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The natural measure of a chaotic set in a phase-space region can be related to the dynamical
properties of all unstable periodic orbits embedded in the chaotic set contained in that region.
This result has been shown to be valid for hyperbolic chaotic invariant sets. The aim of this
paper is to examine whether this result applies to nonhyperbolic, nonattracting chaotic saddles
which lead to transient chaos in physical systems. In particular, we examine, quantitatively, the
closeness of the natural measure obtained from a long trajectory on the chaotic saddle to that
evaluated from unstable periodic orbits embedded in the set. We also analyze the difference
between the long-time average values of physical quantities evaluated with respect to a dense
trajectory and those computed from unstable periodic orbits. Results with both the Hénon
map and the Ikeda–Hammel–Jones–Moloney map for which periodic orbits can be enumerated
lend credence to the conjecture that the unstable periodic-orbit theory of the natural measure
is applicable to nonhyperbolic chaotic saddles.

Keywords : Transient chaos; unstable periodic orbits; natural measure; ergodic averages;
nonhyperbolicity.

1. Introduction

Chaotic saddles are nonattracting dynamical in-
variant sets in the phase space of nonlinear sys-
tems [Grebogi et al., 1983; Kantz & Grassberger,
1985; Tél, 1990, 1996]. A trajectory starting from
a random initial condition in a phase-space region
containing a chaotic saddle typically stays near
the saddle, exhibiting a chaotic-like dynamics for
a finite amount of time before exiting the region
eventually and approaching asymptoticaly to a fi-
nal state that is usually not chaotic. Chaos in this
case is only transient. Physically, chaotic saddles
lead to observable phenomena such as chaotic scat-

tering [Focus Issue, 1993], fractal basin boundaries
[McDonald et al., 1985], fractal concentrations of
passive particle advected in open hydrodynamical
flows [Eckhardt & Aref, 1988; Jung et al., 1993;
Ziemniak et al., 1994; Péntek et al., 1995a; Péntek
et al., 1995b; Péntek et al., 1995c; Neufeld &
Tél, 1995] and fractal distribution of chemicals in
environmental flows [Toroczkai et al., 1998]. Math-
ematically, chaotic saddles are closed, bounded, and
invariant sets having dense orbits. They are the soul
of chaotic dynamics [Smale, 1967].

In a nonlinear system, there are typically two
situations where transient chaos can occur. The
first is in parameter regimes after crises [Grebogi
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et al., 1983]. At a crisis, a chaotic attractor collides
with its own basin boundary and is converted into
a chaotic saddle [Grebogi et al., 1983]. After the
crisis, the main dynamical invariant sets are chaotic
saddles [Lai et al., 1993]. The second case where
chaotic saddles arise corresponds to periodic win-
dows created at saddle-node bifurcations. In a
given periodic window, one finds the coexistence
of a chaotic saddle and an attracting periodic or-
bit. The attracting orbit bifurcates in an infinite
period-doubling cascade leading to a small chaotic
attractor. The collision of this small chaotic attrac-
tor with the coexisting chaotic saddle marks the end
of the window and the recovery of the large chaotic
attractor in an interior crisis [Grebogi et al., 1983;
Szabó et al., 1996; Szabó et al., 2000].

In the study of transient chaos, one often
computes dynamical invariants associated with
the chaotic saddle. They can be, for instance,
the Lyapunov exponents, the fractal dimension,
the topological entropy, and other invariants of
the probability density or measure. These invari-
ants determine completely the behavior of physi-
cal observables such as the scattering function in
chaotic scattering [Focus Issue, 1993], the proba-
bility for a trajectory to approach a specific final
state in the presence of fractal basin boundaries
[McDonald et al., 1985], and the chemical reac-
tion rate in environmental flows [Toroczkai et al.,
1998]. The dynamical invariants associated with
any chaotic invariant set are physically meaningful
only when the measure being considered is the nat-
ural measure. For a chaotic attractor, the natural
measure is invariant under the time evolution of
the dynamics, and it can be obtained by using
typical trajectories on the attractors, that is, by
trajectories originated from randomly chosen ini-
tial conditions in the basin of attraction. For a
nonattracting chaotic saddle, the natural measure
can be computed by monitoring an ensemble of
typical trajectories on the saddle (see Sec. 2 for
a formal definition of the natural measure). To
better understand and manipulate transient chaos,
it is thus of physical interest to be able to under-
stand and to characterize the natural measure of a
chaotic saddle in terms of fundamental dynamical

quantities. The most fundamental building blocks
of a chaotic dynamics are the infinite number of
unstable periodic orbits embedded in the chaotic
invariant set [Morita et al., 1987; Gunaratne &
Procaccia, 1987; Auerbach et al., 1988a; Auerbach
et al., 1988b; Auerbach, 1990; Cvitanović, 1992;
Christiansen et al., 1997].

