measures of brain function in continuous notation suit-

ble for describing the brain which is continuous at the mesoscale, as

ell as in discretized notation that is suitable for describing experimen-

al data that are inherently discretized measurements of the underly-

ng continuous brain. Then, in Section 3.1 , methods for determining the

ransfer function are explained, with emphasis on spectral factorization.

ection IV discusses sampling criteria required in order to obtain accu-

ate results. Section V is then devoted to demonstrating and testing the

pectral factorization method on increasingly realistic and complicated

tructures using neural field theory ( Robinson et al., 1997 ), introduc-

ng time delays, asymmetry, two-dimensionality, and complex network

onnectivity based on diffusion MRI (dMRI) data to verify the algorithm

s suitable for application to brain dynamics. 

. Methods 

In this section we define the transfer function and summarize how

t relates to a range of structural and functional measures to illustrate

ts importance. This material is distilled from the references cited and is

ncluded here as essential background theory and to bring this material

ogether for application in later sections. 
2 
.1. Transfer function 

Let us suppose that the quantity 𝑄 𝑎 ( 𝐫, 𝑡 ) represents the linear pertur-

ation from the mean of the mean firing rate of neural population 𝑎 at

osition 𝐫 and time 𝑡 . Activity in population 𝑎 is elicited by inputs from

arious afferent populations 𝑏, as well as direct external input 𝑁 𝑎 and

e write ( Robinson, 2019 ) 

 𝑎 ( 𝐫, 𝑡 ) = 

∑
𝑏 
∫ ∫ Λ𝑎𝑏 ( 𝐫, 𝑡, 𝐫 ′, 𝑡 ′) 𝑄 𝑏 ( 𝐫 ′, 𝑡 ′) 𝑑 𝐫 ′𝑑𝑡 ′

+ 𝑁 𝑎 ( 𝐫, 𝑡 ) , (1) 

here the causal propagator Λ𝑎𝑏 quantifies the direct effect of incoming

ctivity to population 𝑎 from population 𝑏 and satisfies the causality

ondition 

𝑎𝑏 ( 𝐫, 𝑡, 𝐫 ′, 𝑡 ′) = 0 , (2)

or 𝑡 < 𝑡 ′; it corresponds to the system’s bare propagator

 Robinson, 2012 ). Alternatively, still in this linear regime, one

an write 

 𝑎 ( 𝐫, 𝑡 ) = 

∑
𝑏 
∫ ∫ 𝑇 𝑎𝑏 ( 𝐫, 𝑡, 𝐫 ′, 𝑡 ′) 𝑁 𝑏 ( 𝐫 ′, 𝑡 ′) 𝑑 𝐫 ′𝑑𝑡 ′, (3)

here 𝑇 𝑎𝑏 is the transfer function from inputs to activity, which also sat-

sfies causality. Because 𝑇 𝑎𝑏 links all populations and locations, it repre-

ents the total effect of an activity perturbation in one population and a

iven location on another population at a different location, including

ll possible direct and indirect routes by which its influence can travel;

t thus corresponds to the system’s total propagator or Green function

 Robinson, 2012 ). 

At our scales of interest, the brain is continuous; however, experi-

ental observations are inherently discrete, so it is useful to approxi-

ate the above description by discretizing and writing in discrete nota-

ion. We emphasize that this does not imply that the underlying system

f the brain is discrete at the mesoscale. 

If we discretize the continuous system described by Eqs (1) and

3) onto a spatial grid of 𝑀 points, labeled 𝐫 𝑗 with 𝑗 = 1 , … , 𝑀, we

an rewrite them in a matrix form in which the activity and inputs

ecome vectors containing the values at the discretized points, while

𝑎𝑏 ( 𝐫, 𝑡, 𝐫 ′, 𝑡 ′) and 𝑇 𝑎𝑏 ( 𝐫, 𝑡, 𝐫 ′, 𝑡 ′) are represented by the elements of 𝑀 ×
matrices Λ𝑎𝑏 ( 𝑡, 𝑡 ′) and 𝑇 𝑎𝑏 ( 𝑡, 𝑡 ′) ( Robinson, 2019 ). If there are 𝑃 pop-

lations of neurons, it is further possible to expand the dimensions of

hese quantities from 𝑀 to 𝑀𝑃 and omit the subscripts 𝑎𝑏 , with the first

elements of each vector relating to population 1, the next 𝑀 to pop-

lation 2, and so forth, with corresponding blocks in multipopulation

onnectivities Λ and 𝑇 . 

This discretization of the spatial coordinate into points 𝐫 𝐣 approx-

mates integrals over space by summations, which themselves are de-

cribed by the summations implicit in matrix multiplication 

∫ Λ𝑎𝑏 ( 𝐫 𝑖 , 𝑡, 𝐫 ′, 𝑡 ′) 𝑄 𝑏 ( 𝐫 ′, 𝑡 ′) 𝑑 𝐫 ′

≈
∑
𝑗 

Λ𝑖𝑗 ( 𝑡, 𝑡 ′) |Δ𝐫 ′𝑗 |𝑄 𝑗 ( 𝑡 ′) , (4) 

= Λ( 𝑡, 𝑡 ′) 𝑄 ( 𝑡 ′) . (5) 

In Eq. (4) it is essential to note that the matrix elements in Λ( 𝑡, 𝑡 ′)
epresent Λ𝑖𝑗 ( 𝑡, 𝑡 ′) |Δ𝐫 ′𝑗 |, for example, where |Δ𝐫 ′

𝑗 
| is the size of the re-

ion represented by the grid point that represents 𝐫 𝑗 within its popu-

ation; otherwise the dimensions of the above equations would not be

ompatible ( Robinson, 2019 ). Incorporating the volume element into

he description of the system is essential, but often overlooked in neu-

oscience leading to widespread flaws in analysis and interpretation of

esults ( Robinson, 2019 ). For simplicity we assume that all the |Δ𝐫|𝑗 
ave a common value |Δ𝐫| from now on. 
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Fig. 1. Diagram of terms in the series expansion of 𝑇 ( 𝜔 ) in Eq. (15) , from point 

𝑟 ′ to 𝑟 . 
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Thus in matrix notation one has 

 ( 𝑡 ) = ∫ Λ( 𝑡, 𝑡 ′) 𝑄 ( 𝑡 ′) 𝑑𝑡 ′ + 𝑁( 𝑡 ) , (6)

 ( 𝑡 ) = ∫ 𝑇 ( 𝑡, 𝑡 ′) 𝑁( 𝑡 ′) 𝑑𝑡 ′. (7)

Equations (6) and (7) can be written as convolutions if the structure

s static and Λ( 𝑡, 𝑡 ′) and 𝑇 ( 𝑡, 𝑡 ′) depend only on 𝑡 − 𝑡 ′, giving 

 ( 𝑡 ) = ∫ Λ( 𝑡 − 𝑡 ′) 𝑄 ( 𝑡 ′) 𝑑𝑡 ′ + 𝑁( 𝑡 ) , (8)

 ( 𝑡 ) = ∫ 𝑇 ( 𝑡 − 𝑡 ′) 𝑁( 𝑡 ′) 𝑑𝑡 ′. (9)

pon Fourier transforming Eqs (8) and (9) , one then obtains 

 ( 𝜔 ) = Λ( 𝜔 ) 𝑄 ( 𝜔 ) + 𝑁( 𝜔 ) , (10)

 ( 𝜔 ) = 𝑇 ( 𝜔 ) 𝑁( 𝜔 ) , (11)

here 𝜔 is the angular frequency. This equation also describes evoked

esponse potentials, whereby a known stimulus is input and the response

 ( 𝜔 ) is measured. Since the system is linear, the evoked response adds

inearly to any background activity driven by other inputs; we return to

his in more detail in Sec. 2.2.3 . 

To avoid any notational ambiguity, we define the Fourier transform

nd its inverse via 

( 𝜔 ) = ∫
∞

−∞
𝑔( 𝑡 ) 𝑒 𝑖𝜔𝑡 𝑑𝑡, (12) 

( 𝑡 ) = ∫
∞

−∞
𝑔( 𝜔 ) 𝑒 − 𝑖𝜔𝑡 𝑑𝜔 

2 𝜋
. (13) 

Equations (10) and (11) imply 

 ( 𝜔 ) = [ 𝐼 − Λ( 𝜔 )] −1 , (14)

here 𝐼 is the identity matrix and the superscript −1 represents matrix

nversion. 

We can expand Eq. (14) in powers of Λ to give 

 ( 𝜔 ) = 𝐼 + Λ( 𝜔 ) + Λ2 ( 𝜔 ) + Λ3 ( 𝜔 ) + ⋯ , (15)

nd thus 

 ( 𝜔 ) = [ 𝐼 + Λ( 𝜔 ) + Λ2 ( 𝜔 ) + Λ3 ( 𝜔 ) + ⋯ ] 𝑁, (16)

oth of which converge provided all the eigenvalues 𝜆𝑗 of Λ satisfy |𝜆𝑗 | <
 . 

Equation (16) expresses 𝑄 as the sum of different interactions, with

ach term represented by Feynman diagrams shown in Fig. 1 . Each term

escribes activity evoked by external inputs, with the 𝐼 𝑁 term express-

ng direct external input, the Λ𝑁 term expressing external input that
3 
as entered, then been propagated directly to another point, the Λ2 𝑁

erm expressing external input that has entered, then been propagated to

nother point via one intermediate point, and so on. This explicitly de-

cribes the behavior of the system in which external stimulation of any

oint produces activity that then propagates to other points throughout

he system via both direct and indirect paths. 

If linear convolutional measurement processes further intervene be-

ween 𝑄 and some measured signal 𝑋, these can be represented by a

urther transfer function 𝑍 such that 

( 𝜔 ) = 𝑍( 𝜔 ) 𝑇 ( 𝜔 ) 𝑁( 𝜔 ) , (17) 

= 𝐻 ( 𝜔 ) 𝑁 ( 𝜔 ) , (18) 

n a similar notation to Dhamala et al., 2008 . 

