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Recent neuroimaging studies have demonstrated that the network consisting of the right anterior insula (rAI),
left anterior insula (lAI) and dorsal anterior cingulate cortex (dACC) is activated in sensory stimulus-guided
goal-directed behaviors. This network is often known as the salience network (SN).When andhow a sensory sig-
nal enters and organizes within SN before reaching the central executive network including the prefrontal corti-
ces is still a mystery. Previous electrophysiological studies focused on individual nodes of SN, either on dACC or
rAI, have reports of conflicting findings of the earliest cortical activity within the network. Functional magnetic
resonance imaging (fMRI) studies are not able to answer these questions in the time-scales of human sensory
perception and decision-making. Here, using clear and noisy face-house image categorization tasks and human
scalp electroencephalography (EEG) recordings combined with source reconstruction techniques, we study
when and how oscillatory activity organizes SN during a perceptual decision. We uncovered that the beta-
band (13–30 Hz) oscillations bound SN, became most active around 100 ms after the stimulus onset and the
rAI acted as a main outflow hub within SN for easier decision making task. The SN activities (Granger causality
measures) were negatively correlated with the decision response time (decision difficulty). These findings sug-
gest that the SN activity precedes the executive control inmediating sensory and cognitive processing to arrive at
visual perceptual decisions.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

The salience network (SN), consisting of the right anterior insula
(rAI), left anterior insula (lAI) and dorsal anterior cingulate cortex
(dACC) (Ham et al., 2013; Seeley et al., 2007), responds to behaviorally
salient events (Seeley et al., 2007). It plays a crucial role in integrating
sensory stimuli to initiate cognitive control (Menon and Uddin, 2010),
to implement andmaintain task sets (Dosenbach et al., 2006), and to co-
ordinate behavioral responses (Medford and Critchley, 2010). When
and how a sensory signal enters and organizes within SN in a sensory-
driven, goal-directed task is not understood. Such understanding can
help predict impending perceptual decisions and task executions that
involve the prefrontal cortex.

There are twomain competing theories that explain the possible ‘driv-
ing hub’ of the SN. First theory proposes that the dACC monitors perfor-
mance and signals the need for behavioral adaptation (Ridderinkhof
et al., 2004). Activity in the dACC signals the need for enhanced cognitive
control, and interactions between the dACC and the lateral prefrontal
structures implement subsequent behavioral changes (Egner, 2009;
Ridderinkhof et al., 2004). In contrast, the second theory suggests that
3, Department of Physics and
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the rAI is a ‘cortical outflow hub’ of the SN and it coordinates a change
in activity across multiple neurocognitive networks, such as the default
mode network (DMN) and central executive network (CEN) (Chand
and Dhamala, 2015; Bonnelle et al., 2012; Menon and Uddin, 2010;
Sridharan et al., 2008). Diffusion tensor imaging (DTI) study has demon-
strated that the structural integrity of the white matter connection be-
tween the rAI and the dACC predicts behavioral and physiological
abnormalities after traumatic brain injury (Bonnelle et al., 2012). Previous
investigations using blood oxygenation level-dependent (BOLD) changes
in functionalmagnetic resonance imaging (fMRI) showed that the rAI, not
the dACC, drives the SN (Ham et al., 2013; Sridharan et al., 2008) and fur-
ther suggested that a change in the effective connectivity of the dACCwas
associatedwith behavioral adaptation (Ham et al., 2013). As BOLD hemo-
dynamic responses are sluggish, it might in fact include processes that
happen on longer time-scale (seconds) and, if so, the ‘driving hub’ of
the SNmight even change inmillisecond time-scale of neuronal activities.
The studies mentioned above (Debener et al., 2005; Egner, 2009; Ham
et al., 2013; Sridharan et al., 2008) had reports of conflicting findings of
the earliest cortical activity. Therefore, how a sensory signal enters SN
and organizes within before reaching the prefrontal cortex for central ex-
ecutive processing in the time-scales of human sensory perception and
cognition has remained as amystery.We seek to resolve these conflicting
reports considering both anterior insulae and dACC in millisecond time-
scale. In particular, how the cortical areas of the SN interact, what the
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temporal flow of underlying overall activity in these cortical areas is, and
what frequency band(s) of information flow binds the SN are largely
unknown.