A key contribution along these lines was made
in [Grebogi et al., 1988] in which the authors ob-
tained an expression for the invariant natural mea-
sure in terms of the magnitude of the eigenvalues
of the unstable periodic orbits embedded in the
chaotic set. They proved [Grebogi et al., 1988]
the correctness of their expression but only for the
special case of an hyperbolic dynamics.1 The va-
lidity of their results for physical, which are typi-
cally nonhyperbolic, situations remained, however,
only a conjecture. Recently, it was numerically ver-
ified that this quantification of the natural measure
by unstable periodic orbits was valid for nonhy-
perbolic chaotic attractors [Lai et al., 1997; Lai,
1997]. The purpose of this paper is to provide evi-
dences for the applicability of the results of [Grebogi
et al., 1988] to nonhyperbolic chaotic saddles that
occur commonly in nonlinear systems [Lai et al.,
1993]. Because of the difficulty of enumerating un-
stable periodic orbits in high dimensions, we re-
strict our study to two-dimensional maps or, equiv-
alently, three-dimensional flows. In order to show
that the results by Grebogi et al. [1988] are also
valid for the case of nonhyperbolic chaotic saddles,
we take two approaches: (1) we compare the natural
measure computed from a dense orbit on a chaotic
saddle with that computed from unstable periodic
orbits embedded in the saddle; and (2) we com-
pare the average physical quantities computed from
a dense orbit with those computed from the periodic
orbits. Results with the Hénon map and the Ikeda–
Hammel–Jones–Moloney (IHJM) map for which pe-
riodic orbits can be enumerated lend credence to the
conjecture that the unstable periodic-orbit theory
of the natural measure is applicable to nonhyper-
bolic chaotic saddles, which are an important type
of chaotic invariant sets of great physical interest.
A brief account of part of the numerical results has
been published [Dhamala et al., 1999].

1The dynamics is hyperbolic on a chaotic set if at each point of the trajectory the tangent space can be split into an expanding
and a contracting subspace and the angle between them is bounded away from zero. Furthermore, the expanding subspace
evolves into the expanding one along the trajectory and the same is true for the contracting subspace. Otherwise the set
is nonhyperbolic. In general, nonhyperbolicity is a complicating feature because it can cause fundamental difficulties in the
study of the chaotic systems, a known one being the shadowability of numerical trajectories by real ones [Hammel et al., 1987;
Hammel et al., 1988; Grebogi et al., 1990; Dawson et al., 1994].
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The rest of the paper is organized as follows. In
Sec. 2, we give the definition of the natural measure
for chaotic saddles and describe the unstable peri-
odic orbit theory for transient chaos [Grebogi et al.,
1988]. In Sec. 3, we provide numerical evidence for
the validity of the theory for nonhyperbolic chaotic
saddles. For completeness, in Appendix we de-
scribe our algorithm to compute complete sets of
unstable periodic orbits [Davidchack & Lai, 1999;
Davidchack et al., 2001]. Discussions are presented
in Sec. 4.

2. Natural Measure of Chaotic
Saddles and Its Characterization
by Unstable Periodic Orbits

2.1. Definition of natural measure of
chaotic saddles

We consider dynamical systems described by two-
dimensional invertible maps, xn+1 = M(xn), where
x ∈ R2. These maps arise from the Poincaré sur-
face of section of three-dimensional flows. Imagine a
phase-space region S that contains a nonattracting
chaotic saddle Σ. The stable and the unstable man-
ifolds of the chaotic saddle are sets of points that
approach to it asymptotically under the forward
and backward iterations of the map, respectively.
If a large number N0 of random initial conditions
are distributed in S, the corresponding trajectories
will leave S eventually. They do so by being at-
tracted along the stable manifold, wandering near
the chaotic saddle for a finite amount of time, and
then exiting along the unstable manifold. Let N(n)
be the number of trajectories that still remain in S
at time n. Due to the chaotic nature of the saddle,
for large n, N(n) decreases exponentially in time
(typical for dissipative systems),