Often one is interested in measurement methods that detect signals

hat are chiefly due to activity of the pyramidal neurons in the cortex,

uch as electroencephalography, magnetoencephalography, and func-

ional magnetic resonance imaging ( Kahn et al., 2011; Logothetis et al.,

001; Silva, 2013 ). In this case, one can assign the first population label

o these neurons and focus on the leading 𝑀 ×𝑀 transfer matrix, but it

s essential to note that this depends on the whole 𝑀 𝑃 ×𝑀 𝑃 direct con-

ectivity matrix Λ. In the cortex, only the pyramidal cells provide fast

ong-range communication across the cortex, whereas the other cortical

nd subcortical (e.g., interneuron and thalamic neuron) populations are

nvolved in short-range dynamics, often at spatial scales below those of

he experimental discretization and we therefore do not observe these

opulations and local connectivities directly ( Robinson, 2019 ). The re-

uced transfer function thus provides a representation in terms of a sin-

le effective population, with connectivity determined by the pyrami-

al connections, and local dynamics by all populations, as illustrated in

ig. 2 . To simplify notation, from this point on we assume only a single

opulation of interest, and thus discontinue using population subscripts.

.2. Importance of the transfer function 

Measurement of the full experimentally discretized transfer func-

ion involves evaluating 𝑀 ×𝑀 elements at each frequency (or time

ifference), whose measurement imposes a computational burden of

rder 𝑀 

2 . Before discussing how 𝑇 can be evaluated from less than

( 𝑀 

2 ) measurements per frequency, we first justify the effort by

riefly summarizing the importance of 𝑇 to quantifying and interre-

ating a wide variety of experimental measures of brain activity and

tructure. 

The transfer function of a system contains complete information

bout its linear properties, responses, and dynamics. Thus all measures

nd analyses of the system’s linear properties can be obtained and per-

ormed once the transfer function is known, in combination with knowl-

dge of, or assumptions about, the input. Below we detail some of these

mportant relationships between the transfer function and measures and

nalysis of brain dynamics. In doing so we highlight the central im-

ortance and usefulness of the transfer function, including its ability to

nterrelate and synthesize a variety of results while also providing di-

ection for further analysis. 

.2.1. Spectra and coherence 

The first quantity that can be calculated from 𝑄 is the cross spectrum

( 𝐫 , 𝐫 ′, 𝜔 ) = ⟨𝑄 ( 𝐫 , 𝜔 ) 𝑄 

∗ ( 𝐫 ′, 𝜔 ) ⟩, (19)

hich is equivalent to the Fourier transformed correlation matrix (de-

cribed below), and which gives the power spectrum if 𝐫 = 𝐫 ′. The angle

rackets in Eq. 19 represent an average over experimental trials. 

In matrix notation, Eq. 19 can be written 

( 𝜔 ) = ⟨𝑄 ( 𝜔 ) 𝑄 

†( 𝜔 ) ⟩, (20) 
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Fig. 2. Excitatory pyramidal neurons (blue triangles) found 

throughout the cortical sheet (shaded) are the major source 

of signals for measurement modalities such as EEG and fMRI. 

These neurons couple distant points 𝑟 and 𝑟 ′ with long range 

white-matter projections. The pyramidal neurons are also cou- 

pled to other local populations of nearby neurons that are not 

directly measured, but whose activity (red) influences pyrami- 

dal neuron activity and is therefore encoded in the measured 

signal from the excitatory pyramidal neurons. Thus, the re- 

sulting transfer function estimated from these signals is for the 

transfer between points in the pyramidal populations and their 

coupled local population dynamics, not the transfer between 

points in the pyramidal population alone. 
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𝑄𝑆 𝑆 𝐸𝑃 0 0 0 0  
= 𝑇 ( 𝜔 ) ⟨𝑁 ( 𝜔 ) 𝑁 

†( 𝜔 ) ⟩𝑇 †( 𝜔 ) , (21) 

here the dagger denotes the Hermitian conjugate. 

In the commonly considered case of “resting-state ” activity in which

o task is imposed by an experimenter and the subject is in relaxed sur-

oundings, background stimuli span a broad range of spatial and tem-

oral scales after passing through the peripheral nervous system, which

lso tends to whiten them to make best use of available bandwidth.

onsequently, numerous applications to experimental data have shown

hat background perturbations can be approximated by spatially uncor-

elated white noise ( Abeysuriya et al., 2015; Deco et al., 2008; Robinson

t al., 1997, 2002; van Albada et al., 2010 ). In the case of uncorrelated

hite noise inputs one has ⟨𝑁 ( 𝜔 ) 𝑁 

†( 𝜔 ) ⟩ = 𝐼, so 

( 𝜔 ) = 𝑇 ( 𝜔 ) 𝑇 †( 𝜔 ) . (22)

The coherence function in coordinate space is given by 

2 ( 𝐫 , 𝐫 ′, 𝜔 ) = 

|𝐶( 𝐫 , 𝐫 ′, 𝜔 ) |2 
𝐶( 𝐫 ′, 𝐫 ′, 𝜔 ) 𝐶( 𝐫 , 𝐫 , 𝜔 ) 

. (23) 

n matrix notation, the coherence between points 𝐫 𝑖 and 𝐫 𝑗 is 

2 
𝑖𝑗 
( 𝜔 ) = 

|𝐶 𝑖𝑗 ( 𝜔 ) |2 
𝐶 𝑖𝑖 ( 𝜔 ) 𝐶 𝑗𝑗 ( 𝜔 ) 

. (24)

The transfer function describes causal propagation of influences of

ne element of the system on another. This can be used to understand

ausality in the system in conjunction with knowledge of the input

rive. An often used measure is Granger Causality. Formally, spectral

ranger Causality is an inferrred measure of directional influence from

ne time series to another and is based on linear predictions of time se-

ies ( Dhamala et al., 2008 ). The Granger influence of the point indexed

y 𝑗 on the point indexed by 𝑖 is expressed in matrix notation as 

 𝑖𝑗 ( 𝜔 ) = ln 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝐶 𝑖𝑖 ( 𝜔 ) 

𝐶 𝑖𝑖 ( 𝜔 ) − 

( 

𝜎𝑗𝑗 − 

𝜎2 
𝑖𝑗 

𝜎𝑖𝑖 

) |𝑇 𝑖𝑗 ( 𝜔 ) |2 
⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
, (25)

here 𝜎 is the matrix of input covariances. Inputs are not assumed to be

ncorrelated white noise in computing Granger Causality. 

.2.2. Correlations and covariance 

We define the correlation of activity between points 𝐫 𝑖 and 𝐫 𝑗 as 

( 𝐫 𝑖 , 𝐫 𝑗 , 𝜏) = 

⟨ 

∫ 𝑄 ( 𝐫 𝑖 , 𝑡 + 𝜏) 𝑄 ( 𝐫 𝑗 , 𝑡 ) 𝑑𝑡 
⟩ 

, (26)

here 𝜏 is the time difference between the correlated measurements and

he angle brackets denote an average over realizations. The matrix form

f (26) is written 

( 𝜏) = 

⟨ 

∫ 𝑄 ( 𝑡 + 𝜏) 𝑄 

𝑇 ( 𝑡 ) 𝑑𝑡 
⟩ 

. (27)
4 
The Wiener-Khintchine Theorem states that the correlation 𝐶( 𝜏) , and

ross spectrum 𝐶( 𝜔 ) are Fourier transforms of one another; i.e., 

 ( 𝜏) = 

1 
2 𝜋 ∫

+∞

−∞
𝑒 − 𝑖𝜔𝜏𝐶 ( 𝜔 ) 𝑑𝜔, (28)

nd 

( 𝜔 ) = ∫
+∞

−∞
𝑒 𝑖𝜔𝜏𝐶( 𝜏) 𝑑𝜏. (29)

It should be noted that the definitions of correlation and covariance

ary in the literature so care must be taken in comparing theory and

esults from different sources. Other common definitions of correlation

nd covariance involve first subtracting mean values from the time se-

ies, and/or normalizing time series by dividing by their standard devi-

tions. These can all be evaluated by similar means. 

.2.3. Evoked responses 

Studies of evoked changes in brain activity probe the response of the

rain to a given stimulus by tracing the propagation of evoked activity

way from the source of the stimulus. Identifying these responses can

hen be used to infer aspects of the processing that occurs during this

ropagation for each particular stimulus ( Fox et al., 2006; Kerr et al.,

008, 2011; Luck and Kappenman, 2012 ). 

If the character of the stimulus is well known or approximated and

he transfer function is known, then the system response is given by Eqs

3), (7), (9) , or (11) , depending on the notation used. In experiments

n evoked response potentials (ERPs), brief stimuli are often presented.

uch a stimulus can be approximated as a delta function in time. In

atrix notation, this stimulus can be written as 𝑁( 𝑡 ) = 𝛿( 𝑡 − 𝑡 0 ) 𝑁 0 , where

 0 is the time that the stimulus is applied, and 𝑁 0 is a vector describing

he strength and spatial structure of the stimulus ( Mukta et al., 2019;

020 ). The response to this stimulus is 

 𝐸𝑅𝑃 ( 𝑡 ) = 𝑇 ( 𝑡 − 𝑡 0 ) 𝑁 0 , (30)

r, in Fourier form, 

 𝐸𝑅𝑃 ( 𝜔 ) = 𝑇 ( 𝜔 ) 𝑒 𝑖𝜔𝑡 0 𝑁 0 . (31)

ote that if 𝑁 0 is a delta function in space, (30) demonstrates that the

RP measures the transfer function. 