As the dACC, rAI and lAI are often co-activated, it had been hard to
disentangle their causal features (Ham et al., 2013), specifically on
longer time-scale measures such as from fMRI. In this study, we record-
ed human scalp electroencephalography (EEG), reconstructed source
waveforms and investigated the causal relationships between the
areas of the SN using spectral Granger causality (GC) (Dhamala et al.,
2008a, 2008b). In this EEG experiment, we used the standard face-
house image categorization tasks and studied the temporal evolution
of activity in the salience nodes and the patterns of oscillatory network
activity flow binding SN nodes in a network. Adding noise to clear im-
ages, three noise levels of stimuli were created to examine whether a
difficult task (or difficult decision)modulates the network activity flow.

2. Materials and methods

2.1. Participants

Twenty-six neurologically healthy human volunteers (21 males, 5
females) of age ranged from twenty-two to thirty-eight years (mean:
26.3 years, standard deviation: 4.7 years) participated for this study. A
written informed consent was collected from the participants prior to
data collection. The experimental protocol was approved from Institu-
tional Review Board of Georgia State University. Three participants
were excluded from the final analyses because of behavior performance
and/or unmanageable artifacts and noise present in their EEG data.

2.2. Stimuli

We used total twenty-eight images of faces and houses (14 images
of each category). Face images were from the Ekman series (Ekman
and Friesen, 1976). Fast Fourier transforms (FFT) of these images were
computed, providing twenty-eight magnitude and twenty-eight phase
matrices. The average magnitude matrix of this set was stored.
Stimulus-images were produced from the inverse FFT (IFFT) of average
magnitude matrix and individual phase matrices. The phase matrix
used for the IFFT was a linear combination of the original phase matrix
computed during the forward Fourier transforms and a random Gauss-
ian noise matrix. The resulting images were equalized for luminance
and contrast as in the prior studies (Heekeren et al., 2004, 2008;
Rainer andMiller, 2000). Finally, the stimuli consisted of three different
noise-levels: 0%, 40% and 55% (i.e., clear stimuli, 40% noisy stimuli, and
55% noisy stimuli). Those steps were performed using Matlab scripts.
The E-Prime 2.0 software was used to display the stimuli and control
the task sequences.

2.3. Experimental design

Prior to experimental task, the participants were briefly explained
about the task paradigm. Participant sat in a dark room with the only
source of light from the experimenter's computer screen. The same
computer screen with the same display settings was used throughout
the experiment. However, we did not explicitly calculate voltage/lumi-
nance functions for gamma correction as specified by the relations be-
tween RGB (red-blue-green) and luminance values, which are device
dependent. The stimulus viewing distance was ~60 cm (chin rest).
Fig. 1 shows a schematic of experimental paradigm used. Experiment
consisted of 4 blocks with 168 trials in each block. The stimuli were ran-
domized but balanced across blocks in presentation. The experiment
consisted of total 672 trials with 224 trials for each noise level. On
each trial, a small fixation cross (‘+’ in the middle of the screen) was
presented for 500 ms. Then a stimulus was presented for 150 ms,
followed by black screen with question mark (‘?’) for 1500 ms during
which time participants were allowed to indicate their decision (either
face or house) by keyboard button press. The responses after that delay
were considered incorrect.

2.4. Data acquisition and preprocessing

EEG data were acquired with a 64-channel EEG system from Brain
Vision LLC (http://www.brainvision.com). Analog signal was digitized
at 500 Hz. The impedances of each electrode were kept below 10 kΩ,
and the participants were asked to minimize blinking, head move-
ments, and swallowing. EEG data were band-pass filtered between 1
and 100 Hz, and notch filtered to remove 60 Hz AC-line noises. The
eye blinkings were removed using independent component analysis
(ICA)-based ocular correction. Data from bad electrodeswere discarded
and replaced, when appropriate, by spatial interpolation from the
neighboring working electrodes. These preprocessing steps were done
using Brain Vision Analyzer 2.0 (http://www.brainproducts.com).

