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Abstract

General anesthetics are used during medical and surgical procedures to reversibly induce a state of total unconsciousness in
patients. Here, we investigate, from a dynamic network perspective, how the cortical and cardiovascular systems behave
during anesthesia by applying nonparametric spectral techniques to cortical electroencephalography, electrocardiogram
and respiratory signals recorded from anesthetized rats under two drugs, ketamine-xylazine (KX) and pentobarbital (PB). We
find that the patterns of low-frequency cortico-cardio-respiratory network interactions may undergo significant changes in
network activity strengths and in number of network links at different depths of anesthesia dependent upon anesthetics
used.
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Introduction

Medical and surgical procedures most often involve the use of

general anesthetics for reversibly producing total unconsciousness

in patients. During such procedures, a multitude of physiological

parameters including heart rate, respiration rate, movement and

brain activity are observed to assess the level of anesthesia for the

patient’s safety. How anesthetics work and what quantitative

measures are effective in assessing different levels of anesthesia

have been the questions of intense research for years. The answers

to these questions can potentially help design better depth-of-

anesthesia monitoring systems and reduce the frequently-occur-

ring intraoperative awareness [1]. The incidence of awareness may

be as high as 1 to 2 for every 1000 patients [2], which translates to

the occurrence of 20,000 to 40, 000 cases of anesthetic awareness

annually in the United States according to the October 6, 2004’s

report of the Joint Commission. Here, to contribute to answering

the questions about the effects of anesthetics and the network

activity measures, we use nonparametric spectral techniques [3,4]

to look at the individual and network activity from simultaneously

measured cortical electroencephalography (EEG), electrocardio-

gram (ECG) and respiratory signals recorded [5] from anesthe-

tized rats under two anesthetics, ketamine-xylazine (KX) and

pentobarbital (PB). This study is a reanalysis of the data published

by Musizza et al. [5].

Central modulation of the cardiovascular system via descending

signals from the brain has been well recognized for a long time [6].

Normal functioning of the cardiorespiratory system requires the

regulation of oxygen, carbon dioxide, and pH. This regulation is

achieved via central nervous system (CNS), particularly neuronal

system in the brain stem in coordination with other higher cortical

neuronal systems. The brainstem neurons control two active

pumping systems: respiratory pump and cardiovascular pump.

Carbon-dioxide sensitive receptors, which provide synaptic drive

necessary for rhythm generation, also modulate respiratory

patterns to protect the brain from changes in carbon-dioxide

and pH. Respiratory modulation of baroreceptor and chemore-

ceptor reflexes affect heart rate and the cardiac vagal efferent

nerve activity [7] Thus, at the systems level, respiratory and

cardiovascular systems and the CNS controlling these systems can

be considered to form a network, on which the dynamic

interactions occur and determine the collective behavior of these

systems. It was also reported that the human thalamus may gate

respiratory sensation between cortex and brainstem [8]. In this

regard, the characteristic changes in the activity of cortico-cardio-

respiratory network may define the depth of anesthesia better than

the individual activities can. However, the concept of network has

yet to be realized in current clinical practice. Although different

physiological parameters are measured, they are generally

evaluated individually. Current depth-of-anesthesia monitoring

systems use scalp EEG-based bispectral measure, whose reliability

has recently been questioned [9].

In this paper, using Granger causality measures [10–12], we

examine the network activity of directed interactions at different

depths of anesthesia from the recordings of rats’ cortical, cardiac

and respiratory activities under two drugs, KX and PB. These

anesthetics have often limited use only in laboratory settings with

experimental animals. A previous study [5] based on the same

experiment showed the existence of two distinct stages of

anesthesia marked with an increase in h-wave (3.5–7.5 Hz) as a

transition from a deep stage of anesthesia to a shallow one in case

of one drug KX. The phase dynamics-based approach [13,14] was

used to look at the direction of phase couplings among cortical,
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cardiac, and respiratory activities. In case of PB, the transition

from a deep level to a shallow one was not obvious with spectral

power changes. The phase-based approach was not able to

unambiguously evaluate some of the directions of phase-couplings.

