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A B S T R A C T

Brain function arises from networks of distributed brain areas whose directed interactions vary at subsecond time
scales. To investigate such interactions, functional directed connectivity methods based on nonparametric spectral
factorization are promising tools, because they can be straightforwardly extended to the nonstationary case using
wavelet transforms or multitapers on sliding time window, and allow estimating time-varying spectral measures
of Granger–Geweke causality (GGC) from multivariate data. Here we systematically assess the performance of
various nonparametric GGC methods in real EEG data recorded over rat cortex during unilateral whisker stim-
ulations, where somatosensory evoked potentials (SEPs) propagate over known areas at known latencies and
therefore allow defining fixed criteria to measure the performance of time-varying directed connectivity mea-
sures. In doing so, we provide a comprehensive benchmark evaluation of the spectral decomposition parameters
that might influence the performance of wavelet and multitaper approaches. Our results show that, under the
majority of parameter settings, nonparametric methods can correctly identify the contralateral primary sensory
cortex (cS1) as the principal driver of the cortical network. Furthermore, we observe that, when properly opti-
mized, the approach based on Morlet wavelet provided the best detection of the preferential functional targets of
cS1; while, the best temporal characterization of whisker-evoked interactions was obtained with a sliding-window
multitaper. In addition, we find that nonparametric methods provide GGC estimates that are robust against signal
downsampling. Taken together our results provide a range of plausible application values for the spectral
decomposition parameters of nonparametric methods, and show that they are well suited to characterize time-
varying directed causal influences between neural systems with good temporal resolution.
1. Introduction

Human brain function emerges at large-scale from networks of dy-
namic interactions between distributed cortical areas (Bressler, 1995;
Horwitz, 2003; Sporns, 2014). These interactions are inherently directed
and reflect how neuronal activity in one area changes the excitability in
the areas that it targets through synaptic connections (Felleman and Van
Essen, 1991; Markov et al., 2014). The strength of these interactions,
furthermore, varies on subsecond time scales both in stimulus-evoked
data and in recordings obtained at rest, i.e. without stimulation or
explicit task instructions (Britz et al., 2010; Bullier, 2001). In order to
understand how these large-scale networks support sensory and cogni-
tive processes it is essential to accurately characterize the underlying
pattern of directed interactions and how this evolves in time.
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The interactions between brain areas can be modeled from statistical
regularities between signals simultaneously recorded from those areas,
by using measures of directed connectivity (Baccal�a and Sameshima,
2001; Geweke, 1982; Granger, 1969; Kaminski and Blinowska, 1991).
We can distinguish at least three important goals of such directed con-
nectivity analyses. The first goal is to accurately identify the most
influential areas within the network; this can help identify functionally
relevant areas in normal processing (Astolfi et al., 2007) but also the
spread of pathological activity, for example in epileptic patients (Ding
et al., 2007). A second goal of directed connectivity analyses is to accu-
rately reflect which areas are preferentially targeted by any given brain
area; this is a prerequisite for correctly inferring network properties
through topological analyses of the resulting weighted directed graphs
(Bassett and Sporns, 2017; Fallani et al., 2007). A third important goal of
.-A.-de-Faucigny 2, Fribourg, CH-1701, Switzerland.
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directed connectivity analyses is to show how interactions change over
time, so as to accurately characterize transient interactions and network
states (Baker et al., 2014; Deco et al., 2011; Vidaurre et al., 2017). These
three goals are not exhaustive, but any directed connectivity measure
that meets these goals would make for a powerful neuroimaging tool.

One class of directed connectivity measures that aims for these three
goals is based on a nonparametric implementation of Granger causality
(Dhamala et al., 2008a). Granger causality analyses make use of in-
ferences based on the notion of temporal precedence and statistical
predictability among simultaneously recorded neural time series.
Nonparametric methods come from a long tradition that began with the
notion of causality introduced by Wiener (1956), and continued with the
statistical definitions proposed in time domain (Granger, 1969) and in
frequency domain (Geweke, 1982). This spectral variant of causality is
here referred to as Granger–Geweke Causality (GGC). Measures closely
related to GGC have been defined on the basis of spectral quantities
obtained from a multivariate autoregressive (MVAR) model of the time
series, such as the spectral transfer matrix or the coefficients matrix
(Baccal�a and Sameshima, 2001; Kami�nski et al., 2001).

Causality measures have been widely used to study directional in-
fluences in different neurophysiological data, such as electroencepha-
lography (EEG) and magnetoencephalography (MEG) (Astolfi et al.,
2007; Chand and Dhamala, 2016; Gow et al., 2008; Schoffelen and Gross,
2009), functional magnetic resonance imaging (fMRI) (Bajaj et al., 2015;
Bressler et al., 2008; Roebroeck et al., 2005; Wen et al., 2012), and local
field potentials (LFPs) (Brovelli et al., 2004).

In their classical formulation, spectral GGC estimates are derived
from MVAR models of the recorded time series (Geweke, 1982). This
requires a priori choice of the model order, which is the parameter that
determines how many past time samples are taken into account for
predicting activities at present time. The MVAR-based methods,
commonly referred to as parametric methods, have been successfully
used to investigate directional influences between visual areas (Bernas-
coni et al., 2000; Bernasconi and K€onig, 1999), sensorimotor processing
(Brovelli et al., 2004; Zhang et al., 2008), cognitive tasks (Ding et al.,
2006; Roebroeck et al., 2005) and interictal epileptic activity (Coito
et al., 2015; Lin et al., 2009).

Alternative methods allow deriving GGC estimates from a spectral
factorization of the time series, and are referred to as nonparametric
methods (Dhamala et al., 2008a, 2008b). Nonparametric GGC has been
successfully used to investigate stationary causal influences in visual
processing and selective attention (Bastos et al., 2015; Bosman et al.,
2012; Roberts et al., 2013; Saalmann et al., 2012), information pro-
cessing in auditory cortex (Fontolan et al., 2014), and to evaluate
directional influences between spike trains (Cao et al., 2012; Chen et al.,
2014; Nedungadi et al., 2009).

Notably, nonparametric methods allow for a straightforward imple-
mentation of time-varying GGC, either by using wavelet transforms
(Daubechies, 1990; Torrence and Compo, 1998) or by using the multi-
taper method (Thomson, 1982) on overlapping short time windows.
While time-varying nonparametric approaches have been applied to
neural data (Dhamala et al., 2008a), their use is less widespread and their
validity is not fully established across various data types.

Another important aspect is that, even if nonparametric methods do
not require model order selection, because the explicit MVAR-modeling
is completely bypassed, they still need some initial choices of parame-
ters, depending on the spectral decomposition approach employed. These
parameters regulate the trade-offs between temporal and spectral reso-
lutions, and between variance and bias of the spectral estimates, and
therefore setting their values properly is critical to obtain interpretable
causal measures. A systematic evaluation of the effects associated with
varying spectral decomposition parameters in nonparametric GGC is
currently missing.

Here, we aim to provide a systematic and objective assessment of the
performance of time-varying nonparametric GGC methods in real data,
by quantifying how well they fulfill the three main goals outlined
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above, and to evaluate the effects of varying their spectral decomposi-
tion parameters. In order to do that, we used benchmark somatosensory
evoked potentials (SEPs) obtained from Wistar rats by unilateral
whisker stimulations (Plomp et al., 2014b; Quairiaux et al., 2011).
Whisker-evoked SEPs show a highly dynamic activation pattern across
rat's cortex that follows relatively well known structural pathways so
that three objective performance criteria can be defined in terms of i)
the ability to detect the major driver of evoked cortical activity as
contralateral primary sensory cortex (cS1), ii) the ability to identify the
main targets of cS1 in line with known synaptic connections, and iii) the
ability to correctly represent the dynamics of the underlying process
(Plomp et al., 2014b). We used these criteria to systematically assess the
performance of nonparametric GGC, obtained using either wavelet
transforms or multitaper method for spectral decomposition, under
different analysis conditions.

Lowering sampling rate (downsampling) is a common step in EEG/
MEG preprocessing; however, downsampling has been shown to poten-
tially degrade Granger causality detectability depending on the in-
teractions between sampling rate and generative time scales (Barnett and
Seth, 2017). For this reason, we first investigated how time-varying
nonparametric GGC performance depends on the sampling rate.