N(n) = N0e
−n/τ , (1)

where τ is the average lifetime of the chaotic tran-
sients, and the inverse of which, κ ≡ 1/τ , is the
escape rate of the saddle [Tél, 1990, 1996]. More
formally, the lifetime is defined to be

1

τ
= lim

n→+∞
lim

N0→∞
n−1 ln

[
N(n)

N0

]
. (2)

Since trajectories escape from the chaotic saddle
along the unstable manifold, at large positive time
n, the N(n) trajectory points will be in the vicinity

of the unstable manifold. Let C be a small box
within S that contains part of the unstable mani-
fold. The natural measure associated with the un-
stable manifold in C can thus be defined as [Grebogi
et al., 1988; Hsu et al., 1988]

µu(C) = lim
n→+∞

lim
N0→∞

Nu(n,C)

N(n)
, (3)

where Nu(n,C) is the number of the N(n) orbits in
C at time n. Similarly, the natural measure of the
stable manifold in a box C in S can be defined as
[Grebogi et al., 1988; Hsu et al., 1988]

µs(C) = lim
n→+∞

lim
N0→∞

Ns(n,C)

N(n)
, (4)

whereNs(n,C) is the number of initial conditions in
C whose trajectories do not leave S before time n.

From the definitions (3) and (4), we see that
the natural measures associated with the stable and
the unstable manifolds in C are determined by the
number of trajectory points in C at time zero and
time n, respectively. The natural measure of the
chaotic saddle, µ, can then be defined by consider-
ing Nm(ρ, n,C), the number of trajectory points in
C at a time ρn in between zero and n,

µ(C) = lim
n→+∞

lim
N0→∞

Nm(ρ, n,C)

N(n)
, (5)

where 0 < ρ < 1, Nm(0, n, C) = Ns(n,C), and
Nm(1, n, C) = Nu(n,C). For large N0 and n, tra-
jectories remaining in S would stay near the chaotic
saddle for most of the time between zero and n,
except at the beginning when they are attracted
towards the saddle along the stable manifold, and
at the end when they are exiting along the unstable
manifold. Thus, the measure defined in Eq. (5) is
independent of ρ, insofar as 0 < ρ < 1.

Note that, although N(n) decreases exponen-
tially in time, this decaying factor has been com-
pensated in the definitions of the natural measures
(3–5). These measures are thus invariant under the
dynamics, and they are also called the condition-
ally invariant measures [Tél, 1990, 1996]. Numeri-
cally, the natural measure of the chaotic saddle can
be computed by using the sprinkler method [Hsu
et al., 1988] or the PIM-triple method [Nusse et al.,
1989; Jacobs et al., 1997], the latter can generate
long trajectories on the chaotic saddle. Dynamical
invariants of the chaotic saddle, such as the fractal
dimensions and the Lyapunov exponents, can then
be defined with respect to the conditionally invari-
ant measure of the saddle.
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2.2. Unstable-periodic-orbit
characterization

To relate the natural measure to unstable periodic
orbits embedded in the saddle [Grebogi et al., 1988],
we cover the chaotic set with a grid of partitioning
cells, each being confined by segments of the sta-
ble and unstable manifolds. If the cells are small
compared with the size of the phase-space region
in which the chaotic set lies, each cell can be re-
garded as being rectangular, as shown in the upper
panel of Fig. 1, where the horizontal and vertical
sides are segments of the stable and unstable man-
ifolds, respectively. Denote this cell by Ci. Now
imagine that a large number N0 of initial condi-
tions is chosen according to the natural measure of
the chaotic saddle. The measure of the unstable
manifold µu contained in the cell Ci is the frac-
tion of trajectories that are still in Ci in the limit
n→∞. Let x0 be an initial condition on the part of
the chaotic saddle in the cell Ci. Due to recurrence
or ergodicity of trajectories on chaotic saddles, the
trajectory from x0 comes back to some point xp in
Ci, say, after p iterations, as shown in Fig. 1(a).
Let ab be the horizontal line segment through x0

ending at the two unstable-manifold segments, and
c′d′ be the vertical line segment through xp ending
at the two stable-manifold segments, as shown in
the lower panel of Fig. 1. Since ab is parallel to
the stable-manifold segments and, since x0 maps to
xp after p iterations, the image of ab under the p-
times iterated map Mp(x) is a shorter horizontal
line segment a′b′ straddling xp. Similarly, the pth

preimage of c′d′ is a shorter vertical line segment cd
straddling x0. Now construct two rectangles efgh
and e′f ′g′h′ with side lengths (ab, cd) and (a′b′, c′d′),
respectively. We see that the rectangle efgh maps
to the rectangle e′f ′g′h′ under Mp(x). Since both
rectangles have an overlapping region, and since the
dynamics is contracting in the horizontal direction
and expanding in the vertical direction, there must
be at least one point in the overlapping region whose
location is not influenced by the action of the pth-
iterated map Mp(x). That is, there must be an un-
stable fixed point xip of Mp(x) in the overlapping
region in the cell Ci.