This work characterizes all the cortico-cardio-respiratory node and

network activities during different levels of anesthesia by

nonparametric spectral techniques including Granger causality

[3,4].

Materials and Methods

Granger Causality and Nonparametric Approach
Granger causality [10] is a measure of causal or directional

influence from one time series to another. Its estimation utilizes

linear prediction models of measured time series. Suppose we have

two dynamic processes X1 and X2 which generate the following

time series: X1 : x1(1),x1(2),:::,x1(n) and X2~y(1),y(2),:::,y(n).
The causal influence from X2 to X1 is then inferred by the

reduction in the unexplained variance of the predicted X1

using X2 with a bivariate model (x1(t)~
P?

j~1 bjx1(t{j)zP?
j~1 cjy(t{j)ze12(t)) compared to the unexplained variance of

the predicted X1 without using X2 (x1(t)~
P?

j~1 ajx1(t{j)

ze1(t)). This leads to the definition of time-domain Granger

causality for a pair of time series [10,11]: Fj?i~ln
var(ei(t))

var(eij(t))
,

where i~1,2 and j~2,1. In the frequency domain, Granger

causality is defined as: Ij?i(f )~ln
Sii(f )

~SSii(f )
, where Sii(f ) is the total

power, ~SSii(f ) is the intrinsic power, and total power~intrinsic
powerzcausal power [11]. Using S(f )~H(f )SH�(f ), the

Granger causality Xj to Xi at frequency f is then [11]

Ij?i(f )~ln

Sii(f )

Sii(f ){ Sjj{
S2

ij
Sii

� �
DHij(f )D2

, ð1Þ

where (i,j)~(1,2) or (2,1), H is the transfer function and S is the

noise covariance function.This is pairwise or bivariate Granger

causality. In a system of three or more time series, it is often

desirable to find out whether a causal influence between any pair

of time series is direct or mediated by others, which cannot be

identified by the bivariate (or pairwise) measure of causality. Such

inferences of direct or indirect can be made with conditional

Granger causality [4,12]. We can consider an example with three

processes (X1,X2,X3), in which X2 exerts a causal influence on X1

only via X3. A pairwise analysis will reveal a nonzero causality

from X2 to X1 in this case. The conditional causality analysis is

required to identify whether this interaction is mediated via X3. In

the time domain, the Granger causality from X2 to X1 conditional

on X3 is defined as [12]: F2?1D3~ln
S11(X1,X3)

S11(X1,X2,X3)
, where

S11(X1,X3) is the variance of the noise in the joint regression of

X1 and X3, and S11(X1,X2,X3) the variance in the regression of

X1, X2, and X3, both variances being associated with X1 variable.

In the frequency domain, the Granger causality from X2 to X1

conditional on X3 is given by [12]:

I2?1D3(f )~ln
S11(X1,X3)

DQ11(f )ŜS11(X1,X2,X3)Q�11D
, ð2Þ

where the quantities in the denominator inside the logarithm are

functions of the transfer function and the noise covariance matrix.

Thus, the estimation of frequency-domain Granger causality

requires noise covariance (S) and transfer function (H ), which are

obtained as part of the autoregressive data-modeling. The

nonparametric approach to Granger causality avoids data-

modeling: data-modeling often becomes problematic [4].

The nonparametric approach is based on widely used Fourier

transform for both pairwise and conditional measures [3,4]. In this

approach, spectral density matrix S is constructed from the direct

Fourier transforms: Slm~vXl(f )Xm(f )�w, where l~1,2,

m~1,2, and v:w is averaging over multiple realizations. In this

paper, we used windowed Fourier transforms to obtain spectral

density matrix. The spectral density matrix S is then factored [3]

into a set of unique minimum-phase functions:

S~yy�, ð3Þ

where * denotes matrix adjoint, y(eih)~
P?

k~0 Akeikh is defined

on the unit circle fDzD~1g, and Ak~(1=2p)
Ð p

{p y(eih)e{ikhdh

with holomorphic extension y to the inner disk fDzDv1g as

y(z)~
P?

k~0 Akzk where y(0)~A0, a real, upper triangular

matrix with positive diagonal elements. We then obtain S and H

as follows [3]:

S~A0AT
0 ð4Þ

H~yA{1
0 : ð5Þ

The use of S, H , and S in Geweke’s formulas ((1), (2)) then enables

one to obtain pairwise and conditional Granger causality without

explicit data-modeling. The nonparametric approach has the

following advantages over the parametric approach: (i) there is no

need to deal with model order calculation, and (ii) the

nonparametric approach can always capture underlying complex

spectral features unlike the parametric approach [3].

