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Abstract – Being able to control the neuronal spiking activity in specific brain regions is central
to a treatment scheme in several brain disorders such as epileptic seizures, mental depression,
and Parkinson’s diseases. Here, we present an approach for controlling self-sustained oscillations
by adding or removing one directed network link in coupled neuronal oscillators, in contrast to
previous approaches of adding stimuli or noise. We find that such networks can exhibit a variety
of activity patterns such as on-off switch, sustained spikes, and short-term spikes. We derive
the condition for a specific link to be the controller of the on-off effect. A qualitative analysis
is provided to facilitate the understanding of the mechanism for spiking activity by adding one
link. Our findings represent the first report on generating spike activity with the addition of only
one directed link to a network and provide a deeper understanding of the microscopic roots of
self-sustained spiking.

Copyright c© EPLA, 2013

Pattern formations in excitable neural systems have
been studied for several decades, producing a wealth
of physics on working memory of information encoding,
storing and retrieval [1–3], heart pacemaker [4], sleep-
related rhythms [5,6], and others. External stimuli and
inherent noise in the brain are known to affect the neuronal
activity patterns in the brain, not only in normal [4], but
also in pathological brain activity such as seizures [7–10].
The treatment of some brain disorders essentially involves
beginning or ending certain patterns of spiking activity
from specific regions. In epileptic seizures, the treatment
aims to stop the spread of brain activity by cutting brain
connection fibers. In case of severe mental depression
and Parkinson’s disease, the neuronal activity in specific
brain regions is initiated by external stimulation. Here,

(a)E-mail: zhliu@phy.ecnu.edu.cn

in this simulation study, we look into the possibility of
a minimal network intervention approach to control the
spiking activity in the brain.

Rhythmic spiking and bursting in the cerebral cortex
are generated by the cortical circuits [5]. One hypothesis
about the sleep-related rhythms is that they are only the
brain’s way of disconnecting the cortex from the sensory
input. When you are awake, thalamus allows sensory
information to pass through it and be relayed up to the
cortex. While you are asleep, thalamic neurons enter
a self-sustained spontaneous activity state that sensory
information cannot be sent to the cortex [11–13]. An
important question is, how do local cortical networks
generate this recurrent activity and how do afferent inputs
start and stop it? It was shown that local cortical circuits
do indeed operate through local recurrent connections,
and that the operation of such circuits can generate
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self-sustaining activity that can be turned on and off
by synaptic inputs [6]. Experimental studies of cortical
areas [14] showed that the degree of heterogeneity in
the connections significantly impacts the input-output
function, rhythmicity, and synchrony. Yet, qualitative
effects induced by connection heterogeneities are still
poorly understood theoretically.

Self-sustained oscillations is currently a topic of in-
tense research in excitable systems on complex networks
[4,15–20]. Roxin et al. made the pioneering study in small-
world networks and found that the structure of small-
world network will seriously influence the self-sustained
persistent activity or the failure time [15]. Their results
are based on statistical ensemble average and thus are in
the stage of macroscopic mechanism. Qian et al. revealed
that a loop in the complex networks may behave as a
pacemaker to sustain the spiral waves [4]. However, all
these works need stimuli or noise to initiate a spike.
Whether such self-sustained behavior can be generated by
a third way, i.e., a change of network structure, remained
an open problem. Especially, it will be a very interesting
problem when the change is only a tiny part of the
network or even only one network link, which has received
considerable attention in the fields of self-organization
in critical phenomena, epileptic seizure, and cascading
failures etc. [21–23].

In this work, we investigate self-sustained spikes
through slightly varying network structure and report the
first topology variation-induced patterns in a network with
a loop core. We present a simple neural network model to
exhibit a variety of activity patterns such as on-off switch,
sustained spikes, and short-term spikes. We surprisingly
find that without external stimuli or noise, a spike can
be generated by adding only one link, i.e., the third way.
The condition for a link to be the controller of on-off effect
is also investigated. Moreover, a qualitative analysis is
provided to explain the mechanism of generating spike by
adding one link to the network. This work is distinguished
from ref. [15] in three points: i) it does not need an initial
stimulus or noise; ii) it focuses on the microscopic root
of self-sustained spiking, i.e., the existence of an effective
loop; iii) it shows how to control the patterns.