In steady state evoked potential (SSEP) experiments, periodic stimuli

re presented ( Norcia et al., 2015 ). The simplest periodic stimulus is 

( 𝑡 ) = cos [ 𝜔 0 ( 𝑡 − 𝑡 0 )] 𝑁 0 , (32)

hich ignores any initial transient period, and where 𝜔 0 is the stimu-

us frequency and 𝑁 0 describes its strength and spatial structure. The

emporal Fourier transform of this stimulus is 

( 𝜔 ) = 𝜋𝑒 𝑖𝜔𝑡 0 [ 𝛿( 𝜔 − 𝜔 0 ) + 𝛿( 𝜔 + 𝜔 0 )] 𝑁 0 , (33)

nd the response is given by Eq. (11) 

 𝑆 𝑆 𝐸𝑃 ( 𝜔 ) = 𝜋𝑒 𝑖𝜔𝑡 0 [ 𝛿( 𝜔 − 𝜔 0 ) + 𝛿( 𝜔 + 𝜔 0 )] 𝑇 ( 𝜔 ) 𝑁 0 , (34)

hich can be inverse Fourier transformed to give 

 ( 𝑡 ) = cos ( 𝜔 [ 𝑡 − 𝑡 ]) 𝑇 ( 𝜔 ) 𝑁 . (35)
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ecause 𝑄 is proportional to EEG measurements, this is the sinusoidally

arying response in time seen in experiments ( Norcia et al., 2015 ). The

esponse to more complex periodic stimuli, 𝑁( 𝑡 ) , can be obtained by

ourier transforming to give 𝑁( 𝜔 ) , then inverse Fourier transforming

he RHS of Eq. (11) , or alternatively by directly solving Eq. (9) . 

.2.4. Structure-Function relationships and eigenmodes 

All activity can be expressed in terms of the physical eigenmodes of

 system, providing a systematic basis for wider-ranging physical anal-

ses, statistical quantities such as “resting state networks ” (RSNs), and

onceptual and practical advances more generally ( Gabay et al., 2018;

abay and Robinson, 2017; Robinson et al., 2016 ). Notably, eigenmodes

iffer in a fundamental way from the statistical components inferred via

ethods like ICA and PCA. Eigenmodes are entities that derive from the

ynamics of the brain as the physical system that generates observed ac-

ivity, and their nature is directly related to brain anatomy and physiol-

gy; in contrast, ICA and PCA components are entities that are obtained

rom time series without regard to the nature of the system that gener-

tes them or the physical quantities they represent. Statistical measures

an be useful, but this fundamental difference must be borne in mind. 

The eigenfunctions of a system describe specific patterns of activ-

ty whose spatial structure is fixed, but whose amplitude can change

ver time. Thus, the eigenfunctions (often called eigenmodes, natural

odes, or eigenvectors) of a system are useful quantities for describing

nd analyzing its activity. The structure of a system’s eigenfunctions are

etermined by its dynamics and spatial properties. 

If the structure of a system is constant in time its spatial and temporal

ynamics are separable, so its eigenfunctions, labeled 𝑛, each has the

orm of a constant spatial eigenfunction 𝑣 𝑛 ( 𝐫) multiplied by a temporal

actor, which is a complex exponential (or equivalently a trigonometric

unction) at each angular frequency 𝜔, exp (− 𝑖𝜔𝑡 ) . In matrix notation 𝑣 𝑛 
an be viewed as a column vector with one entry for each point into

hich the system has been approximately discretized. 

If 𝑇 is diagonalizable, we can perform a spectral decomposition (i.e.,

n eigenfunction decomposition) of 𝑇 to express 𝑇 in terms of its eigen-

alues and eigenvectors, with 

 ( 𝜔 ) = 𝑉 Θ( 𝜔 ) 𝑉 −1 , (36)

here Θ( 𝜔 ) is a diagonal matrix containing the eigenvalues 𝜃𝑛 ( 𝜔 ) of

 ( 𝜔 ) , and 𝑉 is a matrix whose columns are the spatial eigenvectors 𝑣 𝑛 
f 𝑇 ( 𝜔 ) . Note that the reality condition requires that 𝑇 ∗ ( 𝜔 ) = 𝑇 (− 𝜔 ) . 

Similarly we can decompose the propagator Λ as 

( 𝜔 ) = 𝑈 𝐿 ( 𝜔 ) 𝑈 

−1 , (37)

here 𝑈 and 𝐿 are the matrices of eigenvectors and eigenvalues of Λ,
espectively, with 𝐿 being diagonal. Equations Eq. (14) and (15) each

emonstrates that the eigenvectors of 𝑇 and Λ are the same. Using

q. (14) , the eigenvalues 𝜆𝑛 of Λ are then related to the eigenvalues

𝑛 of 𝑇 by 

𝑛 ( 𝜔 ) = [1 − 𝜆𝑛 ( 𝜔 )] −1 . (38)

We can also spectrally decompose 𝐶 to give 

( 𝜔 ) = 𝑊 𝐾( 𝜔 ) 𝑊 

−1 , (39)

here 𝑊 and 𝐾 are the matrices of eigenvectors and eigenvalues of 𝐶,

espectively, with 𝐾 being diagonal. From Eq. (20) , we see that 𝐶 is

ermitian, so its eigenvalues are real and its eigenvectors form a com-

lete orthonormal set. If 𝑇 is also Hermitian, the eigenvectors of 𝐶 are

he same as those of 𝑇 and Λ (i.e., 𝑈 = 𝑉 = 𝑊 ) and the eigenvalues of

, 𝜅𝑛 , are related to those of 𝑇 and Λ by 

𝑛 ( 𝜔 ) = |𝜃𝑛 ( 𝜔 ) |2 = 

|||| 1 
1 − 𝜆𝑛 ( 𝜔 ) 

||||
2 
. (40)

. Results 

The above sections have established the importance of the transfer

unction in brain analysis at the mesoscale and above. The aim of this
5 
ection is to describe methods for obtaining the transfer function from

xperimental data. 

.1. Determination of the transfer function 

Below we describe how a transfer function can be obtained from

voked responses, modal projection of eigenmodes, and spectral fac-

orization. The advantages and disadvantages of these methods are de-

cribed. 

.1.1. Direct measurement via ERPs 

One way to measure a brain transfer function is to use evoked re-

ponse potentials (ERPs). The response to a known delta-function stim-

lus is by definition the transfer function 𝑇 ( 𝑟, 𝑟 0 , 𝑡 ) to the measurement

oint 𝑟, from the stimulated point 𝑟 0 ( Mukta et al., 2019; 2020 ). How-

ver, to determine the full transfer function between all pairs of points,

hese measurements must be made for stimuli at each point in turn,

aking this a laborious process that requires 𝑀 ×𝑀 measurements for

points. A further difficulty arises in ensuring the strength of the stim-

lus is equal at each point, or known precisely, so that 𝑇 is normalized

onsistently. 

.1.2. Modal projection 

High spatial resolution measurements of brain activity can be ob-

ained using BOLD (blood-oxygenation level dependent) fMRI; however,

MRI has very low temporal resolution for neural events. In contrast,

EG has low spatial resolution, but high temporal resolution. These two

ypes of measurements can be combined using modal projection to es-

imate 𝑇 . This method was first presented in Robinson (2019) , and we

rovide more detail here. 

In the case where 𝑇 is Hermitian and its eigenfunctions form a com-

lete orthonormal set, activity can be expanded as Robinson (2019) 

 ( 𝐫, 𝑡 ) = 

∑
𝑗 

𝑢 𝑗 ( 𝐫) 𝑐 𝑗 ( 𝑡 ) , (41) 

 𝑗 ( 𝑡 ) = ∫ 𝑄 ( 𝐫 , 𝑡 ) 𝑢 𝑗 ( 𝐫 ) 𝑑 𝐫 , (42) 

n coordinate notation, where the integral is over the whole domain and

he 𝑢 𝑗 ( 𝐫) are assumed to be real without loss of generality. 

The quantity 𝑇 ( 𝐫, 𝐫 0 , 𝑡 ) is, by definition, the response at r and 𝑡 to a

elta-function input at 𝐫 0 and 𝑡 = 0 . In this case, 𝑐 𝑗 (0) = 𝑢 𝑗 ( 𝐫 0 ) , so 

 ( 𝐫, 𝐫 0 , 𝑡 ) = 

∑
𝑗 

𝑢 𝑗 ( 𝐫) 𝑢 𝑗 ( 𝐫 0 ) 𝜃𝑗 ( 𝑡 ) , (43)

hich is equivalent to the temporal Fourier transform of (36) in the

resent case where 𝑈 = 𝑉 . Hence Robinson (2019) , 

𝑗 ( 𝑡 ) = 

1 
𝑢 𝑗 ( 𝐫 0 ) ∫ 𝑇 ( 𝐫, 𝐫 0 , 𝑡 ) 𝑢 𝑗 ( 𝐫) 𝑑𝐫. (44)

Calculation of the integral in Eq. (44) is problematic, at least for EEG

nd ERP, because it is difficult to measure activity inferior to the cortex

nd in sulci. However, analogously to the fact that 𝐿 Fourier modes can

e sampled with 𝐿 measurement points, not necessarily equally spaced,

t has been pointed out that the same can be done with eigenmodes

 Robinson, 2013 ). Specifically, we first restrict ourselves to the lowest

 modes, choose a stimulus point 𝐫 0 and measurement points 𝑟 𝑘 with

 = 1 , … , 𝐿 . 