Experiment
This study is a reanalysis of the data using the nonparametric

spectral techniques. The details about the experiments that took

place in the Institute of Pathophysiology in Ljubljana can be found

in the article by Musizza and colleagues [5]. The study protocol

was approved by the Panel on Ethics in biomedical research in the

Institute. All the experiments [5] took place in the Institute in

accordance with: State Guidelines for granting Licenses for

Animal Experiments for Research Purposes, published in the

Official Gazette of the Republic of Slovenia 40/85, 22/87; the

Protection of Animals Act, ibid 98/99; EU regulations and

recommendations, Council Directive 86/609/EEC; European

Parliament resolution 2001/2259(INI); and the European Science

Foundation Policy Briefing Use of Animals in Research, August

2001, Second Edition.

Simultaneous recordings of scalp EEG, ECG and respiration

rate were performed on two groups of adult male Wistar rats

weighing 250–300 g [5]. Ten rats in the first group were

anesthetized with a single intraperitoneal injection of ketamine

hydrochloride (45 mg per kg body wt) and xylazine hydrochloride

(7 mg per kg body wt)(KX group). Ten rats in the second group

were anesthetized with a single intraperitoneal bolus of pentobar-

bital (60 mg per kg body wt) (PB group). A single time series of

EEG was obtained from the recordings of a differential amplifier

with one electrode over the left parietal cortex and the other over

the right parietal side. The duration of recording varied from rat to

Cortico-Cardio-Respiratory Network Interactions
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rat and was more than 80 min on average both for the KX group

and for the PB group.

Data Analysis
The original time series data sampled at 1000 Hz were lowpass

filtered below 45 Hz and resampled at 200 Hz. The Fourier

transforms and spectral quantities (power, coherence and GC)

were computed using moving time window of 1 minute with

0.5 minute overlap to look at the temporal variations. The time

series within 1 min window were further broken into 4-sec

segments with a 2-sec overlap. The 4-sec segments within 1 min

window were used to compute the average spectral matrix. The

spectral quantities such as power, coherence and Granger

causality were thus derived from the average spectral matrices

over time in intervals of 0.5 minute. We performed a permutation

based statistical technique [4] to detect significant coherence and

GC values above the background activity. For this, we considered

a 10-minute segment of time series from all rats around the

transition time from a deep to shallow stage, which was

independently detected [5]. We put all these segments in one

pool and randomized them. From this pool, we then randomly

picked up segments in 1-min running windows and computed the

coherence and GC for the whole 10 minutes. We then picked up

maximum values of coherence and GC. We repeated all these

steps for 1000 permutations and fitted the 1000 maximum values

by a gamma function. From a gamma-function fit, we determined

the significance threshold at p~0:01. In order to find out whether

the causal influence between any pair of time series which was

detected above the significance threshold, is direct or mediated by

others, we computed conditional GC [4].

Results

Here, we first evaluate the performance of the nonparametric

Granger causality [3,4] and the phase-based approach [13] in

determining directional influences from time series. We apply

these techniques to synthetic data and experimental data

(simultaneoulsy measured EEG-ECG-respiration data from one

rat from the KX-group). Figure 1 shows such a comparison of the

applications of these techniques to the time series generated by a

model of a coupled system with deterministic and stochastic

processes (this model is similar to the one used in [4]). The driving

system is described by Yt~ytzD
P3

k~1 Ak sin(2pfktzwk) and

the driven system by Xt~
P4

k~1 akXt{kzcYt{1zgt, where

yt~
P4

k~1 akyt{kzet. Here, gt and et are Gaussian noise

processes. At D~0, both driving and driven variables become

purely stochastic and at Dw0, these systems show mixed

behaviors (deterministic and stochastic). c is the coupling strength.