We first consider a loop of excitable nodes with bidi-
rectional coupling and size N . That is, the neuron i will
be connected to both the neuron i + 1 and the neuron
i − 1 and the periodic boundary condition will be used.
We then choose one node from the loop and let it be a
source node. Without loss of generality, we let node 1
be the source node. Starting from the source node 1, we
add some unidirectional links to other nodes, see the solid
lines in the schematic fig. 1 with their arrows denoting the
coupling direction. After a finite time evolution, we may
slightly change the network structure by adding some new
links such as the dashed line in fig. 1.

We let each node in fig. 1 be an excitable FitzHugh-
Nagumo (FHN) neuron [24–28] and let the coupling be
a chemical coupling. The dynamics of neuron i can be

Fig. 1: (Color online) Schematic figure of the coupled neural
network where node 1 represents the source node and the
arrows denote the coupling directions. The solid lines such
as 1 → i1 and 1 → i2 are part of the network and cannot be
removed, while the dashed line 1 → i0 is not on the network
initially but will be added later. The two arrows at node
i0 represent its two coupling directions along the loop. The
dashed parts on the circle imply that some nodes here are
omitted.

described as

εu̇i = ui −
u3

i

3
− vi + I1∆(i) + Ii−1 + Ii+1,

v̇i = aui + bvi + d, (1)

where i = 1, 2, . . . , N , IN+1 = I1, I0 = IN , and ui and
vi represent the fast and slow variables, respectively. ε
is a small parameter which warrants a clear separation
between the slow and fast time scales. We fix the param-
eters ε = 0.01, a = 0.08, b = −0.064, and d = 0.056 as in
ref. [25] so that an isolated neuron will be in the excitable
state. We notice that there is a spontaneous miniature
synaptic potential in excitable neurons [29,30], which may
contribute a small quantity f to the synaptic conductance
gsyn. We also notice that a realistic synaptic conductance
gsyn varies with time and has a finite duration in both
its rising and decay phases [24,31]. Thus, we consider the
synaptic coupling current as Ii = gsyn(usyn − ui) with

gsyn = f + gmax[e−(t−tsp

j
−τ)/τd

− e−(t−tsp

j
−τ)/τr ], (2)

where gmax describes the maximal synaptic conductance
between neurons, usyn denotes the synaptic reversal po-
tential, τ is the time delay between adjacent neurons, tsp

j

represents the presynaptic spiking, τd and τr stand for
the decay and rise time of the function and determine the
duration of the response. We define ∆(i) = 1 if there
is a link from the source node 1 to node i, otherwise
∆(i) = 0. In this paper, we take the parameters as
gmax = 0.2mS/cm2, usyn = 0, τ = 0.5ms, τd = 10ms
and τr = 1ms.
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Fig. 2: Pattern formations on the network. (a) and (b): cases
of adding a directional link on an isolated loop from the source
node 1 to nodes 3 and 5 at the time t = 500, respectively. (c)
and (d): cases of adding a new link from the source node 1 to
nodes 5 and 33 at the time t = 500, respectively, where the
initial network has 9 directional links from the source node 1
to the nodes 10, 20, . . . , 90.

Let us numerically check how the topology of fig. 1
works for generating and sustaining spikes for fixed N =
100. We first consider the specific case of an isolated
loop without any directional couplings from the source
node 1 to node i. We let the system (1) evolve with
random initial conditions. After a short time of evolution,
the system will reach a steady state. Then, we add a
directional link from the source node 1 to node 3 at the
time t = 500. We surprisingly find that the new link will
induce a spike and the spike can be propagated to other
nodes but cannot be sustained. Figure 2(a) shows the
result. This finding implies that a spike can be generated
by slightly changing the network topology, in contrast to
previous understanding that a spike can be induced by
stimulus or noise. Encouraged by this finding, we have
studied other cases of adding different links between any
two nodes on the loop and found that the induced spikes
can be even sustained in the network. Figure 2(b) shows
the result when a directional link is added from the source
node 1 to node 5 at the time t = 500. Finally, we
consider a more general case where the network initially
has 9 directional links from the source node 1 to the nodes
mod(i, 10), i.e., 10, 20, . . . , 90, see the topology of fig. 1.
We add a new directional link from the source node 1 to
node 5 at the time t = 500, see the dashed link in fig. 1
with i0 = 5. Figure 2(c) shows the result which is similar
to fig. 2(b), indicating that it is a general phenomenon for
a new adding link to generate and then sustain spikes.