2.5. Data analysis

The preprocessed EEG data were analyzed in the following main
steps:

(1) Computation of ERPs: Continuous EEG data were segmented into
trials of 300 ms duration (post-stimulus: 0 to 300 ms) based on
the stimulus onset times as a reference. The trials that had
three standard deviations below or above the global mean across
time in each subject were considered as outliers (Junghofer et al.,
2000) and they were discarded from the subsequent analysis.

(2) LORETA EEG-sources and single-trials source waveforms recon-
struction: All correct trials (ERPs for correct percept) from all
three conditions were grand averaged and imported to BESA
software version 5.3.7 (www.besa.de) to reconstruct EEG
sources. We used the low resolution electromagnetic tomogra-
phy (LORETA) (Pascual-Marqui et al., 1999, 1994), which is also
referred as Laplacian weighted minimum norm, to reconstruct
the EEG sources. LORETA is an extensively used source locali-
zation technique in EEG studies for both cortical and deep
brain structures (Clemens et al., 2010; Herrmann et al.,
2005; Jones and Bhattacharya, 2012; Thatcher et al., 2014;
Velikova et al., 2010), including insula and hippocampus
(Jones and Bhattacharya, 2012; Thatcher et al., 2014;
Velikova et al., 2010). Depth weighting strategy implemented
in LORETA overcomes the problem of surface-restricted localiza-
tion methods, such as minimum norm estimates (MNE) (Michel
et al., 2004; Painold et al., 2011; Pascual-Marqui et al., 1999).
LORETA computes inverse solution at 2394 voxels with spatial
resolutions of 7 mm in the Talairach Atlas (Pascual-Marqui
et al., 1999, 1994). It is based on the assumption that the
smoothest of all possible neural activity distributions is the
most plausible one. This assumption is also supported by electro-
physiology, where neighboring neuronal populations show
highly correlated activity while EEG-LORETA results are the ac-
tivity rendered byneighboring voxelswithmaximally similar ac-
tivity (Haalman and Vaadia, 1997; Herrmann et al., 2005;Michel
et al., 2004). Since functionally very distinct areas can be ana-
tomically very close (e.g., the medial parts of the two hemi-
spheres), LORETA can produce the results that include the two
hemispheres (Fig. S1: activity in V1). Therefore, the results
should be interpreted with caution and simultaneous EEG-fMRI
recordings could be a good choice in such case.
Locations of sources can be constrained to the cortical surface
and their orientations perpendicular to the local cortical surface
based on neurophysiological information that the sources of
EEG are postsynaptic currents in cortical pyramidal cell, and
that the direction of these currents is perpendicular to the corti-
cal surface (Dale and Sereno, 1993; Hamalainen et al., 1993).



Fig. 1. Experimental design. A) Stimuli with three noise levels, B) task paradigm: stimuli were presented for 150ms, followed by black screen with questionmark (‘?’) for 1500ms during
which time participants responded with a keyboard button press.
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Peak activities of these sources – the SN nodes –weremarked as
the network nodes for connectivity analyses. Using single-trials
EEGdata,wefitted dipoles at locations of peak activation of local-
ized sources of SN – the rAI, lAI, and dACC based on our hypoth-
esis – with dipole orientation presented in Table 1. The single-
trials source signalswere then extracted using a four-shell spher-
ical head model and a regularization constant of 1% for the in-
verse operator as done previously by our group (Adhikari et al.,
2014). These source signals were used for the connectivity anal-
yses.

(3) Power and Granger causality spectral analyses. The power spectra
can be computed using parametric and nonparametric ap-
proaches (Chand and Dhamala, 2014; Dhamala et al., 2008a,
2008b). Granger causality (GC) spectral analyses are used to ex-
amine the strengths, directions, and frequencies of interactions
between dynamic processes. GC spectral method is a part of
spectral interdependency methods (Dhamala, 2014). The
measures of spectral interdependency are derived from the
time series recordings of dynamic systems either by using
autoregressivemodeling (parametricmethod), or by usingdirect
Fourier or wavelet transforms (nonparametric method)
(Dhamala et al., 2008a, 2008b). For a pair of multivariate station-
ary processes (1 and 2), there are threemeasures that character-
ize the spectral interdependency between these processes: total
interdependence (M1,2), GC (one-way effect or directional influ-
ence from the first process to the second process, M1 → 2, or from
the second to thefirst,M2→ 1) and instantaneous causality (mea-
sure of reciprocity, M1.2). In general, the total interdependence is
the sumof directional influences and instantaneous causality fre-
quency by frequency (M1,2 =M1 → 2 +M2 → 1 +M1.2). The spec-
tral interdependency measures are derived from the spectral
matrix (S), and/or from the transfer function (H) and noise co-
variance matrix (∑), which can be estimated by the parametric
(predictionmodel building) (Ding et al., 2006) or nonparametric
(model-free) approaches applied to these time series (Dhamala
et al., 2008a, 2008b). ∑ is computed from the residual errors
of the prediction models and the transfer function matrix H is
Table 1
The anatomical location, dipole orientation and dominant activation timeframe of localized sou