To estimate the contribution to µ from the
fixed point xip, we assume that c′d′ has a length ε.
Thus, we have ε/L1(xip) for the length of cd, where
L1(xip) is the unstable (expanding) eigenvalue of
the fixed point xip. Since the natural measure is
uniform along the unstable direction and since there
are only about e−p/τ of the total number of trajec-
tories that are still in S at time p, we see that, asso-
ciated with the unstable fixed point xip, the fraction
of trajectories that are still in Ci in p iterations is

[ε/L1(xip)]e
−p/τ

εe−p/τ
=

1

L1(xip)
. (6)

Let C ∈ S be a subregion in the phase space that
contains part of the chaotic saddle, and let n > p
be a time at which we wish to examine how many
trajectory points, out of those from the N0 initial
conditions, still remain in C. From Eq. (6), we see

u u 
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Fig. 1. A schematic illustration of a cell in the Markov partition defined with respect to the stable and the unstable manifolds
of a hyperbolic chaotic saddle.
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that, at time p, the fraction of trajectory points that
are still in B is given by∑

xip∈C

1

L1(xip)
, (7)

where the summation is over all unstable fixed
points contained in C. Since p < n, we have

Nm(ρ, n,C) = N0

∑
xip∈C

1

L1(xip)
, (8)

where ρ = p/n < 1. The natural measure of the
chaotic saddle contained in C is thus given by

µ(C) = lim
n→+∞

lim
N0→∞

Nm(ρ, n,C)

N(n)

= lim
p→∞

∑
xip∈C

exp (p/τ)

L1(xip)
. (9)

Since S is a phase-space region that contains the
whole chaotic saddle, we have µ(S) = 1, which,
from Eq. (9), implies [Kadanoff & Tang, 1984]

µS(p) ≡ lim
p→∞

∑
xip∈S

1

L1(xip)
= exp (−p/τ) . (10)

The arguments leading to Eqs. (9) and (10) apply
to situations where a proper partition of the phase

space exists such that the shorter line segments a′b′

and cd in Fig. 1 are completely contained in the cell
Ci. For hyperbolic systems, such a partition ex-
ists, which is the Markov partition [Bowen, 1978].
Therefore, Eqs. (9) and (10) are rigorously valid
only for hyperbolic dynamical systems [Grebogi
et al., 1988]. Chaotic saddles arising in physical
situations are often nonhyperbolic [Lai et al., 1993].
For a nonhyperbolic chaotic saddle, there exists a
set of infinite number of points at which the stable
and unstable directions coincide. This nonhyper-
bolicity prevents construction of a grid of cells that
look like the one in Fig. 1. Due to this difficulty,
there is no rigorous verification of the validity of
Eqs. (9) and (10) for nonhyperbolic chaotic saddles.
The applicability of Eqs. (9) and (10) to chaotic sad-
dles in nonhyperbolic physical systems thus remains
to be a conjecture.

3. Numerical Verification

3.1. Hénon map

In order to be able to test the applicability of
Eqs. (9) and (10) to nonhyperbolic chaotic systems,
it is necessary to choose models for which all unsta-
ble periodic orbits of up to reasonably high periods
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Fig. 2. (a) A trajectory of 2× 104 points on the chaotic saddle for the Hénon map at a = 1.6 and b = 0.3. The trajectory is
computed by using the PIM-triple method. (b) The stable and the unstable foliations of the chaotic saddle in (a), computed
by using the sprinkler method.
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can be enumerated. We first choose the Hénon map
[Hénon, 1976],

xn+1 = a− x2
n + byn ,

yn+1 = xn ,
(11)

where a and b are parameters. To obtain chaotic
saddles, we fix b = 0.3 and choose a > ac, where
ac ≈ 1.426 is the crisis value beyond which the
Hénon chaotic attractor is converted into a chaotic
saddle [Grebogi et al., 1983]. For a & ac, explicit
numerical computation reveals that the minimally
possible angles between the stable and unstable
directions for points on the chaotic saddles can
be arbitrarily close to zero, indicating that the
chaotic saddles are nonhyperbolic [Lai et al., 1993].
Figure 2(a) shows an approximate trajectory, com-
puted by using the PIM-triple method [Nusse &