We then provided a benchmark evaluation of the spectral decompo-
sition parameters of wavelet-based and multitaper-based nonparametric
GGC. We critically assessed the effects on wavelet transforms perfor-
mance of the wavelet parameters, which regulate time-frequency reso-
lutions, and of window size and time-bandwidth parameter for the
sliding-window multitaper (refer to sections 2.2.3-2.2.4).

Lastly, when investigating interactions between multiple brain areas
we can either perform causality estimation by considering a bivariate
model for each pair of variables independently, namely pairwise GGC, or
consider a multivariate extension, also called conditional GGC (Chen
et al., 2006; Dhamala et al., 2008a; Geweke, 1984). To explore possible
confounds due to indirect paths of connections we compared perfor-
mance of the spectral decomposition methods for both pairwise GGC and
conditional GGC formulations.

2. Materials and methods

2.1. Benchmark EEG data

We considered previously recorded whisker-evoked SEPs obtained
from ten p21 Wistar rats (Plomp et al., 2014b; Quairiaux et al., 2011).
The SEPs were acquired with a grid of stainless steel electrodes, which
were positioned in contact with the skull of the rats while they were
under light isoflurane anesthesia. Fig. 1A provides a schematic repre-
sentation of the recording setup. The signals were referenced to an
electrode placed above the cerebellum, which is labeled as ‘R’ in the
illustration (Fig. 1A). The sampling rate for signals acquisition was
2000Hz and a bandpass filter (1–500Hz) was applied online to the
signals. The dataset has been made freely available.1

Rejection of epochs contaminated with artifacts was performed using
a semi-automatic approach, for further details refer to (Pagnotta and
Plomp, 2018). Artifact-free epochs were then filtered using a zero-phase
antialiasing filter with cutoff frequency of 125 Hz, which is the Nyquist
frequency at the lowest sampling rate considered in the successive ana-
lyses (Fs¼ 250 Hz). We then computed grand-average whisker-evoked
SEPs and grand-average amplitude spectra (Fig. 1B–C). The latter were
derived using fast Fourier transform (FFT) algorithm on each single rat
and then averaging amplitude spectra across rats. More in details, the
single-rat spectrum of every node was computed with FFT algorithm at
original sampling rate using the time interval [0, 200ms] after stimulus
onset for each trial; FFT estimates were then averaged across trials and
normalized with respect to the maximum amplitude across nodes within

https://doi.org/10.6084/m9.figshare.5909122.v1


Fig. 1. A) Shows the grid of electrodes placed on rat's
skull bone for recording; the red arrow schematically
represents the unilateral whisker stimulation. Elec-
trodes from 1 to 7 are on the ipsilateral hemisphere
with respect to the whisker stimulation; while elec-
trodes from 9 to 15 are on the contralateral hemi-
sphere. The schematic diagram shows the
physiologically plausible targets (nodes 10 and 14) of
the early driving from cS1 (node 12). B) Plots grand-
average whisker-evoked SEPs, separately for nodes
on contralateral hemisphere and nodes on ipsilateral
hemisphere. C) Plots normalized grand-average sin-
gle-sided spectra of nodes on contralateral hemisphere
and of nodes on ipsilateral hemisphere. The color-
coding here introduced for each node of the network
will be used in the entire manuscript to report the
results.
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each rat; single-rat FFT estimates were finally averaged across rats for
each node of the network.

After preprocessing the whisker-evoked benchmark data allowed
performance assessment based on three previously proposed criteria
(Plomp et al., 2014b), which consider three different characteristics ex-
pected in the cortical network that comprises 15 nodes (Fig. 1A). More
specifically, criterion I determines whether the method is able to
distinguish the main driver of the cortical network as cS1, which is
identified by node 12. Criterion II determines whether the driving from
cS1 is preferentially directed towards contralateral parietal and frontal
sensory-motor cortex, respectively defined by node 14 and node 10
(Fig. 1A). Criterion III evaluates whether the peak of cS1's driving is at
physiologically plausible latency, i.e. between 5 and 20ms after stimulus
onset, which is the range around the 11ms latency observed with
480
single-unit responses in layer V of cS1 (Shuler et al., 2001).
On criterion I the driving from cS1 was compared to that of the second

largest driver to evaluate the identifiability of cS1 as the main driver. To
assess the main targets of cS1 (criterion II), the connections from cS1
towards node 14 and node 10 were compared with those towards the
equidistant medial nodes 13 and 11, respectively (Fig. 1A). Statistical
comparisons between drivers or targets were performed at the latency of
peak-driving from cS1, by using a bootstrap approach across rats (Plomp
et al., 2014b). Such approach consisted in resampling with replacement
the observed differences between drivers (criterion I) or targets (criterion
II), in order to create a bootstrap distribution of differences (n¼ 10,000);
here each resample was of the same size as the original dataset (Efron,
1987; Efron and Tibshirani, 1993). Afterwards, the bias-corrected and
accelerated (BCa) method was used to compute the 95% confidence
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interval (CI) of the bootstrap distribution. The BCa method corrects for
both bias and skewness in the bootstrap distribution (Efron, 1987; Efron
and Tibshirani, 1993). The comparisons assumed null hypotheses of no
difference between drivers (criterion I) and no difference between targets
(criterion II); hence, for a specific comparison a significant difference was
obtained when the lower bound of the BCa 95% CI exceeded zero. For
each comparison we computed effect sizes using Cohen's d (Cohen,
1992).

2.2. Nonparametric Granger causality

2.2.1. Frequency domain Granger causality
The statistical definition introduced by Granger (1969) relies on the

concept of temporal precedence and refers to causality as improvement
in the predictability of one time series x1 by incorporating past samples of
a second simultaneously recorded time series x2, with respect to the
predictability purely based on past samples of x1 itself; vice versa for the
causal influence from x1 to x2. The time domain Granger causality pro-
vides a measure that can be seen as amount of variance of one time series
explained by the history of another (Brovelli et al., 2004).

This concept has been successively extended to the frequency domain
(Geweke, 1982). If we consider multivariate data X at time t and with the
number of channels given by d, the MVAR model of order p can be
expressed as:

Xp

k¼0

AkXt�k ¼ Et (1)

where Ak are d-by-d coefficient matrices and Et is a temporally uncorre-
lated residual error with covariance matrix Σ, which is often referred to
as noise covariance matrix. In the frequency domain the cross-spectral
density matrix S can be computed as follows:

Sðf Þ ¼
24 S11ðf Þ … S1dðf Þ

⋮ ⋱ ⋮
Sd1ðf Þ … Sddðf Þ

35 ¼ Hðf ÞΣH*ðf Þ (2)

where Hðf Þ ¼ ðPp
k¼0Ake�i2πfkÞ�1 is the spectral transfer matrix of the

system and the asterisk denotes matrix transposition and complex
conjugation (i.e., Hermitian transpose).

The GGC from channel j to channel i at frequency f can then be
expressed as a function of elements of the three matrices from equation
(2), i.e. S, H and Σ, in the following way:

GGCj→iðf Þ ¼ ln
Siiðf Þ

Siiðf Þ �
�
Σjj � Σ2

ij

Σii

���Hijðf Þ
��2 (3)

This measure is basically the ratio between the total spectral density
of i-th channel and its intrinsic part, which is obtained as the difference
between total spectral density and causal part.

When more than two simultaneous time series are analyzed, we can
either perform a pairwise analysis, which consists in using the definition
in equation (3) for each pair of channels in each direction, or consider a
conditional definition of GGC (Chen et al., 2006; Geweke, 1984). If we
consider a multivariate stochastic process, the direct causal influence
from channel j to channel i conditional to the remaining w channels can
be calculated as:

GGCj→ijwðf Þ ¼ ln
�

Ωii

Qiiðf ÞΣiiQ*
iiðf Þ

�
(4)

where Σ andΩ are the noise covariance matrices of the full system and of
the subsystem in which channel j is excluded, respectively; while, Qii is
obtained from:
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Qðf Þ ¼ 4 Qiiðf Þ Qijðf Þ Qiwðf Þ
Qjiðf Þ Qjjðf Þ Qjwðf Þ 5
2
Qwiðf Þ Qwjðf Þ Qwwðf Þ

3

¼
24 Giiðf Þ 0 Giwðf Þ

0 1 0
Gwiðf Þ 0 Gwwðf Þ

35�124 Hiiðf Þ Hijðf Þ Hiwðf Þ
Hjiðf Þ Hjjðf Þ Hjwðf Þ
Hwiðf Þ Hwjðf Þ Hwwðf Þ

35 (5)

where H and G are the transfer function matrices of the full system and of
the subsystem in which channel j is excluded, respectively. These two
spectral transfer matrices are obtained using Geweke's normalization
method, which consist of multiplying transfer functions and covariance
matrices by transformation matrices to make the noise terms indepen-
dent (Ding et al., 2006; Wen et al., 2013a).