To understand how the spikes are sustained, we check
all the spikes at each time t. It is easy to see that both the
first spike in fig. 2(a) and (b) are generated at the nodes
3 and 5 at the time t = 500, respectively, and these two
nodes 3 and 5 are always the peaks of the curves. Another
common point in fig. 2(a) and (b) is that there is a bottom

node on all the curves. The difference is that the spikes
in fig. 2(a) end at the bottom node 53, while the spikes in
fig. 2(b) do not end at the bottom node 55 but periodically
repeat the process. From these observations we conclude
that 1) the generated spike by the new adding link will be
gradually spread out to both the directions along the loop;
2) once a node is spiked, it will enter its refractory status
for a short time, i.e., not spiking again when it receives
a transmitted stimulus immediately; 3) the existence of
a unidirectionally coupled loop, i.e., pacemaker loop, is
the necessary condition to sustain spikes. These three
conditions explain why fig. 2(a) does not have sustained
spikes while fig. 2(b) does. Let us first analyze fig. 2(a)
in detail. The link 1 → 3 leads to two unidirectionally
coupled loops in the network. One is the big loop 1 →

3 → 4 · · · → N → 1 and the other is the small loop
1 → 3 → 2 → 1. For the big loop, the first spike generated
at node 3 will be transmitted along its two directions, i.e.,
3 → 4 → 5 · · · and 3 → 2 → 1 → N → N − 1 · · · .
When these two transmitting spikes meet at node 53, they
have to stop there because both the neighboring nodes 52
and 54 have just spiked and thus are in the refractory
status, resulting in the end of the transmitting process.
For the small loop, there is only one transmitting direction
3 → 2 → 1 → 3. However, because the loop is too small,
the node 3 will be still in the refractory status when the
spike generated at node 3 is transmitted back to itself
through the source node 1, also resulting in the end of
the spreading process. Therefore, fig. 2(a) cannot have
sustained spikes. After understanding fig. 2(a), it is now
easy to understand fig. 2(b). For the same reason, the
big loop in fig. 2(b) will not have the sustained spikes.
However, the small loop 5 → 4 · · · → 1 → 5 in fig. 2(b) is
different. Node 5 will be out of the refractory status when
the spike is transmitted back to itself through the source
node 1, thus node 5 will stimulate a spike again by the
source node 1 and then form the sustained spikes in the
network, indicating that this small loop is the pacemaker
loop to sustain spikes.

The three conditions can also be used to explain fig. 2(c)
although its pattern is much complicated than fig. 2(a)
and (b). The new adding link 1 → 5 at the time t =
500 in fig. 2(c) will induce a spike at node 5 and then
the spike will be transmitted along two paths, i.e., 5 →

4 → 3 · · · and 5 → 6 → 7 · · · , see the two red arrows at
node i0 in fig. 1. When the spiking on the first path is
transmitted to the source node 1, it will be transmitted to
11 different paths (i.e., 1 → 5, 1 → 10, 1 → 20, · · · , 1 →

90, and 1 → N) at the same time. Then, except the node
N , each spiking at the 10 nodes 5, 10, 20, . . . , 90 will be
continuously transmitted by two paths, i.e., i → i+1 and
i → i−1. The spiking at node N will be only transmitted
to node N − 1 but not back to node 1 as it is in the
status of refractory. An interesting phenomenon occurs:
the spikes from two neighboring paths will meet and then
end the spreading process as both of their next locations
are in the refractory status. For example, the spiking from
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the path N → N − 1 · · · will meet with that from 90 →

91 · · · at node 95 and then end the spreading process there.
This is the reason why we have observed the peaks at
nodes N, 90, . . . , 5 and the bottoms at nodes 95, 85, . . . in
fig. 2(c). After all the ending processes, only the spiking
on the path 5 → 4 → 3 · · · remains, which consists of the
pacemaker loop and then repeats the cycle through the
source node 1.

