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A B S T R A C T

In a recent PNAS article1, Stokes and Purdon performed numerical simulations to argue that Granger-Geweke causality (GGC) estimation is severely biased, or of high
variance, and GGC application to neuroscience is problematic because the GGC measure is independent of ‘receiver’ dynamics. Here, we use the same simulation
examples to show that GGC measures, when properly estimated either via the spectral factorization-enabled nonparametric approach or the VAR-model based
parametric approach, do not have the claimed bias and high variance problems. Further, the receiver-independence property of GGC does not present a problem for
neuroscience applications. When the nature and context of experimental measurements are taken into consideration, GGC, along with other spectral quantities, yield
neurophysiologically interpretable results.
In a recent paper, Stokes and Purdon (2017) claim that
Granger-Geweke causality (GGC) (Geweke, 1982, 1984) estimation and
application to neuroscience are problematic. Their main conclusions are:
(i) GGC estimates can be either severely biased or of high variance, (ii)
GGC estimates alone are not interpretable without examining the
component behaviors of the system model, and (iii) GGC ignores critical
components of a system's dynamics. Critically, Stokes and Purdon fail to
recognize the nature of GGC as a statistical formulation intended to make
inferences about the direction and strength of synaptic transmission, or
information flow, in the brain.

The problem with the Stokes-Purdon study lies in its use of a sub-
optimal estimation approach for conditional GGC (as pointed out in
commentaries (Barnett et al., 2017; Faes et al., 2017) and admitted by
Stokes and Purdon in their reply (Stokes et al., 2017)), and a lack of
understanding of the GGC measure in relation to other widely used
spectral interdependency measures such as coherence. Here, with the
same examples used in the Stokes-Purdon study, we show that their main
conclusions are invalid.

Geweke's pairwise (Geweke, 1982) and conditional (Geweke, 1984)
measures of Granger causality (GC) and total interdependence (TI) be-
tween wide-sense stationary processes are based on an elegant decom-
position of variance for multiple time series. Neuroscientifically, in
systems where the direction of synaptic transmission and information
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flow is known a priori, inferences from these measures are consistent with
the ground truth (see, for example, Trongnetrpunya et al., 2015).

For a pair of dynamic processes (1 and 2), the sum of three terms [GC
from 1 to 2 (F1→2), GC from 2 to 1 (F2→1) and instantaneous GC (F2.1) due
to common input] is shown to be equal to TI1,2 (i.e.,
TI1,2¼ F1→2 þ F2→1 þ F2.1) (Wen et al., 2013) in the time domain, which
is related to the commonly applied coherence measure between 1 and 2
(C1,2) in the frequency domain because TI is directly related to the
summation of coherence over all frequencies (Geweke, 1984). This
relationship between TI and Granger causality holds true for conditional
measures as well (Geweke, 1982). Geweke also showed for conditional
causality that: F1→2j3¼ F13→2 – F3→2¼ F13*→2*, where * denotes a moving
average representation and 13 represents a combination of processes 1
and 3. The decomposition of F1→2j3 by frequency may therefore be
derived from appropriately normalized moving average representations
for 2* and 13*, a logic for the state-space (SS) model-based estimation
framework. All of these measures are invariant with respect to scaling in
time series of a general kind, i. e., measures remain unchanged for
filtered time series by invertible linear filters. In addition, because GGC is
expressed as the ratio of decomposed variances, the magnitude of GGC
can be interpreted as the explained variance of one time series by another
time series.

For interacting processes 1 (transmitter) and 2 (receiver), frequency-
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Power and Granger Causality (GC) Spectra (blue: parametric with p = 3, green: nonparametric)
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Fig. 1. Parametric (VAR-based) and Nonpara-
metric Methods. Power spectra in dB (subplots along
the diagonal) and conditional Granger causality (GC)
spectra with the parametric method (vector autore-
gressive (VAR) model-based, p¼ 3) and the nonpara-
metric method applied to the simulated time series of
a 3-node system in Example 1 (Stokes and Purdon,
2017) (Stokes and Purdon, 2017). In this model, there
is unidirectional causal driving from node 1 to node 2
to node 3. The nodes (1, 2 and 3) oscillate respectively
at 40 Hz, 10 Hz and 50 Hz. Here, both parametric
(VAR-based) and nonparametric (based on spectral
matrix factorization of the power density spectra)
methods, when applied to 1000 trials each of 500 time
points, recover the true network interactions as con-
structed. The parametric estimation framework for
conditional GC first builds a vector autoregressive
(VAR) model for the full process from the time series
and performs spectral matrix factorization on the full
spectral matrix and the block of that matrix, related to
the sub-process. It thereby avoids two separate model
fits. The nonparametric method first estimates the
spectral matrix for the full process by direct Fourier
transforms of time series and similarly uses the spec-
tral matrix factorization on the full spectral matrix and
the sub-process-related block of the spectral matrix.