The first step is to use a technique, such as fMRI, that has fine spa-

ial resolution, to obtain the set of orthonormal eigenmodes 𝑢 𝑗 ( 𝐫) via

tandard eigenfunction analysis of the covariance matrix, which is the

qual-time correlation matrix with 𝜏 = 0 in Eq. (27) . The next step is

o apply a delta-function stimulus at 𝐫 0 and to measure the evoked re-

ponses 𝑎 𝑘 ( 𝑡 ) at the 𝐫 𝑘 using a fast method such as EEG. From the defini-

ion of the transfer function and from the eigenfunction decomposition

n Eq. (43) we define the quantities 𝑎 𝑘 ( 𝑡 ) as 

 ( 𝑡 ) = 𝑇 ( 𝐫 , 𝐫 , 𝑡 ) , (45) 
𝑘 𝑘 0 
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Δ  
≈
𝐿 ∑

𝑘 =1 
𝑢 𝑗 ( 𝐫 𝑘 ) 𝑢 𝑗 ( 𝐫 0 ) 𝜃𝑗 ( 𝑡 ) , (46) 

= 

𝐿 ∑
𝑘 =1 

𝑏 𝑘𝑗 𝜃𝑗 ( 𝑡 ) , (47) 

here the eigenfunctions are obtained via the diagonalization in

q. (39) , 𝑏 𝑘𝑗 = 𝑢 𝑗 ( 𝐫 𝑘 ) 𝑢 𝑗 ( 𝐫 0 ) , and we have truncated the sum at 𝐿 modes.

Equation (47) and its solution can be written in matrix form as 

 ( 𝑡 ) = 𝐵Θ( 𝑡 ) , (48) 

( 𝑡 ) = 𝐵 

−1 𝐴 ( 𝑡 ) , (49) 

here 𝐴 ( 𝑡 ) and Θ( 𝑡 ) are 𝐿 -element column vectors of 𝑎 𝑘 ( 𝑡 ) and 𝜃𝑗 ( 𝑡 ) and

he elements of the 𝐿 × 𝐿 matrix 𝐵 are the 𝑏 𝑘𝑗 . By this means we can

ombine eigenfunctions obtained by slow measurements throughout the

rain (e.g., fMRI) with 𝐿 fast measurements (e.g., via EEG) at acces-

ible parts of the brain to approximate the transfer function via Eqs

36) and (49) . The key restriction in addition to the assumed symme-

ry of the system is that 𝐵 should not have too large a condition num-

er, which would occur if some of the stimulus or measurement points

ere located very close to eigenfunction nodes, for example, causing a

hole row or column of 𝐵 to have near-zero entries and thus making it

ear-singular. 

.1.3. Spectral factorization of cross spectra 

An alternative route to obtaining the transfer function from experi-

ental measurements is to use correlations of measured activity, which

re relatively simple to obtain experimentally. However, if we have

( 𝜔 ) , solving Eq. (22) for 𝑇 ( 𝜔 ) implies a process akin to taking a ma-

rix square root of 𝐶( 𝜔 ) to find 𝑇 ( 𝜔 ) . For an 𝑛 × 𝑛 matrix with 𝑛 distinct

igenvalues there are 2 𝑛 square roots ( Horn and Johnson, 2013 ), only

ne of which corresponds to 𝑇 . 

To find the solution for 𝑇 that corresponds to the delta-function re-

ponse of the underlying physical system, spectral factorization algo-

ithms can be applied to 𝐶( 𝜔 ) . Here we focus on the Wilson algorithm

 T. Wilson, 1972 ), which uses an iterative root finding approach to con-

truct a minimum-phase solution which makes the physically realistic

ssumption that the underlying physical system is stable, and causal.

hysically, a minimum-phase solution minimizes the system’s group de-

ay ( Smith et al., 2007 ), meaning that the response to a delta function

s in phase for all frequencies at the stimulus point and is thus initially

s compact as possible in time. 

The Wilson algorithm has previously been used as a step in comput-

ng Granger causality ( Dhamala et al., 2008a,b ), but its importance as

 means of obtaining the system transfer function has not been appre-

iated and used to exploit the myriad relationships the transfer func-

ion has to other measures, models, and applications as described in

ection 2 . Other spectral factorization algorithms do exist, including that

f Janashia et al. ( Ephremidze et al., 2008, 2018 ). 

A technical point on this implementation of the Wilson algorithm

s that it involves performing a Cholesky decomposition on the in-

ut 𝐶 matrix ( Horn and Johnson, 2013 ). Cholesky decomposition of

 matrix requires the matrix to be positive definite (symmetric matri-

es with all real, positive eigenvalues). As described in Section 2.2.4 ,

( 𝜔 ) should be positive definite; however, numerical round-off errors

n 𝐶( 𝜔 ) can introduce small negative eigenvalues, which causes the

holesky factorization to fail. In these cases, our implementation of

he algorithm reverts to an alternate approach that uses matrix in-

erses. The method of using Cholesky decomposition is preferred due

o superior numerical precision compared to a numerical matrix in-

erse. Our code implementing the Wilson Algorithm can be found at

ttps://github.com/BrainDynamicsUSYD/SpecFac . 
6 
The scaling of the Wilson algorithm runtime with the number of fre-

uencies and spatial samples is an important practical consideration in

btaining 𝑇 from time series measurements. The Wilson algorithm is

oted for its numerical efficiency ( Dhamala et al., 2008; Ephremidze

t al., 2018 ). The dominant runtime cost of the Wilson algorithm lies

n steps involving Cholesky Factorization and solving linear systems (or

lternatively matrix inversion, depending on the implementation), as

ell as matrix multiplication. Since a fixed number of these operations

re required per iteration of the algorithm, the runtime per iteration

hould scale as 𝑀 

𝜇 for an 𝑀-node system. Simple algorithms for per-

orming these operations have 𝜇 = 3 for inversion via Gaussian elimi-

ation or LU factorization, for example; however, more more sophisti-

ated algorithms have 𝜇 ≈ 2 . 81 for the Strassen algorithm ( Huang et al.,

016; Strassen, 1969 ) or as little as 𝜇 ≈ 2 . 37 for optimized Coppersmith-

inograd algorithms ( Coppersmith and Winograd, 1990 ), although the

atter have yet to be practically implemented. For 𝑛 𝑡 frequency samples,

he theoretical scaling of the runtime per step is 

 𝑠𝑡𝑒𝑝 ∼ 𝑛 𝑡 𝑀 

𝜇. (50)

ote that if the number of iterations required for convergence also de-

ends on 𝑀 or 𝑛 𝑡 , a further factor would need to be included in this

esult. 

.2. Sampling criteria 

Before proceeding to test the spectral factorization algorithm, we

ummarize the criteria that must be satisfied if 𝑇 is to be accurately

nferred for a given physical system. 

Suppose we have a system whose transfer function is desired to be

alculated with spatial and temporal resolutions of 𝛿𝑥 and 𝛿𝑡, respec-

ively. Suppose, furthermore that we wish to obtain the estimate 𝑇 est of

 over a time 𝑡 max and spatial region of width 𝑥 max . The first constraint

s that 

𝑡 max ≤ 𝑥 max , (51)

f 𝑣 is the characteristic velocity of the response; otherwise the response

ill exit the system. An exception is if the system is closed and bound-

ries are periodic, for example, in which case larger 𝑡 max may be relevant

o follow the long-term decay of the response. 

We seek criteria for the numbers of required sampling points 𝑛 𝑥 re-

uired in 𝑥 (assuming a 1D system for the moment, with direct gener-

lization to multiple dimensions) and 𝑛 𝑡 in 𝑡, corresponding sampling

esolutions Δ𝑥 and Δ𝑡, and maximum frequency 𝑓 max and resolution Δ𝑓
hen working in the temporal Fourier domain, with the usual relation-

hip between temporal and angular frequencies, 𝜔 = 2 𝜋𝑓 . These are: 

(i) Δ𝑥 and Δ𝑡 must be less than or equal to the above 𝛿𝑥 and 𝛿𝑡,

espectively. 

(ii) The condition 

 Δ𝑡 ≤ Δ𝑥, (52)

ust also be satisfied to enable fine spatial features to be resolved. 

(iii) Hence, the numbers of points in each spatial dimension and in

ime must be at least 

 𝑥 = 𝑥 max ∕Δ𝑥 ≥ 𝑥 max ∕ 𝛿𝑥, (53) 

 𝑡 = 𝑡 max ∕Δ𝑡 ≥ 𝑡 max ∕ 𝛿𝑡, (54) 

espectively. 

(iv) A time resolution Δ𝑡 implies a temporal sampling rate 1∕Δ𝑡 .
ence, via Nyquist’s theorem, we sample a maximum frequency in the

ourier domain of 

 max = 1∕(2Δ𝑡 ) , (55)

ith a frequency resolution of 

𝑓 = 1∕ 𝑡 . (56)
max 

https://github.com/BrainDynamicsUSYD/SpecFac


J.A. Henderson, M. Dhamala and P.A. Robinson NeuroImage 235 (2021) 117989 

F  

m

𝑓  

 

t  

𝑇

𝑡  

W  

𝑡

 

a  

e  

l  

r

 

p  

s  

q  

t  

t  

p  

p  

c

3

f

 

f  

(  

s  

f  

s  

T  

d  

i

 

i  

t  

s  

n  

d  

t  

t  

a  

(  

r  

t

𝜖  

P  

u  

a  

m  

e  

r  

t

 

p  

n  

l  

t

Fig. 3. The procedure for testing the Wilson spectral factorization algorithm. 

A known propagator is used to produce a known transfer function, followed by 

the cross spectrum for input into the Wilson algorithm. The estimated transfer 

function output from the algorithm is compared to the known transfer function. 

Table 1 

Parameter values used in the test cases ( Robinson et al., 1997 ). The first to fourth 

columns list the quantity, its symbol, nominal value, and unit, respectively. 