2.2.2. Time reversal testing
A known problem of causality analyses is that spurious estimates can

be produced by instantaneous mixing due to volume conduction, or by
signal-to-noise ratio (SNR) differences between channels or sources
(Bastos and Schoffelen, 2016). Haufe and colleagues introduced the
concepts of “strong asymmetries” in contraposition to “weak asymme-
tries” in multivariate time series (Haufe et al., 2012). Strong asymmetries
are due to true time-lagged causal relationships, while weak asymmetries
may also reflect non-causal relationships. A framework based on the use
of time-reversed data as surrogates for statistical testing of causality
measures has been proposed to reduce the influence of weak asymmetries
(Haufe et al., 2013, 2012). This approach has been shown to be valuable
to detect spurious GGC directional differences purely caused by differ-
ences in SNR between channels (Bastos and Schoffelen, 2016), and also
to potentially reduce the detrimental effect of linearly mixed noise (Vinck
et al., 2015), which is known to strongly influence the amount of false
positives (spurious estimates) in standard measures of causality direc-
tionality. The downside of this approach is that it may also produce a
reduction in true positives (Vinck et al., 2015; Winkler et al., 2016).

In this study we used time reversal testing by exploiting the “differ-
ence-based” definition of time-reversed (tr-) Granger causality (Winkler
et al., 2016), according to which the net causal influence from channel j
to channel i is inferred if:

trGGCðnetÞ
j→i ∶ ¼ GGCðnetÞ

j→i � gGGCðnetÞ
j→i

¼ �
GGCj→i � GGCi→j

�� � gGGCj→i � gGGCi→j

�
> 0 (6)

where the tilde denotes GGC estimates computed on time-reversed data.

2.2.3. Nonparametric framework
To estimate GGC three quantities are needed: the cross-spectral

density matrix S, the spectral transfer matrix H, and the noise covari-
ance matrix Σ. Nonparametric methods start from estimating the cross-
spectral density matrix and then spectral transfer and noise covariance
matrices are derived from it, such that the equality in (2) holds (Dhamala
et al., 2008a, 2008b). More specifically, nonparametric methods are
based on a two-steps process that consists in: (i) computing the
cross-spectral density matrix with nonparametric spectral density esti-
mation techniques; (ii) applying a spectral matrix factorization to the
cross-spectral density matrix, which allows for computing spectral
transfer matrix and noise covariance matrix.

There are several nonparametric spectral decomposition approaches
available to compute the cross-spectral density matrix; here we focus on
multitaper method and wavelet transforms. Spectral estimation based on
multitaper method (Thomson, 1982) involves the use of different data
tapers that are orthogonal to each other (Mitra and Pesaran, 1999; Per-
cival and Walden, 1993). These orthogonal tapers are given by discrete
prolate spheroidal sequences (DPSS), also known as Slepian sequences
(Slepian, 1978; Slepian and Pollak, 1961). If we consider time series
simultaneously recorded from multiple channels {xrt}(r¼ 1, …, d; t¼ 1,
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…,N), where r is the channel index and t the discrete time index, the
multitaper cross-spectrum estimator between channels l and m at fre-
quency f for a single trial is given by:

Slmðf Þ ¼ Xlðf ÞX*
mðf Þ ¼

Δ

K

XK
k¼1

(XN
s¼1

wsðkÞxlse�i2πfsΔ

)(XN
t¼1

wtðkÞxmtei2πftΔ
)

(7)

where w(k) (k¼ 1, 2, …, K) are K orthogonal tapers of length N given by
DPSS and Δ is the sampling interval. Beside the length N, the tapers are
also characterized by a bandwidth parameter W. The time-bandwidth
product NW regulates the trade-off between variance and bias of the
spectral estimates, and it is also related to the number of tapers K because
the typical approach is to take the leading K¼ 2NW-1 DPSS as data tapers
(Mitra and Pesaran, 1999). Increasing NW produces a decrease in vari-
ance, but also an increase in spectral leakage and bias of the spectral
estimate; vice versa whenNW is decreased. When l¼m from equation (7)
we obtain the auto-spectrum estimator for that channel. Finally, the full
cross-spectral density matrix is obtained by averaging over multiple trials
auto-spectrum estimators and cross-spectrum estimators for all pairs of
channels. In order to obtain a time-varying estimation of GGC the mul-
titaper approach can be used on sliding time window.

The wavelet transform allows decomposing a time series directly into
time-frequency space, by computing the convolution of the time series
with a scaled and translated version of a prototype wavelet function ψ(η)
that satisfies zero mean and unity square-norm conditions, which is also
known as “mother wavelet”, being η a dimensionless variable (Daube-
chies, 1990; Farge, 1992; Percival and Walden, 2000; Torrence and
Compo, 1998). For the time series xl(t) recorded from channel l, the
continuous wavelet transform at time t and scale s can be calculated as:

WXl ðt; sÞ ¼
1ffiffi
s

p
Z þ∞

�∞
ψ*

�
η� t
s

�
xlðηÞdη (8)

Similarly to the multitaper-based approach (equation (7)), the
wavelet cross-spectrum estimator between channels l and m (or auto-
spectrum estimator when l¼m) at time t and scale s is:

WSlmðt; sÞ ¼ WXl ðt; sÞW*
Xm
ðt; sÞ (9)

where the angle brackets denote averaging over multiple trials. We can
then obtain the full cross-spectral density matrix WS(t, f) using the
relationship between Fourier frequency f and scale s for the specific
mother wavelet used (Torrence and Compo, 1998).

In this study we evaluated the performance of two different mother
wavelets, the Morlet wavelet and the Paul wavelet, which both are
complex-valued. The Morlet wavelet consists of a complex exponential
with a Gaussian envelop: ψðηÞ ¼ π�1=4eiω0ηe�η2=2, whereω0 is a parameter
that regulates the trade-off between frequency and temporal resolution
(Morlet et al., 1982). The Paul wavelet is defined by the prototype

function ψðηÞ ¼ 2mimm!ðπð2mÞ!Þ�1=2ð1� iηÞ�ðmþ1Þ, where m is the
wavelet parameter that affects the resolutions of this wavelet transform
(Torrence and Compo, 1998).

One problem associated with the use of wavelet transforms is the
presence of edge effects due to the “cone of influence” of the wavelet
used (Torrence and Compo, 1998). To solve this issue we padded with
zeros the end of the time series before applying the wavelet transform
(Meyers et al., 1993; Percival and Walden, 2000; Torrence and Compo,
1998).

Once the cross-spectral density matrix has been computed, either
with the multitaper method or with wavelet transforms, we can apply
spectral matrix factorization to obtain the spectral transfer matrix and the
noise covariance matrix (Dhamala et al., 2008b; Wiener and Masani,
1957). Here, we employed the Wilson's algorithm for spectral factoriza-
tion (Wilson, 1972). A review of alternative spectral factorization
methods can be found in (Sayed and Kailath, 2001).
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2.2.4. Benchmark analyses of nonparametric GGC
We performed a series of analyses to benchmark nonparametric GGC.

If not stated otherwise the analyses were performed at sampling rate of
1000Hz and using the conditional implementation of GGC in combina-
tion with time reversal testing, according to equation (6). For simplicity,
in the description of the results we will often refer to these conditional
time-reversed estimates just as GGC. In all the analyses with the multi-
taper we employed sliding windows with maximum overlap in time.

In the first analysis we aimed to evaluate the robustness of
nonparametric methods against downsampling; we applied multitaper
and Morlet wavelet approaches at original sampling rate of 2000Hz and
after downsampling the dataset to 1000Hz, 500Hz, and 250Hz, using
decimation factors of 2, 4, and 8, respectively. Here we used NW¼ 7.5
and a sliding-window of 20ms for the multitaper, and ω0¼ 1 for the
Morlet wavelet.