Brain areas Talairach coordinates
(mm)
x, y, z

Right anterior insula (rAI) 35.0, 9.0, −7.0
Left anterior insula (lAI) −33.0, 11.0, −8.0
Dorsal anterior cingulate cortex (DACC) 4.0, 38.0, 13.0
constructed from the matrix inverse of the Fourier transforms
of the coefficients in the prediction models. S, H and ∑ can
also be estimated by using the nonparametric spectral methods
(Dhamala et al., 2008a, 2008b) without explicitly fitting the
time series X1(t) and X2(t) in autoregressive models. The GC
spectrum from the second time series X2 to the first time series
X1 (i.e., 2 to 1) at a frequency (f) is defined as

M2→1 fð Þ ¼ − ln l−
Σ22−Σ2

12=Σ11

� �
H12 fð Þj j2

S11 fð Þ

0
@

1
A: ð1Þ

Because of the unknown theoretical distributions of spectral GC,
establishing statistical significance in these measures from experimen-
tal time series requires data resampling (surrogate) methods such as
random permutation method (Adhikari et al., 2013; Brovelli et al.,
2004; Seth, 2010).

In EEG-source waveforms, the frequency-specific causal outflow (F)
at a node i can be defined as:

Fi ¼
1

N−1

XN

j

Mi→ j−Mi→ j
� �

: ð2Þ

Here, for the three nodes, j can be 1, 2, and 3. If we assign, for exam-
ple, the rAI= 1 (the first node), dACC=2 (the second node), and lAI=
3 (the third node), then GC causal outflow of rAI is F1 = [(M 1 –N 2–M
2 –N 1) + (M 1 –N 3–M 3 –N 1)] / 2, where M1 –N 2 is GC from the first
node to the secondnode, andM2 –N 1 is GC from the secondnode to the
first node. Similarly, GC outflows can be defined for the dACC and lAI.

The model order appropriate for the data turned out to be 4, which
was determined by comparing the power computed from parametric
and nonparametric approaches at different model orders, and picking
the model order that rendered the lowest power difference between
two approaches. Since we were interested in investigating the salience
node and network activities across time, we segmented the trials in
rces of the SN for correctly perceived stimuli.

Dipole orientations
x, y, z

Dominant activation period
(ms)

0.9, 0.3, −0.4 78–142
−0.9, 0.4, −0.3 76–144
0.1, 1.0, 0.0 76–146



Fig. 2. Behavior responses for all three levels of noise. A) Behavioral accuracy
(performance %) significantly decreased (* indicates significant p-value (p b 10−3; FDR-
corrected)), but B) the response time significantly increased with an elevated noise in
the stimuli (* indicates significant p-value (p b 10−6; FDR-corrected)).
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four time frames. The source activity of the AIs and dACC peaked around
75–145ms (as presented in Table 1 and Fig. S1).We use this time frame
in a segment and consider other equal intervals before and after it. Thus,
we had four time segments. The model orders were also further com-
puted at all four segments and the appropriate model order was found
out to be common across all segments. We computed the power and
GC spectra from source waveforms of SN nodes in four consecutive
time frames (TFs) named as TF1: 0 ms to 75 ms, TF2: 75 ms to
150ms, TF3: 150ms to 225ms, and TF4: 225ms to 300ms. The thresh-
old value of GC, for statistical significance, was computed from surro-
gate data by using permutation tests and a gamma-function fit
(Adhikari et al., 2014; Blair and Karniski, 1993) under a null hypothesis
of no interdependence at the significance level p b 10−4. The causal out-
flow at a node (see Eq. (2)) is computed as the total GC flowing out from
a node minus total GC flowing in to that node in beta band (13–30 Hz).