GC spectra from VAR and SS methods
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Fig. 2. VAR- and SS-based Parametric Methods. Conditional GC spectral es-
timates for 1→ 2j3 (in Example 1) (Stokes and Purdon, 2017) from VAR and SS
(state space) model-based parametric methods applied to 100 trials. The GC
estimates from VAR and SS methods are identical and are close to the true GC
spectra obtained from the AR coefficients of the model. The 5th-95th percentile
dispersion of GC estimates (shown for VAR in aqua green shading), computed
from 100 bootstrap samples, also overlaps with the dispersion from the
SS method.
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domain Granger causality from 1 to 2 (M1→2) can be defined in terms of
the total power of 2 (S22) and its intrinsic power (S2i) or its causal power
(S2c) at the receiver due to the transmitter. Specifically,

M1→2 ¼ loge
S22
S2i

(1)

Since S22¼ S2i þ S2c,

M1→2 ¼ �loge

�
1� S2c

S22

�
(2)

From (2), without going back to the model components, we can thus
obtain the causal power at 2 as:

S2c ¼ S22
�
1� e�M1→2

�
(3)

Thus, the causal power at the receiver (S2c) can be derived from the
GGC measure (dependent on the total variance (S22) of the activity at the
receiver). This result means that GGC does in fact reflect the causal power
at the receiver, if one accounts for the total power at the receiver. This
conclusion applies in neuroscience just as well as it does in any other
field.

In addition to the rigorous mathematical foundation, the framework
for estimating GGC is also well-established. Here, we simulate the same
model systems as in the PNAS source article (Stokes and Purdon, 2017)
and show that: (i) GGC estimates can be obtained reliably by using
both the nonparametric approach and the parametric approach (either
vector autoregressive (VAR) model-based or state-space (SS)
model-based) (as shown in Figs. 1 and 2, Fig. 2 showing excellent
agreement between VAR and SS estimates); (ii) GGC is consistent with
spectral interdependency measures like coherence, and its estimates
are interpretable in terms of the causal power contributed to the
461
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(A) Granger Causality spectra
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(B) Total Interdependence spectra
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(D) GC spectra at different coupling and intrinsic noise
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(E)  Effect of intrinsic noise on GC
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Fig. 3. Granger causality, coherence (total interdependence), power spectra, the effects of intrinsic noise and coupling for the two-node (“trans-
mitter-receiver”) system of Example 21, in which node 1 (50Hz-transmitter) drives node 2 (receiver). Granger causality spectra (A) and total interde-
pendence (or coherence) spectra (B) are the same for two different cases: node 1 driving node 2 (10Hz-receiver) and node 1 driving node 2 (30Hz-receiver).
The definition of Granger causality spectral measure is consistent with total interdependence (or coherence) measure. (C) The causal contributions of power at
the receiver (dashed lines in blue and green) reflecting the transmitter's frequency peak at 50 Hz (black line) are different, and so is the intrinsic power spectra,
which show the frequency peaks (blue solid line for 10 Hz-receiver, green for 30 Hz-receiver) due to own internal dynamics. (D, F, E) GC spectra depend on
transmitter-receiver coupling strength (defined by a variable coefficient in front of x1,t-1 in the equation for x2,t in the 2-node system example of the PNAS
source article (Stokes and Purdon, 2017)) and intrinsic noise of the receiver: spectra in (D) for (coupling, noise) ¼ (0.5, 1) (solid line) and (coupling, noise) ¼
(1, 0.5) (dashed line) are not the same as in (A) for (coupling, noise) ¼ (1, 1), and integrated GC (or time-domain GC) shows dependence with noise (E) and
with coupling (F).
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Fig. 4. GC spectra at different model orders (p¼ 3, 6, 20) for 1→ 2j3 of
Example 11. Here, the right model order for the system is 3. A higher arbitrary
model order can produce a systematic change or deviation in peak amplitude in
GC spectra as seen here.
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‘receiver’ relative to the intrinsic power of the ‘receiver’ (Fig. 3 (A, B,
C)); and (iii) GGC estimates scale with the intrinsic noise variance at
the ‘receiver’ and depend on the coupling strength of the ‘trans-
mitter-receiver’ (Fig. 3 (D, E, F)). The commentary by Faes and col-
leagues (Faes et al., 2017) has also shown that the SS-based method
provides reliable GC estimates.

The issue of bias and variance in conditional GGC estimates from
fitting separate full and reduced AR models was recognized a decade ago
(Chen et al., 2006) and addressed using matrix-partitioning of full esti-
matedmodel (Wen et al., 2013; Chen et al., 2006) and factorization of the
spectral matrix in the VAR modeling framework (Wen et al., 2013; Bar-
nett and Seth, 2014; Dhamala et al., 2008) and in the SS modeling
framework (Barnett and Seth, 2015; Solo, 2016). The
receiver-independence property of GGC was also previously identified
and investigated (Barrett et al., 2010).

In sum, the main conclusions of Stokes and Purdon's PNAS paper
(Stokes and Purdon, 2017) are invalid. Geweke's definition of Granger
causality in the frequency domain, along with other spectral measures
like coherence, form a logical system of spectral measures, and GGC in
combination with power spectra already allows its interpretation in
terms of intrinsic and causal variances. The receiver-independence
property of GGC is not a problem for applications in neuroscience
studies, but the nature and context of experimental measurements
need to be considered for applications and interpretations of the GGC
results.

Appendix

1. MATLAB codes for generating Fig. 1 along with the main codes for
estimating GGC are included in this zipped file: http://www.physics.

http://www.physics.gsu.edu/dhamala/codes/MatlabCodesDhamala.zip
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gsu.edu/dhamala/codes/MatlabCodesDhamala.zip, or https://
scholarworks.gsu.edu/phy_astr_facupub/13/, and also included as
part of online supplementary material to this article.

2 Fig. 4. GC spectra from the VAR-based parametric approach with
different model orders (p¼ 3, 6, 20) for GC: 1→ 2j3 for the three-
node example (Example 1) of the PNAS article (Stokes and Purdon,
2017).
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