In analyses two and three we benchmarked the two wavelet-based
approaches. In the second analysis we evaluated the influence of the
central frequency parameter ω0 on the performance of the Morlet
wavelet, by considering ω0 values of 3, 5, 6, 9, and 12. In the third
analysis we assessed the effects of varying the wavelet parameterm in the
Paul wavelet, for values of 1, 3, 6, 12, and 20.

We then critically assessed the performance of the multitaper by
varying time-bandwidth parameter NW and window size, in the fourth
and fifth analysis respectively. In the fourth analysis we tested NW of 1.5,
2, 4, and 7.5, while the window size was set to 20ms. In the fifth analysis
we employed window sizes of 10ms, 30ms, and 40ms, in addition to the
20ms window, while considering NW¼ 4.

Finally, we assessed the performance of pairwise GGC in both mul-
titaper and wavelet methods. In this complementary analysis we selected
ω0¼ 6 for the Morlet wavelet and m¼ 12 for the Paul wavelet, while for
the multitaper we set NW¼ 4 combined with window size of 20ms.

In every condition evaluated, the total driving from each node of the
network was estimated as sum of the outgoing GGC estimates from that
specific node, and then averaged across the gamma-band [40–90Hz],
which is predominant over cS1 and surrounding nodes (Cardin et al.,
2009; Gerasimova et al., 2014; Minlebaev et al., 2011). Data processing
and analyses were performed using in-house codes implemented in
MATLAB (The MathWorks, Inc.). For each analysis the results obtained
using the traditional GGC, i.e. without time reversal testing, are provided
in the Supplementary material.

3. Results

3.1. The effect of downsampling

We evaluated the effects of varying sampling rate on the performance
of nonparametric methods because downsampling may potentially
corrupt causality estimates, as previously shown via analytic solutions
(Barnett and Seth, 2017).

Results at original sampling rate of 2000Hz showed good perfor-
mance in cS1 identification (criterion I) for both Morlet wavelet (Fig. 2A)
and multitaper approach (Fig. 2E). Analogous results were also obtained
after downsampling with both approaches. We observed in fact an overall
robustness in effect sizes across the four sampling rates considered, with
d constantly above 1 for the Morlet wavelet (Fig. 2A–D) and around 0.8
for the multitaper (Fig. 2E–H).

Stable results across sampling rates of 2000, 1000 and 500Hz were
also obtained on criterion II, where the contralateral parietal region
(node 14) was consistently identified as the main target of cS1, with
stable effect sizes (Table 1). At these three sampling rates, only the
multitaper was able to correctly identify the frontal sensory-motor region
(node 10) as cS1's target. Downsampling to 250 Hz produced a detri-
mental effect on the multitaper, which was no longer able to correctly
identify the two targets; differently, a slight improvement on criterion II
performance was obtained with the Morlet wavelet at the lowest sam-
pling rate.



Fig. 2. The results of the analyses varying sampling rate are shown for the following methods: wavelet-based at A) 2000 Hz, B) 1000 Hz, C) 500 Hz, and D) 250 Hz;
multitaper-based at E) 2000 Hz, F) 1000 Hz, G) 500 Hz, and H) 250 Hz. First row: time-frequency representation of the total driving from cS1. Second row: temporal
dynamics of total driving in the gamma-band for each node and discriminability of cS1 peak-driving. Third row: barplots show average total driving from each
ipsilateral (Ipsi) and contralateral (Con) node at the latency of peak-driving from cS1 (gray dotted line in the second row picture), with corresponding 95% CIs across
rats and red asterisks denoting statistically significant differences with respect to the second largest driver (criterion I). Fourth row: barplots show the driving from cS1
to all the other channels, at the latency of peak-driving from cS1 (criterion II), and red asterisks denoting statistically significant differences between targets. Color
coding of all bars is consistent with Fig. 1.
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While the representations of the temporal dynamics of gamma–-
driving from cS1 seem to suggest that the multitaper may provide a clear
advantage in temporal characterization (Fig. 2E–H), being cS1's peak-
latency better in line with the latency of maximal activity over cS1
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(Fig. 1B), we actually observe higher variability in latencies across rats
(criterion III) for the multitaper compared to the Morlet wavelet
(Table 2). The explanation to this apparent discrepancy is quite simple:
the representations in Fig. 2 are the result of a grand-average across rats;



Table 1
Effect sizes (d) for distinguishing cS1's main targets (criterion II).

Fs¼ 2000 Hz Fs¼ 1000 Hz Fs¼ 500 Hz Fs¼ 250 Hz

c. parietal c. frontal c. parietal c. frontal c. parietal c. frontal c. parietal c. frontal

Morlet-wavelet 0.736* 0.017 0.713* 0.140 0.713* 0.137 0.609* 0.541*
Multitaper 0.491* 0.228* 0.496* 0.199* 0.450* 0.192* 0.130 0.082

Note. c. parietal refers to the contralateral parietal region and c. frontal to contralateral frontal sensory-motor region; asterisks denote significant differences between
targets (bootstrap lower 95% CI above zero).

Table 2
Latencies (ms) of peak-driving from cS1 (criterion III) and corresponding 95% CIs
across rats.

Fs¼ 2000 Hz Fs¼ 1000 Hz Fs¼ 500 Hz Fs¼ 250 Hz

Morlet-
wavelet

17.7
(14.9–20.4)

18.2
(15.3–20.9)

18.3
(15.5–21.1)

19.4
(14.5–23.2)

Multitaper 20.2
(15.3–24.5)

19.7
(14.9–24.0)

13.3
(9.2–18.1)

21.5
(17.3–25.7)
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differently, criterion III considers the latency of maximum cS1 gam-
ma–driving at single-rat level, and this latency varies from rat to rat. As a
matter of fact, even in the representations of Fig. 2 we did not obtain a
single isolated and well-defined peak for the multitaper, but rather two
components, with the first one a bit more sharp and showing a peak at
latency of 5–10ms, and the second one more flattened and distributed
over time (around 20ms after stimulus onset), which are the results of
estimates variability between animals. Nonetheless, an important aspect
is that the results on criterion III confirm an overall robustness of
nonparametric methods against signal downsampling.

In sum, our results from the three performance criteria suggest that
both Morlet wavelet and multitaper approaches are quite robust to signal
downsampling in the range of sampling rates here considered. Similar
results are expected when using the Paul wavelet because the robustness
against downsampling in terms of causal influences derives from
robustness against downsampling of the spectral density estimates.
Hence, as long as i) we properly avoid aliasing distortions/artifacts, ii)
we use the same zero-phase antialiasing filter across sampling rates, and
iii) the interactions time-scales are still observable at the considered
sampling rates, we would observe robustness against downsampling of
the spectral causal estimates, not only for the Paul wavelet, but also for
any other nonparametric spectral decomposition approach.
3.2. Morlet wavelet (ω0)

The Morlet wavelet used here (see section 2.2.3) is a truncated
version of the complete Morlet wavelet, which is defined by the complete
prototype function: ψðηÞ ¼ π�1=4ðeiω0η � e�ω2

0=2Þe�η2=2. In this prototype
function the second term inside the brackets corrects for non-zero mean
of the first term inside the brackets, and is determined by the admissi-
bility criterion. The central frequency parameter ω0 controls the trade-off
between temporal and spectral resolution in the Morlet. Reducing
ω0 produces an increase in temporal resolution together with a reduction
in spectral resolution; vice versa, when increasing ω0. In the truncated
version of the prototype, which is commonly used in practice, the
correction term is always approximated to zero, but its value depends on
ω0. The biggerω0 is, the more the correction term is actually close to zero;
for example, when ω0� 5 the correction term is lower than 10�5. For this
reason, previous studies have suggested to use ω0 equal to 6 or bigger (De
Moortel et al., 2004; Farge, 1992; Torrence and Compo, 1998). In the
previous analysis we used ω0¼ 1; here we extended the evaluation of the
central frequency parameter ω0 considering values of 3, 5, 6, 9, and 12.

The use of ω0¼ 3 in the Morlet guaranteed a correct identification of
cS1 as main driver (Fig. 3A). On criterion II, we observed better perfor-
mance with ω0¼ 3, characterized by improved identification of node 10
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as functional target (Table 3), with respect to the case ω0¼ 1 (Table 1);
however, we also obtained a temporal bias for cS1's peak-driving towards
longer latencies (Table 4).