2.6. Brain–behavior correlation

The response time (RT) of each participant for each stimuluswas re-
corded. To see the brain–behavior correlation with the increase in noise
level in stimuli, RTs were converted into z-scores and plotted with GC.
Relationship between GC and RT was tested using both Spearman's
rank correlation and Pearson's correlation. If p b 0.05 for both, the corre-
lationwas considered significant. The results reported here are in terms
of Spearman's rank correlation.

3. Results

3.1. Behavioral results

The mean performance percent, defined as a ratio of the number of
correct responses to the total number of responses multiplied by hun-
dred and averaged over all participants, was the highest for stimuli
with 0% noise level (with mean: 96.80% and standard deviation:
0.71%) compared with the stimuli with 40% noise level (mean: 92.68%,
standard deviation: 1.54%) and 55% noise level (mean: 69.67%, standard
deviation: 2.74%). Repeated measures ANOVA (Sheskin, 2003) showed
a significant effect of noise levels (task difficulty) on the performance
(F(2,44) = 150.43, p = 0.000003) and the response time (RT)
(F(2,44) = 132.74, p = 0.000000). Pair t-test post hoc analyses follow-
ed by false discovery rate (FDR) multiple comparisons (Benjamini and
Hochberg, 1995) further revealed that performance significantly de-
creased with the increase in noise level (p b 10−3; FDR-corrected).
The mean RT—the time taken to indicate the decision by pressing key-
board button press and averaged over all participants—was lower for
the stimuli with 0% noise level (mean: 434.02 ms, standard deviation:
22.09 ms) compared with the stimuli with 40% noise level (mean:
484.28 ms, standard deviation: 22.66 ms) and 55% noise level (mean:
565.70 ms, standard deviation: 25.73 ms). Pair t-test post hoc analyses
followed by FDR multiple comparisons further illustrated that the RT
significantly increased with the increase in noise level (p b 10−6; FDR-
corrected) as shown in Fig. 2.

3.2. Electrophysiological (brain) results

3.2.1. Activities of SN nodes
The average ERPs for correct decisions were used to compute local-

ized sources (inverse solutions) in LORETA (Pascual-Marqui et al.,
1999, 1994). Fig. 3 shows the locations of the peak source activity
(marked by cross-hairs) in time (first row), and the locations and orien-
tations of fitted dipoles in the SN nodes (second row) to obtain the
single-trials source waveforms.

Activation in the SN nodes started at ~76 ms after the stimulus
onset. Maximum peak activations occurred at ~84 ms in the rAI and
lAI (BA47/13), which was followed by activation in the dACC (BA32)
at ~98 ms. Besides activations in the SN nodes, we also observed
activation in the visual area (BA17/18: V1/V2), the ventral temporal
cortex (BA37: the right fusiform face area (FFA) and the left
parahippocampal place area (PPA)), and in the left dorsolateral prefron-
tal cortex (DLPFC) (BA9) (Fig. S1).We limited our study to the SNnodes
and therefore performed the dipole fittings at those SN nodes. Table 1
lists the source locations, dipole orientations in the source model, and
dominant activation timeframes of the SNnodes (Table S1 for activation
timeframes of other brain areas). The dipoles fitted at the locations and
orientations explained approximately 80% of the variance in the EEG
signal for trials with correct responses.

3.2.2. SN for clear stimuli
Power spectra computed in four consecutive timeframes — TF1:

0 ms to 75 ms, TF2: 75 ms to 150 ms, TF3: 150 ms to 225 ms, and TF4:
225 ms to 300 ms — at the rAI, lAI, and dACC showed peak activity in
beta (~24 Hz peak) band when the participants viewed clear stimuli
(see Figs. S2, S3). Fig. 4A shows power spectra comparison within
nodes of the SN among TF1, TF2, TF3 and TF4. Repeated measures
ANOVA calculations demonstrated a significant effect on overall
power spectra across time frames (F (3,44) = 128.43, p = 0.000000).
Pair t-test post hoc analyses followed by FDRmultiple comparisons fur-
ther revealed that overall power spectra significantly changed over the
time frame and had significantly higher magnitude in TF2 compared
with other timeframes as shown in Fig. 4B (* indicates p b 0.001; FDR-
corrected). GC spectra were computed to assess the oscillatory network
interactions between the SN nodes.