Figure 2(c) tells us that the rightmost link 1 → i0 in
fig. 1 is the key to sustain spikes in the network. An
interesting question would be what will happen if the
link 1 → i0 is not the rightmost link. To answer this
question, we let i1 and i2 be the rightmost and leftmost
links of the initial network, see fig. 1. In concrete, we
here have i1 = 10 and i2 = 90. Then, instead of adding
a link 1 → 5 at t = 500, we add a link 1 → 33 at
t = 500 which is between i1 and i2. Figure 2(d) shows
the result. Obviously, the pattern in fig. 2(d) is quit
different from that in fig. 2(c), especially the recurrent
periods. This phenomenon can be also explained by the
above three conditions. We notice that in the second
cycle of transmissions, the two transmitting directions
1 → 33 → 32 · · · and 1 → 33 → 34 · · · will be ended by
the neighboring transmitting directions 1 → 30 → 31 · · ·
and 1 → 40 → 39 · · · , respectively. Thus, the link 1 → 33
will not be the key to sustain spikes again. In contrast,
the link 1 → 10 now becomes the closest one to the source
node 1 and thus is the key to sustain spikes, indicating
that the pacemaker loop consists of 10 → 9 · · · → 1 → 10.
Considering that the period of the pattern is determined
by the size of the pacemaker loop, we predict that the
period will be proportional to 5 in fig. 2(c) and 10 in
fig. 2(d), which gives the ratio 1/2. This prediction can
be easily confirmed by counting the numbers of curves in
fig. 2(c) and (d), respectively. For example, we focus in
the range 1000 < t < 2000 and find that the numbers are
24 and 12, respectively, which gives the frequency ratio
24/12 and thus the period ratio 12/24 = 1/2. In sum,
sustained spikes and their period are determined by the
size of pacemaker loop.

The above discussions are based on the adding of a new
link. An intuitive question will be how about the removing
of a link. To study this problem, we make a slight change
on the network of fig. 2(c): remove the link 1 → 5 at the
time t = 1000, then add the link 1 → 5 again at the time
t = 1500, then remove the link 1 → 5 again at the time
t = 2000 and so on. We find that these operations result
in an effect of on-off switch, implying that the pattern
can be controlled by only one link! Figure 3(a) shows
the result. The underlying mechanism is that there are
two transmitting directions 5 → 4 · · · and 5 → 6 · · ·
before removing the link 1 → 5. After removing the link
1 → 5, these two transmissions will meet at node 10 and
then cannot continue to transmit toward the direction
10 → 9 · · · because node 9 is in the refractory status,
resulting the end of sustained spikes. Our numerical
simulations further reveal that the sustained spikes will

Fig. 3: Effect of on-off switch with the initial network of
9 directional links from the source node 1 to the nodes
10, 20, . . . , 90. A new link will be added at the time t = 500,
removed at t = 1000, added again t = 1500, removed again
at t = 2000 and so on. (a) and (b) represent the cases of
adding the new link from the source node 1 to nodes 5 and 33,
respectively.

be ended, provided that the two transmissions will meet
between i0 and i1 in fig. 1. For example, when the link
1 → 5 is replaced by 1 → 4, the two transmissions
will meet at node 9 and thus end the sustained spikes.
Moreover, when the initial links from the source node
1 to the nodes mod(i, 10) is replaced by mod(i, 20), we
will have more choice of 1 → i0 such as those links from
1 → 4 to 1 → 9 satisfying the condition that its two
transmissions will meet between i0 and i1, which results
in ending the sustained spikes. Therefore, we conclude
that the condition for the link 1 → i0 to be a controller
of on-off switch is that (1) the link 1 → i0 in fig. 1 must
be the one to make the pacemaker loop; and (2) the two
transmissions 1 → i0 → i0 − 1 · · · and 1 → i0 → i0 + 1 · · ·
have to meet between i0 and i1. When these conditions
are broken, we cannot observe the effect of on-off switch.
For example, when we replace the link 1 → 5 in fig. 3(a) by
1 → 33, the recurrent operations of adding and removing
the link 1 → 33 will not influence the sustained spikes.
Figure 3(b) shows the result.