Yorke, 1989], of 2×104 points on the chaotic saddle
for a = 1.6, and Fig. 2(b) shows the stable and
unstable manifolds of the chaotic saddle, which are
computed using the sprinkler method [Hsu et al.,
1988; Grassberger et al., 1989]. From Fig. 2(b),
we see there are apparently points on the chaotic
saddle at which the stable and the unstable man-
ifolds tend to coincide. In the sequel, we choose
a = 1.5, 1.55, 1.6 and 1.65, for which the chaotic
saddles are numerically determined to be nonhyper-
bolic [Lai et al., 1993], to verify the applicability of
Eqs. (9) and (10).

3.1.1. Validity of Eq. (10)

We compute all unstable periodic orbits of periods
up to 28 and their eigenvalues for a = 1.5, 1.55, 1.6
and 1.65. The quantity µS(p) in Eq. (10) is then
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Fig. 3. (a–d) For the Hénon map at a = 1.5, 1.55, 1.6 and 1.65, respectively, lnµS(p) versus p, where µS(p) is the total
measure represented by all periodic orbits of period p defined in Eq. (10).
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Fig. 4. Comparison of the lifetimes of chaotic saddle obtained by extracting the slopes of the lines of lnN(n) versus n (circles)
and these obtained via Eq. (10) through unstable periodic orbits (diamonds) for a = 1.5, 1.55, 1.6 and 1.65.

computed as a function of p, for all periodic or-
bits of period p. Figures 3(a)–3(d) show the results
of the computations, where the curves of lnµS(p)
versus p are plotted. In all four cases, we observe
that µS(p)’s decay exponentially, as predicted by
Eq. (10). The fitted straight lines in Figs. 3(a)–
3(d) indicate the slope κ ≡ 1/τ . To compute τ
from direct numerical realization of Eq. (1), for each
a value, we choose 104 initial conditions uniformly
distributed in the region −2 ≤ (x, y) ≤ 2 and exam-
ine, at iteration n, the number of trajectory points
N(n) that still remain in the region. The lifetimes of
the chaotic saddles are then obtained by extracting
the slopes of the lines of lnN(n) versus n. Figure 4
shows the lifetimes τ obtained via this direct ap-
proach (circles) and via Eq. (10) through unstable
periodic orbits (diamonds) for all four chaotic sad-
dles that we have examined. The closeness of the
values of τ obtained via two different approaches
indicates the applicability of Eq. (10) for nonhyper-
bolic chaotic saddles.

3.1.2. Validity of Eq. (9)

To test Eq. (9), we divide the phase-space region:
−2 ≤ (x, y) ≤ 2 in which the chaotic saddles lie

by using a grid of 128 × 128. We use a PIM-
triple trajectory of 108 points to identify nonempty
cells to which the trajectory visits and to com-
pute the frequency of visit, or the approximate nat-
ural measure, in each nonempty cell. Call this
natural measure µi, i = 1, . . . ,Nne, where Nne is
the number of nonempty cells. We then compute,
for each nonempty cell C, the contribution to the
natural measure, µi(p), by all periodic orbits of pe-
riod p contained in the cell. Figures 5(a)–5(d) show
ln ∆µ(p) versus p for a = 1.5, 1.55, 1.6 and 1.65,
respectively, where

∆µ(p) ≡ 1

Nne

Nne∑
i=1

|µi − µi(p)| . (12)

We see that ∆µ(p) decreases exponentially as p in-
creases, indicating the validity of Eq. (9) for large
periods.