Similar results were obtained across ω0 values of 5 and 6; these were
characterized by a correct identification of cS1 as main driver of the
network with d¼ 1.45 and d¼ 1.37, respectively (Fig. 3B–C), which are
higher than those obtained using smaller values of ω0 (Figs. 2B and 3A).
Compared to the case ω0¼ 1, setting ω0¼ 5 or ω0¼ 6 allowed also to
improve performance on criterion II, by correctly distinguishing both
cS1's main targets with large effect sizes (Table 3). Differently, on crite-
rion III we observed a further increased temporal bias towards longer
latencies for cS1's peak-driving, with average latency across rats around
35ms (Table 4), which is significantly later with respect to the physio-
logically plausible range; this confirms that increasing ω0 reduces the
temporal resolution of the Morlet. The total driving from cS1 showed a
distinct pattern in the time-frequency space for ω0¼ 5 and ω0¼ 6
(Fig. 3B–C, first row), characterized by an early driving before 10ms,
which was however biased towards high-gamma frequencies (above
90 Hz); we also observed a successive 20 Hz–driving at latencies around
20ms, followed by gamma–driving at later latencies (after 30–40ms).

A qualitatively similar pattern of cS1's driving was also obtained using
ω0¼ 9, but with remarkably degraded temporal characterization. In
terms of performance criteria, we observed an overall drop in perfor-
mances when ω0 was equal to 9 or 12 (Fig. 3D–E). This can be attributed
to the further reduction in temporal resolution due to increasing ω0 itself.
Slightly better performances were obtained with these big values of
ω0 without using time reversal testing on GGC (see Supplementary ma-
terial), but since the whisker-evoked activity is characterized by fast in-
teractions, this temporal inaccuracy poses significant problems for the
interpretability of the results.

3.3. Paul wavelet (m)

Compared to the Morlet wavelet, the Paul wavelet potentially pro-
vides better temporal resolution, but at the expense of reduced frequency
resolution (De Moortel et al., 2004; Torrence and Compo, 1998). Here we
investigated the effects of varying the wavelet parameter m in the Paul
wavelet, which regulates the time-frequency resolutions trade-off.

On criterion I, we obtained a correct identification of cS1 across m
levels (Fig. 4). The Paul wavelet was however able to correctly distin-
guish both cS1's functional targets only when m¼ 3 and when m¼ 20
(criterion II); while, with the remaining values ofm only the contralateral
parietal region (node 14) was reliably identified (Table 5).

On criterion III, we observed a general improvement in performance
considering the Paul wavelet compared to the Morlet wavelet. The la-
tencies of cS1's peak-driving were estimated earlier using the Paul
(Table 6), with respect to those previously obtained with the Morlet
(Table 4). The estimated latencies were close to the physiologically
plausible range when m was equal to 1 and 3, while by increasing m we
observed a consequent increase in temporal bias towards later latencies.

In terms of time-frequency components of total driving from cS1, we
observed a very early driving at high-gamma frequencies only using
small values of m, especially when m¼ 1 (Fig. 4A, first row), where we
found in fact two peaks in cS1's gamma–driving (Fig. 4A, second row).
Differently, increasing the parameter m made a later gamma–driving
more distinguishable, in particular using m¼ 20 (Fig. 4E, first row).



Fig. 3. Shows the results of the analyses varying the central frequency parameter (ω0) in the Morlet-wavelet approach. Results are plotted for the following levels of
the parameter: A) ω0¼ 3; B) ω0¼ 5; C) ω0¼ 6; D) ω0¼ 9; E) ω0¼ 12. First row: time-frequency representation of the total driving from cS1. Second row: temporal
dynamics of total driving in the gamma-band for each node and discriminability of cS1 peak-driving. Third row: barplots show average total driving from each
ipsilateral (Ipsi) and contralateral (Con) node at the latency of peak-driving from cS1 (gray dotted line in the second row picture), with corresponding 95% CIs across
rats and red asterisks denoting statistically significant differences with respect to the second largest driver (criterion I). Fourth row: barplots show the driving from cS1
to all the other channels, at the latency of peak-driving from cS1 (criterion II), and red asterisks denoting statistically significant differences between targets. Color-
coding of all bars is consistent with Fig. 1.

Table 3
Effect sizes (d) for distinguishing cS1's main targets (criterion II).

ω0 Morlet-wavelet

c. parietal c. frontal

3 1.065* 0.361*
5 1.180* 0.819*
6 1.125* 0.785*
9 n.a. 0.206
12 n.a. n.a.

Note. c. parietal refers to the contralateral parietal region and c. frontal to
contralateral frontal sensory-motor region; asterisks denote significant dif-
ferences between targets (bootstrap lower 95% CI above zero).

Table 4
Latencies (ms) of peak-driving from cS1 (crite-
rion III) and corresponding 95% CIs across rats.

ω0 Morlet-wavelet

Peak-latencies

3 27.0 (23.0–29.4)
5 35.1 (30.6–38.4)
6 36.5 (28.7–40.8)
9 31.6 (21.9–41,5)
12 20.2 (11.2–31.8)
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3.4. The time-bandwidth product (NW) in the multitaper

The time-bandwidth product NW controls the bias-variance trade-off
in the multitaper method (Mitra and Pesaran, 1999). The results of the
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analysis varying this parameter showed similar time-frequency patterns
of cS1's total driving across NW levels (Fig. 5). We found an early driving
from cS1 at high-gamma frequencies, which is similar to that previously
observed in Morlet and Paul wavelets using small values for their
respective parameters (Figs. 3–4), but this seemed more correctly local-
ized in the expected frequency range [40–90 Hz] by using the multitaper.



Fig. 4. Shows the results of the analyses varying the wavelet parameter (m) in the Paul-wavelet approach. Results are plotted for the following levels of the parameter:
A) m¼ 1; B) m¼ 3; C) m¼ 6; D) m¼ 12; E) m¼ 20. First row: time-frequency representation of the total driving from cS1. Second row: temporal dynamics of total
driving in the gamma-band for each node and discriminability of cS1 peak-driving. Third row: barplots show average total driving from each ipsilateral (Ipsi) and
contralateral (Con) node at the latency of peak-driving from cS1 (gray dotted line in the second row picture), with corresponding 95% CIs across rats and red asterisks
denoting statistically significant differences with respect to the second largest driver (criterion I). Fourth row: barplots show the driving from cS1 to all the other
channels, at the latency of peak-driving from cS1 (criterion II), and red asterisks denoting statistically significant differences between targets. Color-coding of all bars is
consistent with Fig. 1.

Table 5
Effect sizes (d) for distinguishing cS1's main targets (criterion II).

m Paul-wavelet

c. parietal c. frontal

1 0.508* 0.280
3 0.842* 0.572*
6 0.896* 0.285
12 1.060* 0.248
20 1.261* 0.511*

Note. c. parietal refers to the contralateral parietal region and c. frontal to
contralateral frontal sensory-motor region; asterisks denote significant dif-
ferences between targets (bootstrap lower 95% CI above zero).

Table 6
Latencies (ms) of peak-driving from cS1 (crite-
rion III) and corresponding 95% CIs across rats.

m Paul-wavelet

Peak-latencies

1 19.8 (15.3–26.7)
3 20.9 (16.9–25.4)
6 24.8 (21.6–27.0)
12 30.6 (28.0–33.2)
20 33.6 (29.8–36.8)
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The successive low-frequency driving at around 20ms was identified as a
double-peaked component across NW levels, and it was more prominent
when considering a value of at least 4 for NW (Fig. 5C–D, first row).
Differently, the late gamma–driving component seemed more prominent
486
with small NW (Fig. 5A–B, first row).
In all cases we obtained two peaks in the grand-average gamma–-

driving from cS1, the first one in the range 5–10ms after stimulus onset
and the second one at latency between 25 and 30ms. ForNW equal to 1.5
and 2 the highest peak was the second one, while for NW equal to 4 and



Fig. 5. Shows the results of the analyses varying the time-bandwidth parameter (NW) in the multitaper approach. Results are plotted for the following levels of the
parameter: A) NW¼ 1.5; B) NW¼ 2; C) NW¼ 4; D) NW¼ 7.5. First row: time-frequency representation of the total driving from cS1. Second row: temporal dynamics
of total driving in the gamma-band for each node and discriminability of cS1 peak-driving. Third row: barplots show average total driving from each ipsilateral (Ipsi)
and contralateral (Con) node at the latency of peak-driving from cS1 (gray dotted line in the second row picture), with corresponding 95% CIs across rats and red
asterisks denoting statistically significant differences with respect to the second largest driver (criterion I). Fourth row: barplots show the driving from cS1 to all the
other channels, at the latency of peak-driving from cS1 (criterion II), and red asterisks denoting statistically significant differences between targets. Color-coding of all
bars is consistent with Fig. 1.