An interesting question is how the time delay τ in eq. (2)
influences the sustained spikes? To figure out the answer,
we take the case of fig. 2(c) as an example. We find that
there is a critical point τc ≈ 0.73. The pattern is the same
as in fig. 2(c) when τ < τc. Figures 4(a) and (b) show
the results for two typical τ = 0.4 and 0.7, respectively.
While for τ > τc, the pattern will become another denser
one. Figures 4(c) and (d) show the results for two typical
τ = 0.75 and 1.0, respectively. Therefore, the sustained
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Fig. 4: The case of time delay with the same parameters as in
fig. 2(c). Panels (a)–(d) represent the cases of τ = 0.4, 0.7, 0.75
and 1.0, respectively.

spikes are robust to the delay, indicating that the delay is
not an important parameter here.

We now turn to analyze the mechanism of inducing spike
by adding a new link. Figure 5 shows the schematic figure
where the solid and dashed lines represent the u-nullcline
(u − u3/3 − v = 0) and v-nullcline (au + bv + d = 0),
respectively, and their intersection N1 denotes the equi-
librium point [5], see the inset. Before adding the new
link, the system stays nearby the point N1 which is on
the stable branch of the u-nullcline. Let ∆I = uN1

− uM1

with M1 denoting the bottom of u-nullcline. A spiking can
be induced if an external stimulus is greater than ∆I [5].
In our case, when a new link is added, it will cause an
input I1 to the variable u (see eq. (1)) and then make the
u-nullcline shift upward a distance M2 − M1 > ∆I, see
the dash-dotted line in fig. 5. The consequence is that the
original N1 is now locating below the new bottom M2 and
thus is in the region of self-excitatory of the new u-nullcline
and the trajectory from N1 to N2 goes through the right
branch of the new u-nullcline, thereby resulting in a spike.

To figure out the mechanism of sustained spikes, all the
above discussions are based on the existence of source
node 1. However, our extensive numerical simulations
show that the patterns of sustained spikes can also be
obtained by no source node. That is, the sustained
spikes can also be observed by randomly adding links
between any two nodes on the loop. Thus, the source
node in the schematic fig. 1 is only for the convenience
of illustrating the mechanism of sustained spikes but not
the necessary condition to sustain the spiking. We also
find that the effect of on-off switch can be implemented
by adding and removing more links at the same time.
Therefore, the configuration of fig. 1 and its variations will
produce abundant patterns. This property is very good
for short-term memory where a diversity of synchronized
patterns is guaranteed for sufficient coding capability in
brain oscillations [15,32]. The ability to generate differ-
ent periods of self-sustaining provides a computationally

Fig. 5: (Color online) Qualitative analysis to the mechanism
of induced spike by adding a new link.

powerful mechanism by which cortical networks may solve
a large variety of tasks [6].

In conclusion, we have provided a simple neural network
model to discuss the process of generating and sustaining
of spikes. In contrast to the previous two ways of adding
stimulus or noise to control spiking activity in excitable
systems, we discover a new way of controlling spiking
activity. We find that the existence of a small pacemaker
loop in the network is the key to sustained spikes, i.e.,
the other parts of the network are sustained by the small
pacemaker loop. Moreover, we find the effect of on-off
switch by periodically adding and removing a link. The
condition for a link to be a controller is that it must be the
one to make the pacemaker loop and its two transmissions
have to meet between i0 and i1. These findings reveal the
qualitative relationship between the long-time and short-
time memory and the local structure of neuron networks
and may help us understand the origin of the sustained
activity in the brain underlying human cognition.
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