Quantity Parameter Value Unit 

Decay rate 𝛾 107 s −1 

Axonal velocity 𝑣 9 m s −1 

Synaptic decay rate 𝛼 100 s −1 

Synaptic rise rate 𝛽 350 s −1 

Axonal range 𝑟 𝑒 84 mm 
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a  
or convenience, we also note that Eqs (52) and (55) imply that one

ust choose 

 max ≥ 

𝑣 

2Δ𝑥 
. (57)

(v) As is demonstrated in the test cases below, the Wilson algorithm

ends to produce its largest errors for 𝑡 ≈ 𝑡 max ∕2 . Thus, if an estimate of

 is desired up to a maximum time delay 𝑡 𝑑 , one may wish to set 

 max > 2 𝑡 𝑑 . (58)

e discuss below how errors, including near 𝑡 max ∕2 approach zero as

 max increases and Δ𝑡 decreases simultaneously. 

Equations (51) – (58) summarize the sampling requirements to treat

 system with the size, duration, and resolution mentioned above. How-

ver, if sampling is limited to lower rates and/or coarser spatial reso-

ution, these equations can be rearranged to calculate the achievable

esolutions in space, time, and frequency. 

Perfectly uniform spatial sampling is desirable, but not possible in

ractice; many cortical parcellations contain non uniformly sized and

haped regions of interest. Thus, these criteria represent worst-case re-

uirements that may be able to be relaxed depending on specifics of

he sampling. Note that these criteria do not eliminate pitfalls of spec-

ral analysis, like aliasing, nor guarantee good estimation of 𝑇 for any

articular experimental modality because artefacts and noise are often

resent in data. These issues must be address separately on a case by

ase basis. 

.3. Tests of factorization of brain activity cross spectra to obtain transfer 

unctions 

This section demonstrates the estimation of system transfer functions

rom cross spectra using the Wilson Spectral Factorization algorithm

 Dhamala et al., 2008; T. Wilson, 1972 ). We demonstrate this using a

eries of increasingly difficult test cases that introduce realistic system

eatures such as asymmetry [i.e., Λ( 𝐫, 𝑡, 𝐫 ’ , 𝑡 ’ ) ≠ Λ( 𝐫 ’ , 𝑡, 𝐫, 𝑡 ’ ) ], two dimen-

ionality of the system, time delays, and complex network connectivity.

hese increasingly brain-like test cases imply that the algorithm will pro-

uce accurate results when applied to data of the complexity obtained

n current experiments. 

The procedure for testing the Wilson spectral factorization algorithm

s illustrated in Fig. 3 . First, Λ is chosen for each test case, then the

ransfer function 𝑇 ( 𝜔 ) is computed using Eq. (14) , followed by the cross

pectrum 𝐶( 𝜔 ) via Eq. (22) which assumes the system is driven by white

oise that is spatially uniform in strength; however, the algorithm pro-

uces an estimate of the input spectral density matrix 𝑁 ( 𝜔 ) 𝑁 

†( 𝜔 ) , so
he assumption of uniform white noise is not required in general. Note

hat no changes to 𝐶 are made to remove global signals, or modify di-

gonal elements, as often occurs in analyses of fMRI data, for example

 Liu et al., 2017 ). Then the cross spectrum is input to the Wilson algo-

ithm, whose transfer function estimate 𝑇 est is compared to the actual

ransfer function 𝑇 . The difference between 𝑇 and 𝑇 est is quantified as 

= 

√ ∑||𝑇 − 𝑇 est ||2 √ ∑|𝑇 |2 . (59)

arseval’s theorem implies that 𝜖 has the same value when computed

sing 𝑇 in either the temporal or frequency domain. The sums are over

ll frequencies or timepoints, and all elements in the transfer function

atrix. If only the initial timepoints of 𝑇 est ( 𝑡 ) are used to avoid the largest

rror around 𝑡 max ∕2 , then 𝜖 will be smaller over the reduced temporal

ange, but Parseval’s theorem no longer holds to allow the same value

o be obtained by computing 𝜖 in the frequency domain. 

We examine the accuracy of estimation as a function of sampling

arameters and, to test the robustness of the algorithm to measurement

oise, we quantify the effects of adding random noise to 𝑄, which is

inearly related to measurements, before constructing 𝐶( 𝜔 ) as input to

he algorithm. 
7 
.3.1. Asymmetric 1D transfer function estimation 

We first test the ability of the Wilson spectral factorization algorithm

o estimate the transfer function for asymmetric systems (i.e., where

 𝑖𝑗 ≠ 𝑇 𝑗𝑖 ) with fine-scale dynamics and the resulting dependencies on

ampling parameters and noise. 

Transfer Function Estimation We use a 1D system with simple dynam-

cs described by an impulse response that consists of two dissipative 𝛿

unctions propagating in opposite directions with velocity 𝑣 and damp-

ng rate 𝛾 after a 𝛿 function input at ( 𝑋, 𝜏) = (0 , 0) : 

( 𝑋, 𝜏) = 𝐺𝑒 − 𝛾𝜏 [(1 + 𝜂) 𝛿( 𝑋 − 𝑣𝜏) 
(1 − 𝜂) 𝛿( 𝑋 + 𝑣𝜏)] , (60) 

n coordinate space, where −1 ≤ 𝜂 ≤ 1 governs the degree of asym-

etry, with symmetry for 𝜂 = 0 and full asymmetry for 𝜂 = ±1
 Robinson, 2012 ). Here we use 𝜂 = −0 . 5 and 𝐺 is a gain chosen so that

he largest eigenvalue of Λ is 𝜆1 = 0 . 85 , ensuring the system is stable but

ear criticality, as in the brain ( Robinson et al., 2002 ). Parameter values

re given in Table 1 . 

Because Λ consists of delta functions it has no lower bound on 𝛿𝑡

nd 𝛿𝑥 . However, we choose to use periodic boundary conditions and
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et 𝑥 max = 150 mm and Δ𝑥 = 3 mm, thereby forgoing any finer resolu-

ion; hence, 𝑛 𝑥 = 50 . We then impose the condition (57) to set Δ𝑡 = 0 . 33
s. With a damping rate of 𝛾 = 107 s −1 , direct propagation of activity has

n e-folding timescale of 9.3 ms. However, overall activity in the system

ecays on a longer timescale due to internal regeneration during indirect

ropagation that contributes to 𝑇 , as in Eq. (15) . This timescale becomes

ery long when 𝑇 is close to critical because there is stronger internal

egeneration of activity ( Robinson, 2012 ). This is described mathemat-

cally in Eq. (15) whereby higher powers of Λ decay more slowly near

riticality. Numerical calculations show that this extends the decay time

o 44 ms. From these considerations we choose 𝑡 max = 0 . 26 s which is 6

imes the decay time, giving 𝑛 𝑡 = 789 . 
The above values imply that the Wilson algorithm needs as input

he correlation functions at 𝑛 𝑡 frequencies from − 𝑓 max + Δ𝑓 to 𝑓 max with

 max = 1∕(2Δ𝑡 ) = 1500 Hz and Δ𝑓 = 1∕ 𝑡 max ≈ 3.8 Hz. 

Given Λ( 𝜔 ) , Eq. (14) is used to construct the transfer function 𝑇 ( 𝜔 )
hich allows the cross spectrum 𝐶( 𝜔 ) to be computed using Eq. (22) ,

ssuming white noise input. The resulting 𝐶( 𝜔 ) is input to the Wilson

pectral factorization algorithm to compare its estimated transfer func-

ion 𝑇 est ( 𝜔 ) with the actual one. 

As noted earlier, 𝑇 and Λ correspond to responses to temporal delta

unction inputs, with each able to be calculated from the other via

q. (14) . Thus, to visualize 𝑇 ( 𝑋, 𝜏) and Λ( 𝑋, 𝜏) , we plot the response

o a delta function. Figs. 4 (a) and (b) show 𝑇 and Λ, respectively. The

ropagation of the delta functions away from the stimulus location can

e seen, as can the asymmetry between leftward and rightward propaga-

ion. Because the system is translationally invariant, responses to inputs

t different points have the same form, but shifted in space. In Figs. 4 (c)

nd (d) examples are shown of 𝑇 ( 𝜏) and Λ( 𝜏) at a point separated from

he stimulus by 0.051 m. In Figs 4 (c) and (d) there are two 𝛿 pulses corre-

ponding to propagation arriving from the leftward and rightward prop-

gating activity, with the later pulse having passed through the periodic

oundary. The 𝑇 response in Fig. 4 (c) differs from Λ in Fig. 4 (d) by con-

aining additional responses at later timepoints than are shown, result-

ng from internal regeneration of activity and activity looping through

he system’s periodic boundaries. Figs. 4 (e) and (f) show the differences

etween 𝑇 and 𝑇 est , and between Λ and Λest , respectively. The largest

rrors are at 𝑡 max ∕2 , shown by the two central positive and negative

eaks. This error is predominantly due to the use of truncated Fourier

eries in the numerical implementation of the Wilson algorithm, rather

han infinite Fourier series in the mathematical derivation of the Wilson

lgorithm. Only features that are robust with respect to 𝑡 max should be

nterpreted as features of the underlying system. The errors are highly

scillatory, but the oscillations are not resolved in the figure. This er-

or can be reduced by increasing 𝑡 max (equivalent to reducing Δ𝑓 ) and

pproaches zero (as we see below). 

Dependence of Accuracy on Sampling Parameters To obtain greater in-

ight into the performance of the algorithm as a function of its sampling

arameters and to check the criteria for time series sampling described

n Section 3.2 , we now test how the error 𝜖 at fixed 𝑥 max and Δ𝑥 depends

n Δ𝑡 and 𝑡 max , with 𝑓 max and Δ𝑓 given by Eqs (55) and (56). 