Fig. 5 presents GC spectra as a function of frequency, where horizon-
tal lines represent statistically significant threshold value. Beta band
network interactions between the SN nodes enhanced in TF2 (Fig. 5:
second column) comparedwith the rest of TFs (other columns). Repeat-
ed measures ANOVA calculations showed a significant effect on overall
GC spectra across time frames (F (3,44)=51.68, p=0.0002). Pair t-test
post hoc analyses followed by FDR multiple comparisons further evalu-
ated that overall GC spectra significantly changed over the time frame
and had a higher magnitude in TF2 compared to other timeframes as



Fig. 3. Spatiotemporal profiles of peak source-level brain activity. The first row shows peak source-level brain activity over the right anterior insula (rAI) and left anterior insula (lAI) at
84 ms, and over the dorsal anterior cingulate cortex (dACC) at 98 ms (abbreviations: l = left and r = right; color bar in nAm/cm3), and the second row shows the fitted dipoles on the
SN nodes (abbreviations: A = anterior, and P = posterior).

Fig. 4. A) Comparison of power within nodes of the SN among four consecutive time
frames (TF1: 0 ms to 75 ms, TF2: 75 ms to 150 ms, TF3: 150 ms to 225 ms, and TF4:
225 ms to 300 ms for 0% noise-level. B) Average power over the SN nodes in TF2 is
significantly higher compared with other TFs (* indicates significant p-value (p b 0.001;
FDR-corrected) and n.s. indicates not significant p-value).
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shown in Fig. 6A (* indicates p b 0.01; FDR-corrected).We calculated GC
net outflow at each node of the SN in TF2, applied the repeated mea-
sures ANOVA, and found that the net outflows were significantly differ-
ent among the nodes (F (2,44)=122.12, p=0.000000). Pair t-test post
hoc analyses followed by FDR further revealed that the net outflows
were significantly different over the SN nodes as displayed in Fig. 6B
(* indicates p b 0.00001; FDR-corrected). Importantly, those compari-
sons of the net outflows suggested that the rAI as a main ‘cortical out-
flow hub’ and the dACC as a main ‘cortical inflow hub’ within the SN
(Fig. 6B).

3.2.3. Effect of task-difficulty in the SN activity
Power spectra were computed for different timeframes TF1, TF2,

TF3, and TF4 at the rAI, lAI, and dACC when participants viewed the
stimuli with 40% and 55% noise-levels (Figs. S4, S6). Power spectra cal-
culations also showed a peak activity in beta band (~24 Hz peak). GC
spectra were computed to assess the oscillatory network interactions
between the SN nodes.

Beta band network interactions between the SN nodes were sup-
pressed for noisy stimuli compared with clear stimuli in the TF2 (see
second columns of Figs. 5, S5, S7). Overall causal interactions among
the SN nodes were compared between noise-levels by repeated mea-
sures ANOVA to assess significance level of task difficulty. Repeated
measures ANOVA showed a significant effect of noise (task difficulty)
on overall causal interactions among the SN nodes (F (2,44) = 215.02,
p=0.00000008). Pair t-test post hoc analyses followed by FDRmultiple
comparisons further revealed that the overall causal interactions signif-
icantly decreasedwith increase in noise level (p b 10−3; FDR-corrected)
(Fig. 7).