The other parameter values used here are: ak~(1:87,{
1:96,1:55,{0:683), fk~(0:122,0:391,0:342), wk~(0,p=3,2p=3),
and Ak~(0:7,0:7,0:08). We apply the nonparametric GC and the

phase-based measure to these time series at different D’s and C’s

and find out that GC is reliable whereas the phase-based

technique as applied here to wide-band signals often fails to

determine the directions of coupling correctly. We compare the

GC-based directionality measure (CGC ) with the phase-based

measure by applying to one rat’s data from the KX group. The

results are shown in Figure 2. This is the case where there is a very

good agreement between independently assessed transition time

(marked by dashed vertical lines) and the time at which the

oscillatory power changes significantly in the cortex in d-frequency

range, in the heart at cardiac frequency (&4 Hz), and for the

respiration at respiratory frequency (&1 Hz) (left column of plots

in Figure 2). As expected, coherence between respiratory and

cardiac activities at respiratory frequency (at the top right column

of Figure 2) changes significantly in going from deep to light stages.

There are also significant (pv0:05) differences in directionality

values between the deep and light anesthetic stages as assessed by

both phase-based and nonparametric Granger causality (shown on

the right in lower two panels). But, the Granger causality based

measure detects the transition time better. We now present the

results obtained by using these nonparametric spectral techniques.

Figure 3 shows representative power, coherence and GC from the

KX group. In the power plots, the spectral peaks occur around

1 Hz for the respiration and 4 Hz for the cardiac activity with the

weaker higher frequency harmonics. For the brain, d wave

(0:5{3:5 Hz) was observed during the first (deep) stage and it was

weakened as the appearance of h wave (3.5–5.0 Hz) at the second

(shallow) stage as reported in [5]. In order to see changes in the

GC around the transition time, we calculated time averaged GC

before and after the transition time. At first, we detected the time

varying frequency of cardiac activity (around 4 Hz), respiration

(around 1 Hz) and d wave and h wave. The d wave could be

detected both at the deep stage and for 10 minutes at the shallow

stage, whereas the h wave could be detected only at the shallow

stage. At each moment, we picked up the GC which corresponded

to the frequency detected above, and time-averaged separately

before and after transition. The same procedure was used for the

PB group and the representative plots are shown in Figure 4. We

conducted Wilcoxon rank sum tests to find out differences between

the time averaged values before and after the transition time. For

the KX group, the GC from cardiac activity to respiration

(pv0:01) and the coherence corresponding to the cardiac

frequency (pv0:01) decreases significantly after the transition

time, whereas there is no significant difference in the cardiac

activity power. These results indicate that the coupling from

cardiac to respiration becomes weaker at the shallow stage of

anesthesia. There is a significant increase in the GC from the brain

(d wave) to the respiration (pv0:05) at the deep-shallow transition,

whereas the power of d wave decreases significantly (pv0:01).

This suggests that the coupling from d wave to respiration is

strengthened at the shallow stage of anesthesia. For the PB group,

the representative spectra are shown in Figure 4. The GC from

respiration to cardiac activity (pv0:05) and the coherence

corresponding to the respiration frequency (pv0:01) decrease

significantly after the transition time, whereas there is no

significant difference in the respiratory power. The average

power, coherence and GC at brain frequency (B, d, or h), at

cardiac frequency (C) and at respiratory frequency (R) are shown

in Figure 3 for the KX group and in Figure 4 for the PB group.

The summary histograms of average power, coherence and GC

before and after transition time are shown in Figure 5 and Figure 6

for the two groups KX and PB respectively. These results indicate

that the coupling from respiration to cardiac activity weakens at

the shallow stage of anesthesia. It should be noted that there are 3

rats in the KX group with significant time average of Coh: B–C (d)

and pairwise GC: B?C(d) in the deep stage whereas no rat shows

significance in the shallow stage. In order to check whether the

influence is direct or indirect, we performed the conditional GC

analyses [4]. With these analyses we found that the causal

influences of the brain to the cardiac activity is mediated by

respiration during the deep stage. Thus, in this stage, the brain has

influence on cardiac activity via respiration only. These results on

conditional causality are shown in Figure 7.