Fig. 5 (a) shows how 𝜖 depends on Δ𝑡 with 𝑡 max fixed; the value used

n Fig. 4 , and given by equality in Eq. (52) is indicated by the red arrow.

s Δ𝑡 increases, the fast dynamics of the system are increasingly missed

o 𝜖 increases. Fig. 5 (b) shows 𝜖 vs. 𝑡 max for fixed Δ𝑡, with the red arrow

ndicating the point that corresponds to the value of 𝑡 max used in Fig. 4 .

e see that as 𝑡 max is increased, 𝜖 decreases, chiefly due to the reduction

f the errors at 𝑡 ≈ 𝑡 max ∕2 . This indicates that 𝑡 max should be chosen to

e larger than the slowest responses of the system that are of interest to

inimize errors, as described by Eq. (58) . However, this is not necessary

f only short-time responses are of interest in a particular situation —

.g., the period before signals reach the system boundaries. 

The dips in Fig. 5 (a) and (b) near the red arrows are artefacts of the

elta function propagator and spatially discretized system where Δ𝑡 and

 max transition from integer to non integer multiples of the propagation

ime delay between points and are not relevant to real brains. 
8 
Dependence of Accuracy on Noise We next test the accuracy of the

lgorithm in the presence of measurement noise. To do so, we introduce

dditive white noise to 𝑄 ( 𝜔 ) : 

 

′( 𝜔 ) = 𝑄 ( 𝜔 ) + 𝑐𝑌 ( 𝜔 ) , (61)

here 𝑌 ( 𝜔 ) represents noise and 𝑐 is a constant that scales the magnitude

f the noise. 

From this and Eq. (20) , the cross spectrum of the noisy measurements

 

′ is 

 

′( 𝜔 ) = 𝑇 ⟨𝑁 𝑁 

†⟩𝑇 † + 𝑐⟨𝑌 𝑁 

†⟩𝑇 † + 𝑐𝑇 ⟨𝑁 𝑌 †⟩
+ 𝑐 2 ⟨𝑌 𝑌 †⟩. (62) 

f both 𝑁 and 𝑌 are uncorrelated white noise signals, Eq. (62) reduces

o 

 

′( 𝜔 ) = 𝑇 𝑇 † + 𝑐 2 𝐼. (63)

e therefore use Eq. (63) to test the ability of the algorithm to estimate

 ( 𝜔 ) when additive white noise is present. Fig. 5 (c) shows how 𝜖 scales

ith 𝑐 for the same 1D system as in Fig. 4 . When 𝑐 = 0 there is no noise

nd 𝜖 = 0 . 022 as above. As 𝑐 increases, 𝜖 increases approximately lin-

arly, reaching 𝜖 ≈ 0 . 09 when 𝑐 = 1 and the measurement noise equals

he strength to the system input noise; after this the error increases more

lowly until measurement noise dominates, 𝐶 

′ ≈ 𝑐 2 𝐼, and 𝑇 est ≈ 𝑐𝐼 so

nformation about the actual system is lost. 

.3.2. Transfer function estimation for a 2D neural field propagator 

The cortex is an approximately 2D system with area of around 2000

m 

2 , but a thickness of only a few mm ( Kandel et al., 2012 ). We therefore

eed to test the ability of the algorithm to estimate transfer functions

or 2D systems with realistic brain dynamics. 

Transfer Function Estimation 

The wave equation component of a commonly used neural

eld propagator on a 2D plane is given by Robinson (2012) ;

obinson et al. (1997) 

( 𝐫, 𝜔 ) = 

1 
2 𝜋𝑟 2 

𝑒 

𝐾 0 

[ 
𝑅 

𝑟 𝑒 

( 

1 − 

𝑖𝜔 

𝛾

) ] 
, (64)

here 𝑅 = |𝐫|. 
When a pulse arrives at a point, further dynamics for the temporal

pread and conduction delay of pulses within local dendritic trees and

oma responses have the form Robinson et al. (1997) 

 ( 𝜔 ) = (1 − 𝑖𝜔 ∕ 𝛼) −1 (1 − 𝑖𝜔 ∕ 𝛽) −1 , (65)

here 𝛼 = 100 s −1 and 𝛽 = 350 s −1 are time constants that govern the

ise and fall of these dynamics. 

The full propagator for the system combines these synaptic dynamics

ith the temporal Fourier transform of the 2D delta function propagator

n Eq. (64) to give 

( 𝐫, 𝜔 ) = 𝐺 ( 𝜔 )Γ( 𝐫, 𝜔 ) , (66)

here as in the 1D case, 𝐺 is a gain chosen so that the largest eigen-

alue of Λ is 0.85 and the system is close to critical, as in real brains

 Robinson et al., 2002 ). 

In our numerical work we use a 470 × 470 mm system with periodic

oundary conditions, giving it an area consistent with that of the brain

nd obviating the constraint (51) on 𝑡 max . We discretize into a 17 ×
7 grid of 𝑀 = 289 points, giving 𝑛 𝑥 = 17 and Δ𝑥 = 27 . 6 mm so physi-

al features below this level are not resolvable. For this discretization,

q. (52) implies Δ𝑡 ≲ 3 . 1 ms or 𝑓 max = 162 Hz, which we use here. 

In the present system the combined synaptic, dendritic, and soma dy-

amics act as a low pass filter, embodied in the factor  ( 𝜔 ) in Eq. (65) .

his strongly attenuates angular frequencies below a few times 𝛼−1 , cor-

esponding to a few times 10 Hz for the parameters in Table I. Based on

his, Δ𝑡 could be increased to say, Δ𝑡 = 10 ms or 𝑓 max = 50 Hz, which

uffices to capture most of the system response if resolving 𝑇 with finer



J.A. Henderson, M. Dhamala and P.A. Robinson NeuroImage 235 (2021) 117989 

Fig. 4. The 1D asymmetric test case described 

by Eq. (60) with 𝜂 = −0 . 5 . (a) 𝑇 ( 𝑋, 𝜏) (colored 

lines) for four time delays, corresponding to the 

response of the system to a delta function in- 

put at the central point. Note that these curves 

for 𝑇 and 𝑇 est are almost indistinguishable on 

this scale; errors are discussed in the text. (b) 

As for (a), but plotting Λ( 𝜏) . (c) Example tem- 

poral evolution, 𝑇 ( 𝜏) , between points separated 

by 0.051 m. (d) As for (c), but Λ( 𝜏) . (e) 𝑇 ( 𝜏) − 
𝑇 est ( 𝜏) for points separated by 0.051 m. (f) As 

for (e), but Λ( 𝜏) − Λest ( 𝜏) . 

Fig. 5. Error 𝜖 in estimation of the 1D asym- 

metric test case described by Eq. (60) with 

𝜂 = −0 . 5 . (a) 𝜖 vs. sampling interval Δ𝑡, with to- 

tal sampling time 𝑡 max = 0 . 26 s. Nominal value 

is indicated by an arrow. (b) 𝜖 vs. 𝑡 max , with 

Δ𝑡 = 0 . 33 ms. Nominal value is indicated by an 

arrow. (c) 𝜖 vs. noise level 𝑐 with Δ𝑡 = 0 . 33 ms 

and 𝑡 max = 0 . 26 s. 
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a  
emporal resolution is not needed. Incidentally, these spatial scales and

requency ranges are well within the capabilities of high-resolution EEG,

ut not functional MRI. 

In the 1D case the largest errors in 𝑇 est ( 𝜏) were around 𝑡 max ∕2 . Here

e aim to demonstrate an accurate estimate of 𝑇 , including around

 max ∕2 and therefore choose 𝑡 max = 10 s, which is large. If only shorter

ime 𝑇 responses are needed, then 𝑡 can be reduced at the cost of
est max 

9 
omewhat increased error in that range, but reduced runtime. The above

hoices give 𝑛 𝑡 = 1624 and Δ𝑓 = 0 . 1 Hz. 

Using the above parameters, Fig. 6 shows the outward propagation

f the response to a delta function input at the central point of the system

or time delays of 10 ms, 20 ms, and 30 ms, illustrating the dynamics of

 ( 𝜏) , Λ( 𝜏) , and Γ( 𝜏) . Fig. 7 shows the full temporal extent of 𝑇 ( 𝜏) , Λ( 𝜏) ,
nd Γ( 𝜏) , and differences from their estimated quantities for points sepa-
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Fig. 6. 2D test case described by Eqs (64) and (66) . The sys- 

tem is approximately discretized into a 17 × 17 grid of equally 

spaced points of side length 47 cm, with periodic boundaries, 

over a frequency range of 0 to 162 Hz in 0.1 Hz increments. 

Each frame shows the spatial response to a delta function in- 

put at the central point, with time delays since input of 10 ms, 

20 ms and 30 ms from left to right. In all frames the differences 

between the actual and estimated quantities are imperceptible 

at the scales shown. (a)-(c) 𝑇 ( 𝜏) . (d)-(f) Λ( 𝜏) . (g)-(i) Γ( 𝜏) . 

Fig. 7. 2D test case described by Eqs (64) and 

(66) . The system is approximately discretized 

into a 17 × 17 grid of equally spaced points of 

side length 47 cm, with periodic boundaries, 

over a frequency range of 0 to 162 Hz in 

0.1 Hz increments. Plots are for 𝑇 , Λ, and Γ
between points separated by half the grid di- 

mension, 23.5 cm. Insets enlarge parts of curves 

not well resolved in the full frames. (a) 𝑇 ( 𝜏) . 
(b) 𝑇 ( 𝜏) − 𝑇 est ( 𝜏) . (c) Λ( 𝜏) . (d) Λ( 𝜏) − Λest ( 𝜏) . (e) 

Γ( 𝜏) . (f) Γ( 𝜏) − Γest ( 𝜏) . 

10 
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Fig. 8. Errors in estimation of the 2D transfer 

function described by Eqs (64) and (66) . Nom- 

inal value is indicated by an arrow. (a) 𝜖 vs. Δ𝑡, 
with 𝑡 𝑠 = 10 s. (b) 𝜖 vs. 𝑡 max , with Δ𝑡 = 1 . 67 ms. 