3.2.4. Brain–behavior correlation
The difficulty levels—expressed in terms of behavior response

times —were found to be significant and negatively correlated with
the measures of network activity for all possible connections between



Fig. 5.GC spectra of all possible pairs among the rAI, lAI, and dACC for stimuli with 0%noise-level at four consecutive time frames (TF1: 0ms to 75ms, TF2: 75ms to 150ms, TF3: 150ms to
225 ms, and TF4: 225 ms to 300 ms) mentioned at the top of each column.
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cortical areas of the SN, except for the dACC to lAI flow, in the TF2
(75 ms–150 ms). The correlation coefficient (r) and the corresponding
p-value of all possible connections are presented in Fig. 8 (see Figs. S8,
S9, and S10 for other TFs).
4. Discussion

Behaviorally important events are responsible to activate the SN
(Menon and Uddin, 2010; Seeley et al., 2007). The SN nodes—the rAI,
lAI and dACC—are often co-activated in fMRI BOLD responses (Ham
et al., 2013; Ullsperger et al., 2010) and thereforemake harder to clearly
identify their distinct functional roles within a network. In this study,
using EEG recordings and perceptual decision-related reconstructed
EEG sources, we looked at the temporal changes of network activity
flow within SN. Using spectral GC analyses, we found that beta
(~24 Hz) oscillation bound these nodes in the SN. The beta power and
beta causal interactions were significantly higher at the nodes and net-
work in the time frame 75 ms to 150 ms compared with other time
frames. The analysis of the net beta causal outflow (out–in causality)
patterns showed that the rAI played as a main ‘cortical outflow hub’ of
the SN consistent with previous fMRI studies of the SN (Ham et al.,
2013; Sridharan et al., 2008).We also found that the beta causal interac-
tions within the SNwere significantly suppressedwith the task difficul-
ty (noise level), but the spectral power was opposite (Fig. 7 and
Fig. S11). The causal outflow was negatively correlated with the re-
sponse time (Fig. 8).
4.1.1. Activities of the SN nodes

We found that the key nodes of SN—the rAI, lAI and dACC—activated
at around 100 ms after stimulus onset. These brain regions were dem-
onstrated also being activated for a variety of tasks in previous fMRI in-
vestigations (Ham et al., 2013; Menon and Uddin, 2010; Seeley et al.,
2007). Electrophysiological recordings combined with source localiza-
tion techniques (Debener et al., 2005; Dehaene et al., 1994) reported
that the dACC responds to the salient events, such as error detection,
in the time frame of 80 ms–110 ms. The timing of dominant activation
of the dACC in our study was consistent with those studies. Similarly,
the AI was reported being activated at ~60 ms after stimulus onset,
however it was in a thermo-sensory domain (Craig et al., 2000). Previ-
ous study on monkeys had found that the AI activated at ~65 ms after
stimulus onset, however it was in an auditory domain (Remedios
et al., 2009). Our findings and previous reports taken together therefore
suggested the overall time frame of activations of SN nodes.
4.1.2. Oscillatory power and network activity

Power spectra estimated at the rAI, lAI and dACC showed prominent
peak activity in beta (~24 Hz peak) band when the participants viewed
clear stimuli. Beta oscillations were also at work for noisy stimuli. This
band of oscillatory activity was consistent with ones observed in previ-
ous EEG studies of multisensory (Hipp et al., 2011) and somatosensory
(Adhikari et al., 2014) perceptions for different brain regions. A recent



Fig. 6. A) Comparison of connectivity strengths within nodes of the SN among four
consecutive time frames (TF1: 0 ms to 75 ms, TF2: 75 ms to 150 ms, TF3: 150 ms to
225 ms, and TF4: 225 ms to 300 ms) for 0% noise-level (* indicates significant p-value
(p b 0.01; FDR-corrected) and n.s. indicates not significant p-value). B) Causal outflow
calculations at the time frame of the highest connectivity strength (TF2) revealed the rAI
as a main ‘cortical outflow hub’ within the SN (* indicates significant p-value (p b 0.0001;
FDR-corrected)).

Fig. 7. Comparison of connectivity strength within nodes of SN among all three noise-
levels in the TF2: 75 ms to 150 ms. The overall connectivity strength is significantly
suppressed with an elevated noise in the stimuli (* indicates significant p-value
(p b 10−3; FDR-corrected)).
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study (Castelhano et al., 2014) also showed that the AI activity especial-
ly in lower gamma (or higher beta) is associated with perceptual
decisions.