Table 7
Effect sizes (d) for distinguishing cS1's main targets (criterion II).

NW Multitaper

c. parietal c. frontal

1.5 n.a n.a.
2 n.a. n.a.
4 0.531* 0.223*
7.5 0.496* 0.199*

Note. c. parietal refers to the contralateral parietal region and c. frontal to
contralateral frontal sensory-motor region; asterisks denote significant dif-
ferences between targets (bootstrap lower 95% CI above zero).
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7.5 it was the first one. This influenced the performance on criteria I and
II. On the one hand, we observed basically identical results for NW equal
to 1.5 and 2 (Fig. 5A–B): the multitaper was able to correctly distinguish
cS1 as main driver (d¼ 1.03), but it was not able to identify cS1's targets.
On the other hand, the multitaper showed good performances when
using NW¼ 4 and NW¼ 7.5 (Fig. 5C–D): on criterion I we obtained
correct identification of cS1 with effect sizes d¼ 0.67 for NW¼ 4 and
d¼ 0.77 for NW¼ 7.5; both these NW values provided also correct
identification of the targets of cS1 (Table 7).

Despite the differences on criteria I and II between the two small NW
values and the two big ones, we observed similarities in results across all
NW values on criterion III. As a matter of fact, we obtained robust average
peak-driving latencies and 95% CIs across values of NW (Table 8), and
overall the estimated latencies overlapped with upper bound of the
physiologically plausible range.

For each NW value, two peaks of cS1 driving were observed. When
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analyzing results at the first peak latency, the two lower NW values
showed correct identification of contralateral parietal (d� 0.55) and
sensory-motor (d� 0.23) regions on criterion II; while, on criterion I the
multitaper was still unable to correctly detect cS1.



Table 8
Latencies (ms) of peak-driving from cS1 (criterion
III) and corresponding 95% CIs across rats.

NW Multitaper

Peak-latencies

1.5 20.0 (15.1–24.1)
2 20.0 (15.2–24.2)
4 20.1 (15.1–24.3)
7.5 19.7 (14.9–24.0)
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3.5. Window size in the multitaper-based method

Since multitapers require a-priori choice of window size, we evalu-
ated the effects of varying window size on the connectivity performance;
we here setNW¼ 4. Looking at the grand-average driving from cS1 in the
time-frequency space, we observed a good detection of the early gamma-
Fig. 6. Shows the results of the analyses varying window size in the multitaper appr
30ms; D) 40ms. First row: time-frequency representation of the total driving from cS
node and discriminability of cS1 peak-driving. Third row: barplots show average total
peak-driving from cS1 (gray dotted line in the second row picture), with correspon
ferences with respect to the second largest driver (criterion I). Fourth row: barplots sh
from cS1 (criterion II), and red asterisks denoting statistically significant differences
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band component using the 20ms window (Fig. 6, first row). The use of
the shortest window (10ms) qualitatively produced a detrimental effect
in terms of spectral characterization; while on the other side, negative
effects on temporal characterization were obtained using window sizes of
30–40ms. More specifically, when we used the 40ms window the
dominant component of driving was observed at low frequencies (below
20 Hz), and this component had a broad temporal extension approxi-
mately in the time interval 20–35ms after stimulus onset. These quali-
tative results confirmed the temporal-spectral resolutions trade-off
depending on window size considered.

Regardless of window size, the multitaper was able to distinguish cS1
as main driver of the network (criterion I), with effect sizes d¼ 0.88 for
the 10ms window, d� 0.67–0.68 for the 20ms and 30ms windows, and
d¼ 1.07 for the 40ms window (Fig. 6).

On criterion II, the method correctly identified the two main targets
of cS1, but only for windows of 20ms or larger, with similar effect sizes
across these windows for both cS1's targets (Table 9).
oach. Results are plotted for the following window sizes: A) 10ms; B) 20ms; C)
1. Second row: temporal dynamics of total driving in the gamma-band for each
driving from each ipsilateral (Ipsi) and contralateral (Con) node at the latency of
ding 95% CIs across rats and red asterisks denoting statistically significant dif-
ow the driving from cS1 to all the other channels, at the latency of peak-driving
between targets. Color-coding of all bars is consistent with Fig. 1.



Table 10
Latencies (ms) of peak-driving from cS1 (criterion III) and
corresponding 95% CIs across rats.

Window size Multitaper

Peak-latencies

10ms 17.5 (14.8–20.2)
20ms 20.1 (15.1–24.3)
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On criterion III, however, window size had a clear effect: the shorter
the window, the earlier the estimated latencies of cS1's peak-driving;
reducing window size resulted in peak driving latencies closer to the
physiologically plausible range (Table 10).

This shows that the dynamics of interactions strongly depend on
window size and that overall the 20ms window guarantees results most
in line with the expected activity pattern.
30ms 20.9 (14.3–26.7)
40ms 26.1 (19.8–31.1)
3.6. Pairwise GGC

We next assessed the performance of pairwise GGC using three
spectral decomposition approaches with optimal parameter settings ob-
tained from the multivariate results above: Morlet-wavelet with ω0¼ 6,
Paul-wavelet with m¼ 12, and multitaper method with NW¼ 4 and
20ms sliding-window. Historically, pairwise approaches have been often
used for the easiness of their implementations (i.e., repeating simple
bivariate analyses), and because they require the fitting of less parame-
ters compared to a full-multivariate approach. However, pairwise ap-
proaches may not clearly distinguish between direct and indirect causal
influences (Chen et al., 2006; Dhamala et al., 2008a; Ding et al., 2006).

The use of pairwise GGC produced here an overall reduction in per-
formance for all three approaches, compared to the respective results
obtained using conditional GGC under the same conditions. On criterion
I, bivariate implementations of both Morlet and Paul wavelets failed in
the identification of main driver; in fact, while cS1's gamma–driving on
average reached the highest peak among the nodes of the network, in
both wavelet-based approaches this was not significantly different from
the driving from node 14, which was the second largest driver
(Fig. 7A–B). Differently, the multitaper was able to correctly identify cS1
(Fig. 7C), but with effect size d¼ 0.34 lower than that obtained with
conditional GGC, i.e. d¼ 0.67 (Fig. 6B).

The limitations of pairwise GGC became most clear on criterion II.
The three nonparametric approaches performed in fact poorly in iden-
tifying the preferential functional targets of cS1 (Table 11). Moreover, we
found the predominant receivers of cS1 on the ipsilateral hemisphere in
most of the cases (Fig. 7, fourth row), which is clearly not physiologically
plausible.

Finally, within each method the estimated range of cS1's peak-driving
latencies did not differ much from that obtained with conditional GGC
(Table 12), with only the multitaper showing peak latencies convergent
with the activity profile of cS1.

4. Discussion

In this study, we systematically compared the performance of several
nonparametric GGC methods based on time-varying spectral factoriza-
tion (Dhamala et al., 2008a, 2008b), by using highly dynamic benchmark
EEG data recorded from rats during unilateral whisker stimulations
(Plomp et al., 2014b; Quairiaux et al., 2011). Nonparametric methods
require an initial choice of spectral decomposition parameters and our
results demonstrate that such selection is of crucial importance; none-
theless, an informed choice of these parameters can provide good and
meaningful results in practice.
Table 9
Effect sizes (d) for distinguishing cS1's main targets (criterion II).