(c) 𝜖 vs. noise level 𝑐, with 𝑡 max = 10 s and 

Δ𝑡 = 1 . 67 ms. (d) 𝜖 vs. Δ𝑥, with 𝑡 max = 10 s and 

Δ𝑡 = Δ𝑥 ∕ 𝑣 . 
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ated by half the grid dimension, 23.5 cm. From these figures, we can see

hat 𝑇 and Λ are very similar for the first few tens of milliseconds, where

 is dominated by direct propagation in Λ; however, as 𝜏 increases, so

o does indirect propagation and 𝑇 decays more slowly than Λ. Numer-

cal results (not shown) demonstrate that this difference becomes more

oticeable in cases in which the system is closer to criticality. 

During the initial response ( 𝜏 ≲ 5 s), the peak difference in 𝑇 ( 𝜏) −
 est ( 𝜏) is almost three orders of magnitude smaller than the peak value

f 𝑇 ( 𝜏) , and 𝜖 = 0 . 002 . In Fig. 7 (a), we can see that 𝑇 has decayed al-

ost to zero at 𝜏 = 10 s and so 𝑡 max = 10 s has captured most of the slow

ynamics. We see in Figs 7 (b), (d), and (f) that the central artifact at

 max ∕2 remains, as in the 1D case; however, most of the system response

as been captured and the error is much smaller. Since the algorithm

roduces an artifact centered on 𝑡 max ∕2 , to avoid this artifact 𝑡 max should

e chosen to be more than twice the maximum desired time response,

s in Eq. (58) . 

Dependence of Accuracy on Sampling Parameters Fig. 8 shows how 𝜖

epends on sampling parameters Δ𝑡 and 𝑡 max . We use a coarser 11 ×
1 grid of 121 points than in Section 3.3.2 to reduce computational re-

ource requirements, giving 𝑛 𝑥 = 11 and Δ𝑥 = 42 . 7 mm. In Fig. 8 (a) 𝑡 max 
s fixed at 10 s, and the red arrow indicates the point corresponding to

𝑡 = 10 ms as used in Section 3.3.2 . As Δ𝑡 increases, the fast dynamics of

he system are increasingly missed, so 𝜖 increases. Fig. 8 (b) shows 𝜖 vs.

 max for Δ𝑡 fixed at 10 ms. The red arrow indicates the point correspond-

ng to 𝑡 max = 10 s as used in Section 3.3.2 . We see that as 𝑡 max increases,

decreases due to the reduction of the artifact at 𝑡 max ∕2 , as well as error

lsewhere. As 𝑡 max is reduced, the position of the 𝑡 max ∕2 artifact is shifted

loser to the large initial response, the size of the artifact increases and

t occupies a larger fraction of the range of 𝑇 ( 𝜏) , thus increasing 𝜖. 

Fig. 8 (b) shows how 𝜖 depends on 𝑡 max . As Fig. 7 showed, most of the

esponse for the 2D system is concentrated very close to 0 Hz. As 𝑡 max 
ecreases, the frequency resolution is coarser and the slow dynamics of

he system are less well represented, so 𝜖 increases significantly. Thus,

hen 𝑡 max is large, 𝜖 is small; here 𝜖 = 0 . 004 when 𝑡 max = 10 s. 
Dependence of Accuracy on Noise As for the 1D test case, Fig. 8 (c)

hows 𝜖 with the addition of white, additive measurement noise using

q. (63) . When 𝑐 = 0 , there is no noise and 𝜖 ≈ 0 . 004 is small. As 𝑐 in-

reases, the error rises quickly, until about 𝑐 ≈ 1 when the measurement

oise has the same strength as the input noise. As 𝑐 increases further, the

 

2 𝐼 term in Eq. (63) dominates and 𝑇 est → 𝐼 and little information about

he underlying system is recovered. Overall, the error is much smaller

han in the 1D test case in Fig. 5 (c) because from Eq. (63) , adding noise

orces 𝑇 est to be closer to 𝐼, but in this 2D system high frequencies are

ltered out, so 𝑇 is already close to 𝐼 at high frequencies. 

Numerical Runtime We find that the code runs on a PC in a reasonable

ime for problems of a size that is of the same order as those encountered

n typical experimental situations. For example, a case with 𝑀 = 100 and

 𝑡 = 1000 takes around 40 s on a single-core of an Intel Xeon E5-2697

4 CPU with base clock speed of 2.6 GHz. Exploration of a number of

ifferent values verified the 𝑛 𝑡 dependence in Eq. (50) and did not find

ny additional 𝑀 dependence of the number of iterations required to

onverge to a specified accuracy, although the dependence on 𝑀 was
11 
till approaching its asymptotic form from above. Hence, we estimate a

untime of 

 ≈ 4 × 10 −8 𝑛 𝑡 𝑀 

3 s , (67)

or this machine; however, the 4 × 10 −8 constant is an overestimate of

he actual value because the asymptotic form was not reached and con-

erges from above. 

.3.3. Transfer function estimation for NFT on a discrete network with 

omplex anatomical connectivity 

Understanding the relationships between brain activity and its un-

erlying physiology and connectivity is a central problem in neuro-

cience and many other real world systems of interest have complex

onnectivity structure; thus we next test the Wilson algorithm for sys-

ems with a complex connectivity, or network architecture, and brain-

ike dynamics at the nodes. 

Estimation of Connection Matrix-Based Transfer Function A population

veraged anatomical cortical connectivity dataset ( Yeh et al., 2018 ) is

sed as the basis for calculations in this section. This dataset is derived

rom diffusion MRI of 824 healthy subjects in the Human Connectome

roject database ( Essen et al., 2012 ), discretized into 400 regions dis-

ributed across both cortical hemispheres ( Schaefer et al., 2018 ). The

natomical connection strengths in this dataset are based on white mat-

er fiber counts of axons connecting regions pairwise and do not include

ocal connections within a region, inhibitory connections, nor any infor-

ation on directionality. Overall, the matrix of detected connections is

parse, meaning that many connections were undetected or absent, and

onnections that were detected vary in strength over three orders of

agnitude, so it is essential to determine whether the algorithm can ac-

urately reconstruct the transfer function given these complexities. For

emonstration purposes, we restrict attention to the left hemisphere, in

hich 172 regions out of 200 were found to be connected to at least one

ther region; others were removed from the dataset before proceeding.

e stress that we are not concerned with the validity of this dataset

s regards state of the art connectivity estimation, only to provide an

xample of a large and extremely complicated connectivity dataset for

est purposes. 

Having been obtained by diffusion MRI, the dataset does not contain

nformation on time delays for signals to propagate between regions; nor

oes it contain information on the absolute strength of connections. So

or demonstration purposes, we assume that signals propagate between

oints separated by a Euclidean distance 𝑟 according to the NFT prop-

gator in Eq. (66) , which implies relevant time delays and dispersion

nd 𝐺 is taken to be the strength of connectivity in the dataset. We

lso multiply the connectivity strengths by a factor such that the largest

igenvalue of Λ is 𝜆1 = 0 . 85 to ensure that the system is stable but near

riticality. If spectral factorization is used to obtain 𝑇 𝑒𝑠𝑡 , then the struc-

ural connectivity can be further estimated by rearranging rearranging

14) and assuming NFT dynamics in (64) - (66) to find 𝐺. 

In choosing sampling parameters, we note that the smallest Eu-

lidean separation of regions is Δ𝑥 = 6 . 9 mm which implies Δ𝑡 = 0 . 8 ms

nd 𝑓 = 650 Hz using Eqs (52) and (55) , while the typical separation
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Fig. 9. Test case using anatomical connectiv- 

ity combined with the 2D NFT propagator de- 

scribed by Eqs (66) and (64) . The system is 

composed of the left hemisphere only, with 201 

ROIs, only 172 have connections to other ROIs. 

Disconnected ROIs are black. Activity is stim- 

ulated in one ROI and plotted for four time- 

points from the application of the stimulus. The 

differences between 𝑇 and 𝑇 est are impercepti- 

ble at the scales shown. (a) 𝑇 ( 𝜏 = 0 ms), show- 

ing the stimulated ROI in red. (b) 𝑇 ( 𝜏 = 5 ms). 

(c) 𝑇 ( 𝜏 = 10 ms). (d) 𝑇 ( 𝜏 = 15 ms). (e) Λ( 𝜏 = 
0 ms). (f) Λ( 𝜏 = 5 ms). (g) Λ( 𝜏 = 10 ms). (h) 

Λ( 𝜏 = 15 ms). (i) Γ( 𝜏 = 0 ms). (j) Γ( 𝜏 = 5 ms). 

(k) Γ( 𝜏 = 10 ms). (l) Γ( 𝜏 = 15 ms). 
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s around 30 mm, which corresponds to Δ𝑡 = 3 . 3 ms and 𝑓 max = 150 Hz.

owever, as described in Section 3.3.2 , dendritic and soma dynamics

escribed by Eq. (65) act as a low pass filter, limiting large-scale dy-

amics to 𝑓 ≲ 50 Hz. Here we choose 𝑓 max = 150 Hz so Δ𝑡 = 5 ms and

𝑥 = 30 mm. The presence of many very weak, or absent connections

n the dataset means that indirect propagation of activity tends to be

educed in comparison to the uniform 2D case in Section 3.3.2 . This

eans that the decay of 𝑇 tends to more closely match that of Λ than

n the 2D case, allowing the slow system dynamics to be captured by a

maller 𝑡 max . We therefore choose 𝑡 max = 5 s ( Δ𝑓 = 0 . 2 Hz); however, as

n the other test cases, smaller 𝑡 max can be chosen at the cost of increased

rror in that range, but reduced runtime. 