We note that Eq. (9) implies that the statis-
tical averages of dynamical invariants and physical
functions with respect to the natural measure of the
chaotic saddle can be computed in terms of the un-
stable periodic orbits embedded in the saddle. This
offers an alternative way to check the validity of
Eq. (9). Specifically, let F (x, y) be a function of
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Fig. 5. (a–d) For the Hénon map at a = 1.5, 1.55, 1.6 and 1.65, respectively, ln ∆µ(p) versus p. We see that ∆µ(p) decreases
exponentially as p increases, indicating the applicability of Eq. (9) for large periods.

physical interest. We wish to obtain the average
〈F 〉 of F (x, y) with respect to the natural measure
of the chaotic saddle, as follows:

〈F 〉 =

∫
F (x, y)dµ

= lim
N→∞

1

N

N∑
n=1

F (xn, yn) , (13)

where {xn, yn} (n = 1, . . . ,N → ∞) is a dense
trajectory generating the natural measure of the
chaotic saddle. In [Nusse & Yorke, 1989] and
[Jacobs et al., 1997], it was argued that the PIM-
triple algorithm is capable of yielding trajectories
that generate the natural measure of the chaotic
saddle. According to Eq. (9), the same average can
be expressed in terms of the unstable periodic orbits

embedded in the chaotic saddle,

〈F 〉(p) =

N(p)∑
j=1

µj(p)

[
1

p

p∑
i=1

F (xji, yji)

]
, (14)

where (xji, yji) (i = 1, . . . , p) denotes the jth fixed
point of the p-times iterated map, N(p) ∼ ehT p

is the total number of fixed points of the p-times
iterated map, and hT > 0 is the topological en-
tropy of the chaotic saddle. Note that if F (xji, yji)
is λj(p), the expanding eigenvalue of the jth fixed
point, Eq. (14) yields a representation of the pos-
itive Lyapunov exponent of the chaotic saddle in
terms of unstable periodic orbits

λ(p) =

N(p)∑
j=1

µj(p)λj(p) . (15)
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Fig. 6. (a–d) For the Hénon map at a = 1.5, 1.55, 1.6 and 1.65, respectively, 〈F 〉 (dotted line) and 〈F (p)〉 (large dots) versus

p, where F (x, y) = ex
2+y2

. It shows that 〈F (p)〉 converges to 〈F 〉 as p is increased.

Since ∆µ(p) decreases exponentially as a function of
p, we expect the difference ∆F (p) ≡ |〈F 〉(p)− 〈F 〉|
to decrease rapidly as p is increased. Note that for
p large but finite, the total measure from all peri-
odic orbits of period p is not exactly equal to but
only close to unity. Thus, to evaluate 〈F 〉(p), we
normalize the natural measure µj(p) in Eq. (14) by
the total measure:

µj(p) =
ep/τ/L1(xjp, p)

N(p)∑
i=1

ep/τ/L1(xip, p)

=
1/L1(xjp, p)

N(p)∑
i=1

1/L1(xip, p)

, j = 1, . . . ,N(p) . (16)

We first consider a smooth function: F (x, y) =

ex
2+y2

. Its average with respect to the natural mea-
sure of the chaotic saddle is computed by using
104 PIM-triple trajectories, each having length 1000
with 1000 preiterations. We then compute 〈F 〉(p)
from Eq. (14) by using periodic orbits of period up
to 28. Figures 6(a)–6(d) show 〈F 〉(p) versus p for
the Hénon map for a = 1.5, 1.55, 1.6 and 1.65, re-
spectively. In all four cases, we observe that 〈F 〉(p)
rapidly approaches 〈F 〉 as p becomes large.

Next, we compute the positive Lyapunov ex-
ponent of the chaotic saddle by using: (i) a long
PIM-triple trajectory; and (ii) periodic orbits as
in Eq. (15). Figures 7(a)–7(d) show λ(p) versus
p for a = 1.5, 1.55, 1.6 and 1.65, respectively.
We see that, again, λ(p) approaches λ as p is
increased. These results suggest that the charac-
terization of the natural measure of nonhyperbolic
chaotic saddles by unstable periodic orbits becomes
more precise as the period is increased.
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Fig. 7. (a–d) For the Hénon map at a = 1.5, 1.55, 1.6 and 1.65, respectively, λ (dotted line) and λ(p) (large dots) versus p,
where λ and λ(p) are the positive Lyapunov exponent of the chaotic saddle computed from the natural measure and from all
periodic orbits of period p, respectively.