Window size Multitaper

c. parietal c. frontal

10ms 0.330 0.189
20ms 0.531* 0.224*
30ms 0.422* 0.248*
40ms 0.493* 0.540*

Note. c. parietal refers to the contralateral parietal region and c. frontal to
contralateral frontal sensory-motor region; asterisks denote significant differ-
ences between targets (bootstrap lower 95% CI above zero).
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In order to be a reliable and valuable tool for real data applications,
any time-varying directed connectivity analysis should be able to identify
functionally relevant drivers and preferential connections in the network,
and furthermore correctly characterize how such connections evolve
over time. By evaluating main driver detection in the benchmark dataset,
our results show that nonparametric GGC methods are quite robust in
correctly identifying the dominant functional driver, which, in general, is
extremely important for the identification of areas functionally involved
in normal processing or pathological activity spread. We observed in fact
that all nonparametric methods successfully detected cS1 as the main
driver of the whisker-evoked cortical network, irrespective of parameter
settings considered, when using conditional GGC. Only the Morlet
wavelet failed in the identification of cS1, when its central frequency
parameter ω0 was equal to 9 or above. This notwithstanding, when
ω0 was in the range between 3 and 6, the Morlet wavelet guaranteed not
only a good detection of cS1, but also the best identification of its two
preferential functional targets. The Paul wavelet was able to distinguish
only the contralateral parietal region (node 14, Fig. 1A), regardless of m
value; while, we observed inconsistent identification of the other cS1's
functional target (node 10, Fig. 1A) across m values. For the sliding-
window multitaper good performance in target identification was ob-
tained only with time-bandwidth product NW� 4 and window size of at
least 20ms. These findings suggest that care should be taken in selecting
spectral decomposition parameters in nonparametric methods, when we
are interested in correctly characterizing the functional connections in
the network, which is crucial for inferring network properties in topo-
logical and graph-based analyses. In terms of temporal characterization,
the wavelet transforms seem suboptimal, the Morlet wavelet especially,
while the multitaper method appears more promising for investigating
fast-evolving interactions. In the benchmark dataset, for the Morlet
wavelet we observed an overall temporal bias towards longer latencies
for cS1's peak-driving, which increased by increasing ω0. The use of the
Paul wavelet with m� 3 and of the multitaper with small window
guaranteed a better temporal characterization of the whisker-evoked
network dynamics, with estimated latencies of cS1's peak-driving over-
lapping with the upper bound of the physiologically plausible range.

Altogether our findings show that connectivity performance of
nonparametric methods can strongly depend on parameters choice;
hence, a spectral decomposition method with certain parameter settings
may be optimal for a specific scenario/dataset, but not for others. In
practical applications, the choice of approach for GGC estimation and
parameter settings should be guided by the main purpose of the analysis
and by any prior information about the investigated data, when
available.

If we are interested in identifying the main drivers and targets within
the network, the Morlet wavelet is a promising solution, choosing
ω0 between 5 and 6. With these settings the Morlet wavelet is suitable for
studying causal influences with relatively slow temporal evolution, but it
may be ineffective for the investigation of interactions whose temporal
evolution is fast. Since ω0 controls the trade-off between temporal and
spectral resolution, and better temporal resolution can be obtained when
ω0 is small (Percival and Walden, 2000; Torrence and Compo, 1998),
some may be tempted to significantly lower ω0 to improve temporal
characterization. However, selecting ω0 too small introduces a defor-
mation in the scale-space, and this may produce significant negative



Fig. 7. The results of the analyses using pairwise GGC are shown for: A) Morlet-wavelet with ω0¼ 6; B) Paul-wavelet with m¼ 12; C) sliding-window multitaper with
NW¼ 4 and window size of 20ms. First row: time-frequency representation of the total driving from cS1. Second row: temporal dynamics of total driving in the gamma-
band for each node and discriminability of cS1 peak-driving. Third row: barplots show average total driving from each ipsilateral (Ipsi) and contralateral (Con) node at the
latency of peak-driving from cS1 (gray dotted line in the second row picture), with corresponding 95% CIs across rats and red asterisks denoting statistically significant
differences with respect to the second largest driver (criterion I). Fourth row: barplots show the driving from cS1 to all the other channels, at the latency of peak-driving
from cS1 (criterion II), and red asterisks denoting statistically significant differences between targets. Color-coding of all bars is consistent with Fig. 1.
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effects; while, ω0� 5 allows to confidently approximate the complete
Morlet prototype to the truncated version described in section 2.2.3 (De
Moortel et al., 2004; Farge, 1992; Torrence and Compo, 1998). From a
Table 11
Effect sizes (d) for distinguishing cS1's main targets (criterion II).

pairwise GGC conditional GGC

c.
parietal

c.
frontal

c.
parietal

c. frontal

Morlet-wavelet (ω0¼6) n.a. n.a. 1.125* 0.785*
Paul-wavelet (m¼12) n.a. n.a. 1.060* 0.248
Multitaper (NW¼4; 20ms
window)

0.165 n.a. 0.531* 0.224*

Note. c. parietal refers to the contralateral parietal region and c. frontal to
contralateral frontal sensory-motor region; asterisks denote significant differ-
ences between targets (bootstrap lower 95% CI above zero); n.a. is used for
comparisons not available.
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practical standpoint, on the opposite extreme, increasing ω0 produces a
progressive temporal flattening of the causal influences between cortical
areas and, consequently, problems in identifying expected drivers and
targets. Our results confirmed in fact that the time localization of the
Morlet transform is almost completely lost when ω0¼ 12 (De Moortel
et al., 2004).

The Paul wavelet provides a valid alternative when we aim to better
characterize interactions timing, because this prototype is more localized
Table 12
Latencies (ms) of peak-driving from cS1 (criterion III) and corresponding 95% CIs
across rats.

pairwise GGC conditional GGC

Morlet-wavelet (ω0¼6) 32.6 (29.2–36.4) 36.5 (28.7–40.8)
Paul-wavelet (m¼12) 28.6 (26.2–31.8) 30.6 (28.0–33.2)
Multitaper (NW¼4; 20ms window) 18.7 (16.9–20.5) 20.1 (15.1–24.3)
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in time and is characterized by less oscillations, and then it is expected to
have better temporal resolution but worse spectral resolution compared
to the Morlet wavelet, for equal wavelet parameters (De Moortel et al.,
2004; Torrence and Compo, 1998). Moreover, since the Paul is admis-
sible for any value of the parameter m, we can here lower more the
parameter to improve temporal resolution, but at the expenses of spectral
resolution. Our results reproduced these expected behaviors.

The sliding-window multitaper method may be the best choice for
investigating fast-evolving interactions. Starting from Ding and col-
leagues' early work (Ding et al., 2000), several studies have exploited a
short-window adaptive MVAR method to investigate neural in-
teractions, e.g. (Brovelli et al., 2004; Zhang et al., 2008). This approach
is based on the assumption of signals stationarity in short time intervals.
In general, sufficiently short windows may guarantee the “local sta-
tionarity” of some data (Ding et al., 2000), which is usually considered
in the weak-sense, i.e. when first (mean) and second order (variance)
ensemble statistics are constant in time (Li�egeois et al., 2017). Despite
the possible violation of statistical assumptions in highly nonstationary
data, the size of the window influences the time-frequency resolutions
trade-off: reducing window size lowers spectral resolution, which may
produce significant detrimental effects on interpreting the functional
roles of different brain areas, but it also helps to improve temporal
resolution and detect interactions that appear and disappear quickly in
time; vice versa when increasing window size. We here confirmed these
aspects for the multitaper-based nonparametric GGC. As rule of thumb,
in order to avoid a complete loss of spectral characterization, it seems
reasonable to select window size based on the frequency of interest,
such that at least one period fits the length of the window. Moreover,
values of NW around 4 allow in general obtaining a good compromise in
the spectral estimates trade-off between variance and bias, making such
values a reasonable choice for practical applications with the
multitaper.