Fig. 9 shows four snapshots of 𝑇 ( 𝜏) , Λ( 𝜏) and Γ( 𝜏) , to a delta function

nput to the single discretized region shown in red in Fig. 9 (a), plotted

n the surface of a left hemisphere. Few areas display significant activ-

ty because the measured connectivity is sparse and often very weak;

owever, activity does spread to other ROIs. Over the plotted timescale,

esponses tend to increase over time with some ROI responses increas-

ng by many orders of magnitude. As described above, because most

onnections are weak, elements of 𝑇 and Λ tend to be similar; however,

does not contain the low pass filtering of  and so activity can be seen

n Γ sooner than in Λ and 𝑇 . 

Fig. 10 shows one representative element of 𝑇 ( 𝜏) , Λ( 𝜏) and Γ( 𝜏) and

ifferences 𝑇 ( 𝜏) − 𝑇 est ( 𝜏) , Λ( 𝜏) − Λest ( 𝜏) and Γ( 𝜏) − Γest ( 𝜏) . The difference

etween 𝑇 ( 𝜏) and 𝑇 est ( 𝜏) is small with 𝜖 = 0 . 0011 , and is especially small

way from the 𝑡 max ∕2 artifact, meaning that the Wilson algorithm is able

o closely estimate 𝑇 for systems with brain-like dynamics and complex

onnectivity and, more generally, systems with complex network archi-

ectures and time delays. 

As described above, the faster appearance of a response in Γ than in

and 𝑇 can be seen by comparing Fig. 10 (e) to Fig. 10 (a) and (c), as can

he similarity of 𝑇 and Λ owing to the many weak or absent connections

roducing a highly nonuniform system, reducing indirect propagation of

ctivity along many pathways in comparison to the uniform 2D case in

ection 3.3.2 . These indirect paths can be very long, and thus contribute

o slower responses. Note that because activity can be propagated via

ery many indirect pathways that involve weak connections, it is im-

ortant for experiments measuring structural connectivity to capture all

onnections, including weak ones and not remove them via threshold-

ng. However, we reiterate that our aim here is only to demonstrate

hat the algorithm can handle systems of similar complexity to those

bserved in brains. 

Often brain connectivity data are presented in the form of a con-

ection matrix (CM) ( Brown et al., 2012 ). This is especially common

or functional connectivity data defined to be two-point covariances,
12 
( 𝜏 = 0) , of fMRI time series. However, the dynamics of a system can-

ot practically be inferred from visual plots of correlations. In contrast,

 provides direct information about the dynamical influence of ROIs on

ne another. Because 𝑇 is the impulse response of the system, it is also

uch more useful than 𝐶 for incorporating into further analysis and

odeling, as described in Section 2 . Fig. 11 shows 𝑇 ( 𝜏) in connection

atrix (CM) format, with each column showing how activity spreads

rom a delta function input at the ROI corresponding to that column, as

hown in Fig. 9 . The mapping of the 2D cortical surface onto a 1D set

f matrix indices means that patterns in the CMs are difficult to inter-

ret visually and much of the apparent structure is an artifact of that

apping ( Henderson and Robinson, 2011, 2013, 2014 ); however, en-

ries near the diagonal tend to be for nearby ROIs. Thus, strong initial

esponses in Fig. 11 (c) and (d) tend to be clustered around the diagonals,

ut it should be noted from (g), that even after only 20 ms the response

as spread widely in the system and the lowest eigenmodes dominate

ver the short-scale ones that are only excited for a short period after

n initial 𝛿 input ( Mukta et al., 2019; 2020 ). After 1 s, shown in (h),

he response is widely spread, and the initial large responses have been

ttenuated greatly by damping. These temporally changing patterns of

etwork dynamics provide a promising approach to understanding the

ynamic functional connectivity patterns in fMRI CMs ( Hansen et al.,

015 ), providing a much more informative picture of the static struc-

ural and functional connectivities in Fig. 11 (a) and (e), respectively. 

. Discussion and conclusion 

The present work emphasizes the importance of the brain’s linear

ransfer function in describing and analyzing brain structure and func-

ion. The main results are: 

(i) We stressed and illustrated how the linear transfer function of

 system contains complete information about its linear properties, re-

ponses, and dynamics, and interrelates a wide range of commonly used

rain measures and analyses. The transfer function is central to a sys-

ematic, self-consistent description of brain anatomy, physiology and

ynamics which connect brain structure to brain function. These rela-

ions were described in continuous coordinate notation, reflecting the

ontinuous underlying brain system at the scales of interest, as well as

n discrete matrix form that is easily applicable to inherently discrete

xperimental measurements that probe the underlying continuum. 

(ii) It was shown that the transfer function can be efficiently obtained

ia spectral methods using evoked potentials or correlation functions.

e focused on the Wilson factorization algorithm applied to correlation

atrices. 
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Fig. 10. Test case using anatomical connectiv- 

ity combined with the 2D NFT propagator de- 

scribed by Eqs (66) and (64) . Insets enlarge 

parts of curves not well resolved in the full 

frames. (a) 𝑇 ( 𝜏) . (b) 𝑇 ( 𝜏) − 𝑇 est ( 𝜏) . (c) Λ( 𝜏) . (d) 

Λ( 𝜏) − Λest ( 𝜏) . (e) Γ( 𝜏) . (f) Γ( 𝜏) − Γest ( 𝜏) . 

Fig. 11. Test case using anatomical connectiv- 

ity combined with the 2D NFT propagator de- 

scribed by Eqs (66) and (64) . The system is 

composed of the 172 connected ROIs in the 

left hemisphere only. Plots are in connection 

matrix format, white indicates zero entries. (a) 

Anatomical connectivity strength used for 𝐺. 

(b) 𝑇 ( 𝜏 = 0 ms), showing the input to each ROI 

along the diagonal. (c) 𝑇 ( 𝜏 = 5 ms). (d) 𝑇 ( 𝜏 = 
10 ms). (e) Functional connectivity, 𝐶( 𝜏 = 0) . 
(f) 𝑇 ( 𝜏 = 15 ms). (g) 𝑇 ( 𝜏 = 20 ms). (h) 𝑇 ( 𝜏 = 
1000 ms). 
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(iii) We have provided MatLab code ( https://github.com/

rainDynamicsUSYD/SpecFac ) that implements the Wilson spec-

ral factorization algorithm and have showed that its runtime is

ractical for systems of hundreds of elements, as in MEG experiments

nd high-density EEG recordings, for example. 

(iv) We provide criteria for sampling time series in experiments, and

est the performance of the Wilson algorithm with variation in these

arameters. Measurement times of a few seconds or longer provide an

ccurate estimate of the transfer function for brain-like dynamics; how-

ver, measurement times can be reduced if the focus is on short-time

ynamics, thereby reducing runtimes commensurately. We show that

he algorithm produces its largest error in the estimated transfer func-

ion at the midpoint of its temporal range, and that the size of the error

s reduced by increasing the duration and temporal resolution of the

easured time series used in constructing the cross spectrum input to

he algorithm. For long, high frequency time series recordings, the error

an be made negligible. 

In practice the ground truth is not known to be able to infer the qual-

ty of the estimated transfer function for a given set of measurement

arameters. However, convergence of the algorithm’s estimate of the

ransfer function toward the limit of infinitely fine sampling resolution

an be inferred by varying the measurement parameters and observing

he change in the resulting estimated transfer function; extrapolating

hese changes can also be considered. A suitable set of measurement pa-

ameters should be indicated when the change to the estimated transfer

unction is small. 

These measurement criteria obtained imply that experimental

odalities like EEG and MEG are suitable for determining time de-

ays, but with EEG having relatively coarse spatial resolution. fMRI can-

ot be used to determine neural level time delays because of its max-

mum sampling rate of only a few Hz and the intrinsically slow ( ∼1 s

imescale) hemodynamic response that underlies it Chen et al. (2019) ;

emetriou et al. (2018) . However, we introduced a modal projection

hat makes use of fMRI’s high spatial resolution to obtain the spatial

tructure of eigenmodes. The spatial component of the eigenmodes was

hen combined with the temporal structure of a transfer function ob-

ained via spectral factorization of high temporal resolution EEG or MEG

ime series data. By combining fMRI, and EEG or MEG it is possible to

btain low order modes of a brain transfer function with both high spa-

ial and temporal resolution which can help with properly interpreting

nd understanding observations of resting state networks and default

ode networks, for example. 

(v) The Wilson algorithm was demonstrated to accurately estimate

nown transfer functions constructed in successively more realistic and

omplicated test cases derived from neural field theory. These included

ystems containing delta function dynamics, systems with brain-like

ime delays in activity propagation, two dimensional systems, and sys-

ems with brain-like dynamics on complex discrete network architec-

ure. 

(vi) The performance of the algorithm was tested in the presence of

dditive white measurement noise. It was found that the error in the

lgorithm’s output transfer function estimate was small provided that

he strength of the noise was small relative to the system’s actual input.

The performance of the algorithm for spectral Granger causality es-

imates with additive (independent and mixed) white noise in data has

reviously been assessed and found to be reasonably robust for noise

mounts lower than signal levels ( Pagnotta et al., 2018a,b ). The use of

ime reversal testing was found to further mitigate the effects of noise

 Winkler et al., 2016 ). 

(vii) This good performance for a range of dynamical features pro-

ides confidence in the use of the algorithm on real data, and other

on-neural systems. However, time series measurements include the un-

erlying dynamics that are of interest, but also measurement dynamics

nd noise introduced via the measurement process. The details of noise

nd artefact components are specific to each modality and developing

ethods for filtering noise and artefacts from brain data is an active area
14 
f research. Methods for removal of unwanted components of the trans-

er function can be applied to the measured time series, before being

nput to the algorithm; e.g., via source localization, or deconvolutional

ethods. 

From these insights, it is clear that spectral factorization is a process

hat enables proper analysis of brain time series measurements; trans-

orming functional CMs into transfer functions that provide a much more

nformative, dynamic perspective of the brain and enabling the use of a

lethora of systematic analyses, as described in Sec 2 . 
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