3.2. Ikeda–Hammel–Jones–Moloney
map

To provide further numerical support for the
validity of Eqs. (9) and (10), we now consider the
following Ikeda–Hammel–Jones–Moloney (IHJM)
map [Ikeda, 1979; Hammel et al., 1985]:

xn+1 = a+ b(xn cos φn − yn sin φn) ,

yn+1 = b(xn sin φn + yn cos φn) ,
(17)

where φn = k−η/(1+x2
n+y2

n) is the phase variable,
a, b, k and η are parameters. The IHJM map mod-
els the dynamics of an optical pulse propagating
in a ring cavity, subject to partial reflection, phase
and amplitude modulation and distortion due to a
nonlinear optical medium in the cavity. Specifically,
the optical field is represented by the complex vari-
able z = x+iy, the parameters a and b quantify the

splitting of the optical field at various mirrors in the
cavity, the term η/(1+x2

n+y2
n) simulates the phase

modulation due to the nonlinear medium, and the
parameter k characterizes the optical detuning of
the cavity in the absence of nonlinear medium. In
our numerical experiments, we fix b = 0.9, k = 0.4,
η = 6.0 and choose a as the bifurcation parameter.
We observe that a boundary crisis [Grebogi et al.,
1983] occurs at ac ≈ 1.01, where a chaotic attractor
for a . ac is converted into a chaotic saddle for
a & ac. Figure 8(a) shows, for a = 1.1, a PIM-
triple trajectory of the chaotic saddle. The chaotic
saddle is apparently nonhyperbolic, as tangencies
between the stable manifold (trace of gaps along
the chaotic saddle) and the unstable manifold (the
closure of the chaotic saddle) can even be visually
seen from Fig. 8(a).

In order to test the validity of Eq. (10) for the
chaotic saddle in Fig. 8, we compute all unstable
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(a)

(b)

Fig. 8. (a) A trajectory of 9× 104 points on the chaotic saddle for the IHJM map at a = 1.1, b = 0.9, k = 0.4 and η = 6.0.
The trajectory is computed by using the PIM-triple method. (b) Locations of 343,094 orbit points of all periodic orbits of
periods 20 and their factors.

periodic orbits of periods up to 20 by using the
algorithm recently developed by Davidchack and
Lai [1999]. Figure 8(b) shows the locations of
343094 orbit points of all periodic orbits of peri-
ods 20 and their factors embedded in the chaotic
saddle. We see that, qualitatively, Fig. 8(b) resem-
ble Fig. 8(a), indicating that the natural measure of
the chaotic saddle can be represented by unstable

periodic orbits of high periods. Figure 9(a) shows
lnN(p) versus p, the slope of which gives the topo-
logical entropy of the chaotic saddle in Fig. 8(a).
We obtain: hT ≈ 0.64. Note from Fig. 9(a) that
the linear fit becomes more robust for p > 10.
Thus, we expect the exponential behavior of µS(p)
in Eq. (10) to be seen for p > 10, as shown in
Fig. 9(b), where lnµS(p) versus p, together with
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Fig. 9. For the IHJM map, (a) lnN(p) versus p, the slope of the linear fit gives the topological entropy of the chaotic saddle:
hT ≈ 0.64. (b) lnµS(p) versus p, where µS(p) is the total measure of all the periodic orbits of period p defined in Eq. (10).
The slope of the dotted line represents the escaping rate obtained from direct simulation of Eq. (1).

a linear fit, is plotted, for 11 ≤ p ≤ 20. The in-
verse of the slope of this decay gives the average
lifetime of the chaotic saddle in Fig. 8(a). We ob-
tain τ ≈ 22. By sprinkling a large number of initial
conditions in the region of Fig. 8 and examining
how they decay in time, we obtain τ ≈ 28 (the in-
verse of τ is indicated by the slope of the dashed
line in Fig. 9). The discrepancy between this value

of τ and the one obtained from unstable periodic
orbits is due to the low periods utilized in Fig. 9,
as periodic orbits only up to period 20 are com-
puted. It is, however, computationally demanding
to go beyond period 20 because the chaotic saddle
in Fig. 8(a) has a relatively large value of topolog-
ical entropy (hT ≈ 0.64). We have also considered

a smooth function: F (x, y) = ex
2+y2

and computed
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Fig. 10. For the IHJM map, 〈F 〉 (dotted line) and 〈F (p)〉 (continuous line with dots) versus p, where F (x, y) = ex
2+y2

.
Again, 〈F (p)〉 converges to 〈F 〉 as p is increased.

its average, 〈F 〉, with respect to the natural mea-
sure of the chaotic saddle in Fig. 8(a), and 〈F 〉(p)
from Eq. (14) by using periodic orbits of period up
to 20. Figure 10 shows 〈F 〉(p) versus p, where we
see that as p is increased, 〈F 〉(p) rapidly approaches
〈F 〉. These results thus indicate the goodness of the
unstable periodic orbit characterization of the nat-
ural measure for nonhyperbolic chaotic saddles in
the IHJM map.