GC spectral analyses demonstrated that inter-areal brain synchroni-
zation and interactionswithin the SN aremediated by enhanced ~24Hz
(beta band) neural oscillations. Information flow at ~24 Hz was
dominantly feedforward from sensory areas—the rAI and the lAI—to
the dACC, similar to the propagation of average cortical activity, proba-
bly reflecting sensory-driven processes. This supports the model of
feedforward hierarchical integration process from sensation to those ul-
timately ends up into action (Mazurek et al., 2003; Smith and Ratcliff,
2004). Previous investigations that consider nodes of the SN have divid-
ed into two competing groups. One group supports that activity in the
dACC implies an enhanced cognitive control (Ridderinkhof et al.,
2004), and further interactions of the dACC with the lateral prefrontal
structures implement subsequent behavioral changes (Egner, 2009;
Ridderinkhof et al., 2004). Electrophysiological studies (Debener et al.,
2005; Dehaene et al., 1994) suggested that the dACC provides the first
cortical signal used for salient events, such as error detection. Other
studies support that the rAI drives the SN, partly because the rAI is
shown to be structurally and functionally connected to a wide range
of cortical regions involved in various aspects of cognitive control. The
rAI is functionally connected to networks responsible for adaptive be-
havior, including the SN (Seeley et al., 2007), as well as other parts of
the fronto-parietal control network (Vincent et al., 2008). DTI
tractography has demonstrated that this cortical area has direct white
matter connections to other key regions within these networks,
including the dACC (van den Heuvel et al., 2009), the inferior parietal
lobe (Uddin et al., 2010), and the temporo-parietal junction (Kucyi
et al., 2012) making the insula well placed to perform its putative role
of evaluating (Uddin et al., 2010), reorienting attention (Ullsperger
et al., 2010), and switching between cognitive resources in response
to salient events (Uddin and Menon, 2009). While there is an ongoing
division based on previous studies, our results demonstrated that the
rAI is a main ‘cortical outflow hub’ and the dACC is a main ‘cortical
inflow hub’ of the SN (Fig. 6B). We provided this evidence showing
the milliseconds time-scale evolution of beta activity in perceptual
decision-making task. As cortical circuits implementing cognitive pro-
cesses might engage in highly recurrent interactions (Wang, 2008) me-
diated by bidirectional cortico-cortical connections (Felleman and Van
Essen, 1991), our results also demonstrated that beta networks are bidi-
rectional such as in rAI-lAI pair, however a dominantflow is from the rAI
to lAI in the time frame of the highest activity. Our results demonstrated
that the overall spectral power increased with the increase in noise
levels (Fig. S11), however theGC connectivity strengths showed the op-
posite (Figs. 7, 8). Previous studies in disease (Zheng-yan, 2005) and
health (Hipp et al., 2011) also report the similar features of beta-band
activity that local activity (power) is positively correlated and large-
scale network activity (coherence) is negatively correlatedwith difficul-
ty levels of task. A recent report (Castelhano et al., 2015) also demon-
strates a dissociated role between amplitude (power) measures and
coherence synchrony. Those reports and our findings taken together
therefore suggest that detailed neuralmechanisms for such dissociation
might be important for future research. The suppression in GC connec-
tivity might be due to less information flow from the sensory regions
to the dACC when stimuli were degraded. Since beta oscillations have
recently been observed for a better performance (or, accuracy) during
decision-making processes (Hipp et al., 2011; Siegel et al., 2012,
2011), this suppressed information flowmight implicate the underlying
neuronal mechanisms of the SN that has also been indeed behaviorally
reflected for an elevated difficulty level (Fig. 2A). The anatomical inter-
areal and laminar neural circuitry in the brain might support the occur-
rence of such oscillatory activities and their modulations in cognitive
tasks (Buzsaki and Wang, 2012).

To summarize, the present study enhances our understanding of the
SN activity, with regard to the temporal evolution of averaged evoked
potentials in the nodes and an oscillatory network that appear to orga-
nize evoked activity across the SN. We found that SN became most ac-
tive at around 100 ms after the stimulus onset; the beta-band (13–



Fig. 8. Relation between GC and difficulty level expressed in terms of response time of all three noise-levels in TF2 (75 ms to 150 ms).
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30Hz) oscillations bound them in a network and the rAI acted as amain
outflowhubwithin SN. The SN activities (GCmeasures)were negatively
correlated with the decision response time (decision difficulty). These
findings provide important insights on how sensory information enters
and organizes in the SN before reaching the prefrontal cortex for
decision-making.
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