Nonparametric GGC has been initially applied to LFPs recorded
frommonkeys while performing a GO/NOGO visual discrimination task
(Dhamala et al., 2008a) and provided a pattern of interactions between
S1 and parietal areas in line with well-established functional hierarchy
and anatomical connections (Felleman and Van Essen, 1991). Our
current work extends this initial application substantially, by providing
critical benchmark assessment of the effects of varying spectral
decomposition parameters and quantifying the performance of
nonparametric GGC on fixed criteria, and by introducing the Paul as an
alternative wavelet prototype for time-varying spectral decomposition.
In addition, we observed that nonparametric methods are quite robust
against signal downsampling. However, this may not always be the
case, and in general downsampling may significantly reduce detect-
ability of causality estimates (Barnett and Seth, 2017; Seth et al., 2013;
Wen et al., 2013b). Robustness against downsampling is an appealing
feature of nonparametric methods because it allows obtaining reliable
estimates even when signals are downsampled to lower the computa-
tional time of processing. Nonetheless, reducing sampling rate goes
together with decreasing temporal resolution, and an excessive reduc-
tion in temporal resolution may produce detrimental effects on con-
nectivity estimation performance and results interpretability also for
the nonparametric methods. In our dataset, for example, a further
downsampling to 125 Hz would produce negative effects, because a
temporal resolution of 8 ms is too low to investigate interactions that
happen in the order of about 10 ms, i.e. the time series would not be
resolved enough to observe properly the phenomenon. In practice, for
computational reasons, there may be scenarios in which we want to use
sampling rates around 100 Hz. The reliability of the results obtained at
these sampling rates depends on the temporal scale of the phenomenon
under investigation, and in principle a sampling rate of 100 Hz may be
suitable to investigate causal influences that evolve more slowly
compared to those considered here. While downsampling seems un-
problematic for nonparametric methods, temporal aspect of the signal
of interest put a lower bound on the sampling rate. In this respect, by
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using analytic solutions Barnett and Seth (2017) compared GGC in
continuous-time at finite prediction horizons and GGC based on
discrete-time subsampling of the underlying continuous-time stochastic
process, and showed that both continuous-time GGC and discrete-time
GGC decay exponentially as the sampling interval increases beyond the
longest internal time scale of circuit-level feedback delay. Moreover,
they showed that for sampling intervals smaller than the longest feed-
back delay, there may be “black spots” where the discrete-time
(downsampled) GGC becomes smaller than the “ground truth”
continuous-time GGC, and hence harder to detect in finite sample.
However, the actual detectability rate will depend on the sampling
distribution of the particular discrete GGC estimator used, thus some
estimation methods may potentially alleviate the degradation, while
others may aggravate it. This may account for the results observed in
our study for nonparametric methods.

Our results provide a clear demonstration that pairwise GGC can
lead to physiologically misleading results in real data. Using pairwise
GGC we obtained erroneous early preferential driving from cS1 towards
areas in the ipsilateral hemisphere, while in the rat model of unilateral
whisker stimulation cS1's targets at early latencies are expected to be in
the contralateral hemisphere. These findings can be explained in the
context of the unobserved common inputs, a scenario where de-
pendencies between two nodes are detected only because they receive
inputs from other possibly unobserved nodes, called common sources
(Bastos and Schoffelen, 2016). The common input is a problem in the
application of causality measures because it produces ambiguities be-
tween paths of connections that are direct and those that are indirect,
i.e. mediated by other nodes. In general, if common source signals are
not recorded the problem is fundamentally unsolvable. Pairwise GGC is
affected by the ambiguities due to indirect paths even when the com-
mon sources are recorded, as previously shown through simulated
models (Chen et al., 2006; Dhamala et al., 2008a; Ding et al., 2006; Kus
et al., 2004), because for each bivariate model all the other nodes are
basically unobserved. Differently, the conditional GGC is able to over-
come the common input problem by taking into account all available
information in the recorded dataset, and consequently it can determine
whether a causal influence between any pair of nodes is direct or in-
direct (Ding et al., 2006; Geweke, 1984; Wen et al., 2013a). Our results
confirm that conditional GGC should be preferred over pairwise GGC in
order to unambiguously distinguish direct connections from indirect
ones.

While the findings of this study are important for better under-
standing the influence of spectral decomposition parameters on con-
nectivity performance, andwe show practical ways on how to apply time-
varying nonparametric GGC, there are certain issues we do not explicitly
address. Besides the common input problem, other practical issues are in
fact associated with the application of causality analyses to real data, and
these should be taken into account to further optimize results from
nonparametric GGC, as well parametric GGC.

Well-known practical issues are for instance the presence on recorded
signals of additive noise, also referred to as measurement/observational
noise (Vinck et al., 2015; Winkler et al., 2016), and SNR differences
between channels (Bastos and Schoffelen, 2016). While both these
problems can be partly mitigated at experimental level before recording,
time reversal testing (Haufe et al., 2013, 2012) has been proved to reduce
most of the negative effects associated with them (Bastos and Schoffelen,
2016; Vinck et al., 2015; Winkler et al., 2016). This has motivated the use
of time-reversed GGC in the current work. In practice, interpretability
can be further improved employing analytical denoising algorithms,
which help reducing the negative effects of noise on causality analyses,
by explicitly modeling the additive noise with state-space model repre-
sentations of theMVAR process (Nalatore et al., 2014, 2007; Sommerlade
et al., 2015), or by detecting linear mixing effects from structural MVAR
models (Vinck et al., 2015).

The use of a common reference may lead to spurious causality esti-
mates when the reference signal is not electrically silent. Re-referencing
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using bipolar derivations has been shown to remove adverse effects of the
common reference in electrocorticography (ECoG) and laminar re-
cordings (Bastos et al., 2015; Bosman et al., 2012; Trongnetrpunya et al.,
2016). We used the recording reference for analysis here, because SNR
was high and common noise not apparent in the data, and most impor-
tantly our goal was to compare performance of various algorithms.

Some studies have demonstrated beneficial effects of time reversal on
parametric GGC, e.g. (Winkler et al., 2016); these results can be easily
extended to the nonparametric implementations considered in the cur-
rent work using a simulation framework (see the accompanied data
article). This framework can also be used to demonstrate that, when
using a common reference, nonparametric time-reversed GGC allows
obtaining unambiguous detection of the dominant spectral component of
the imposed causal influence (strong asymmetry), irrespective of the type
of common reference signal considered; although spurious estimates are
not completely eliminated outside the frequency band of the dominant
interaction.

Interpretational issues for connectivity analyses can also derive from
volume conduction in EEG or from field spread in MEG, and generally
connectivity analyses on sensor space do not permit any meaningful
interpretation in terms of interactions between functionally connected
neuronal populations on source space (Brunner et al., 2016; Van de Steen
et al., 2016). In the rat model the negative effects associated with volume
conduction are less severe compared to traditional human EEG, because
even throughout adulthood rat brains remain lissencephalic, i.e. they
lack surface convolutions; this aspect combined with the recording setup
of the benchmark dataset allowed obtaining a good location-specific
characterization of each sensor (Plomp et al., 2014b), matching intra-
cortical recordings (Plomp et al., 2014a; Quairiaux et al., 2011).

One downside for nonparametric methods is that they usually require
more computational time with respect to parametric methods. In the
benchmark dataset at original sampling rate of 2000Hz, nonparametric
methods required a computational time for each animal between 8 and
11 h,2 while for parametric recursive algorithms computational time
ranged between less than a minute and 3 h, depending on the algorithm.
Our finding that nonparametric GGC is robust against downsampling
suggests however that reducing sampling rate may safely cut computa-
tional time.

The nonparametric methods here considered allow modeling dy-
namic nonstationary signals through short-time multitaper or wavelet
transforms, which estimate patterns of interactions whose evolution in
time is relatively smooth. Similarly, smoothly evolving patterns can be
obtained when applying recursive algorithms for parametric time-
varying MVAR-modeling (Astolfi et al., 2008; Milde et al., 2010; M€oller
et al., 2001), which can also provide meaningful results in the
whisker-evoked benchmark dataset, as shown in a previous study (Pag-
notta and Plomp, 2018). In addition, for parametric connectivity mea-
sures a weighting by the spectral power of the source region has been
found to enhance their interpretability and performance in the bench-
mark dataset (Plomp et al., 2014b).

We conclude by addressing a recent claim of pitfall of conditional
GGC (Stokes and Purdon, 2017), which was previously observed and
appropriately addressed (Barnett and Seth, 2014; Chen et al., 2006). The
problem arises from considering model subset for the conditional defi-
nition of GGC. The fitting of separate full and reduced MVAR models
introduces in fact a bias-variance trade-off in the estimation of GGC,
depending on the selectedmodel order. Alternative methods to overcome
such problem already exist and the spectral matrix factorization-based
implementation such as nonparametric method that we used here is
among them (Barnett et al., 2018; Barnett and Seth, 2015, 2014; Dha-
mala et al., 2018; Faes et al., 2017), as can be demonstrated using our
simulation framework (see the accompanied data article).
2 All computations were performed using an Intel® Core™ i5-4590 Processor
(3.3 GHz).
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