4. Discussions

Unstable periodic orbits are believed to be the
skeleton of chaotic dynamics [Morita et al., 1987;
Gunaratne & Procaccia, 1987; Auerbach et al.,
1988a; Auerbach et al., 1988b; Auerbach, 1990;
Cvitanović, 1992; Christiansen et al., 1997]. They
are the most fundamental building blocks of
classical chaos with usefulness in the study of quan-
tum chaos [Gutzwiller, 1990]. Dynamical invariants
of a chaotic system such as the Lyapunov expo-
nents and the fractal dimension can be expressed
in terms of properties of unstable periodic orbits,

which is theoretically appealing. Since these dy-
namical invariants are defined with respect to the
natural measure, an important step is to relate the
natural measure to the set of infinite number of
unstable periodic orbits embedded in the chaotic
invariant set. Previous works have firmly estab-
lished the validity of the quantitative characteriza-
tion of the natural measure for chaotic attractors,
hyperbolic or nonhyperbolic [Grebogi et al., 1988;
Lai et al., 1997].

The principal contribution of this paper is
strong numerical evidence for the applicability of
the periodic-orbit theory of the natural measure for
another important class of dynamical invariant sets
that arise commonly in situations of physical in-
terest: nonattracting chaotic saddles. Our empha-
sis is on nonhyperbolic chaotic saddles for which
the periodic-orbit characterization of the natural
measure remains only a conjecture [Grebogi et al.,
1988]. Our systematic computations suggest that
such a characterization is generally valid for non-
hyperbolic chaotic saddles, which are typical in the
parameter space of chaotic systems, particularly af-
ter the crisis at which the chaotic saddle is born.2

2Suppose we examine whether the chaotic set is nonhyperbolic or hyperbolic as a system parameter is changed. Chaotic
attractors arising in physical systems are always nonhyperbolic [Alligood et al., 1997]. Immediately after the crisis at which
a chaotic attractor is converted into a chaotic saddle, there can be intervals of parameter values in which the chaotic saddles
are nonhyperbolic, although nonhyperbolicity becomes rare in parameter regimes far beyond the crisis value [Lai et al., 1993].
These parameter intervals are the Newhouse intervals [Newhouse, 1979].
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Appendix
Computation of Unstable Periodic
Orbits

Consider an N -dimensional chaotic map: xn+1 =
f(xn). The orbit points of period p can be detected
as the zeros of the following function: g(x) =

f (p)(x)−x, where f (p)(x) is the p-times iterated map
of f(x). To find zeros of g(x), one usually chooses
an initial point x0 and then computes successive
corrections: xk+1 = xk + δx, which converge to
the desired solution. We use the following iterative
scheme [Davidchack & Lai, 1999; Davidchack et al.,
2001]:

xk+1 = xk + [1βg(x) −CJ(x)]−1 ·Cg(x) , (A.1)

where g(x) ≡ ‖g(x)‖ ≥ 0 is the length of the vector,
and β > 0 is an adjustable parameter. In the vicin-
ity of an UPO, the function g(x) tends to zero so the
scheme becomes the traditional Newton–Raphson
scheme with fast convergence. Away from the solu-
tion and for sufficiently large values of β, the scheme
has the property of global convergence [Davidchack
& Lai, 1999; Davidchack et al., 2001]. The scheme
is in fact the semi-implicit Euler method with step
size h = 1/βg(x) for solving the same system of
ODEs. Numerically, the procedure consists of the
following steps:

1. Find all periodic orbits of low periods, say, all
fixed points and all period-2 orbits, by using any
of the described above iteration schemes with
a sufficiently large number of randomly chosen
seeds;

2. List all 2NN ! matrices CN×N , and determine the
subset of these necessary for stabilizing arbitrary
hyperbolic equilibria;

3. Iterate Eq. (A.1) by using every periodic point
of period p − 1 as seeds, and choosing a matrix
C and a number β = β1 > 0;

4. If the sequence {xk} converges to a root of g,
then iterate f to find all components of the
orbit;

5. Repeat steps (3) and (4) for every matrix C in
the list;

6. Repeat steps (3)–(5) for increasing values of β
until no more new orbit points are found.