Conclusions
Stages of anesthetic awareness could be assessed more reliably

by bi-or multi-variate measures such as coherence and Granger

Cortico-Cardio-Respiratory Network Interactions
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causality among cortico-, cardio- and respiratory activities than

the univariate measure such as power of brain, cardiac or

respiratory oscillations. Please see Figures (6 and 7) for summary

results and Figure S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11,

S12, S13, S14, S15, S16, S17, S18, S19, S20 in the Electronic

Supplementary Material S1 0 for the results from all individual

rats. Figure 8 summarizes the results from the pairwise and

conditional Granger causality analyses. For the KX group, there

are significant differences of GC from cardiac activity to

respiration and from the brain to respiration between the two

Figure 1. Directional measures computed from simulated stochastic and deterministic processes. The top panel shows sample time
series for driving Yt and driven Xt variables. As D is changed from 0, the coupled system goes from being purely stochastic to stochastic plus
deterministic. The middle pannel shows that the nonparametric Granger causality correctly captures the underlying oscillatory driving direction from
Y to X at D~1 and the coupling strength, c~0:5. Granger causality from X to Y remains close to zero. The bottom left pannel shows a degree of
phase synchrony (sync~vcos(w1{w2)w2zvsin(w1{w2)w2) between two processes (X and Y ) and relative couplings (directionality measures)
derived from time-domain Granger causality (CGC~(GC2{w1{GC1{w2)=(GC2{w1zGC1{w2)) and from the phase-based technique (Cw). Here, w’s
are individual phases and v:w is an average. A positive value of relative couplings (CGC , Cw) means that the coupling from Y to X is greater than
the other way around. Here, we compute sync index, CGC and Cw at different D, and find that GC can unabmiguously determine the directions of
coupling from a coupled stochastic and deterministic system, and the phase-based technique may often fail to do so. On the right, we change the
strength of coupling at D~1 and find that the phase-based technique often fails to determine the correct directions when the coupling becomes
stronger.
doi:10.1371/journal.pone.0044634.g001
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Figure 2. Directional measures computed from sample experimental data. Power, coherence, phase-based directionality, and GC-based
directionality calculated from the data of one rat in the KX group is shown here. Time evolutions of power spectra of brain (B), cardiac (C) and
respiratory (R) are shown in the first column of plots. Time evolutions of coherence spectra, phase-directionality and GC-based directionality are
shown on the right column of plots. Vertical dashed lines represent the transition time from a deep to light level of anesthesia as assessed by several
parameters as reported in [5]. The dashed horizontal lines in the directionality plots represent the averages over the deep stage of anesthesia. Two
sample t-tests showed that the directionality averages before and after the transition over equal time-intervals are significantly different (pv0:05).
GC-based directionality around the respiration frequency (&1 Hz) rises above 3 standard deviations at around the transition time, whereas the
phase-based directionality does so at a later time.
doi:10.1371/journal.pone.0044634.g002
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stages. After the deep-shallow transition, there is an increase in the

causality from the brain (d) to respiration. The GC from cardiac

activity to respiration decreases significantly. For the PB group,

there are significant causal influences from cardiac activity to

respiration, from respiration to cardiac activity, and from

respiration to brain in the deep stage. After the transition, the

GC from respiration to cardiac activity decreases significantly.

These results can lead to the following general conclusions: (i)

network interactions, especially directional influences quantified

by nonparametric Granger causality, can distinguish a deep stage

of anesthesia from shallow one, (ii) changes in cardiac and

respiratory interactions consistently mark the transition between

these two stages, and (iii) the overall cortical-cardio-respiratory

network activity (number of directed links and/or strengths) may

increase in going from the deep to the shallow levels with some

differences in the network activity for different anesthetics. These

findings not only help us understand how the cortical and

cardiovascular systems behave as a network during anesthesia, but

also suggest that the network activity measures might be useful for

effective physiological monitoring.

Figure 3. Representative spectra from the KX group. The first column power, the second column coherence, the third and forth columns
pairwise GC, where C, R and B represent the cardiac activity, the respiration and the brain, respectively. The white vertical lines represent the
transition from a deep to light level of anesthesia as assessed by several parameters as reported in [5].
doi:10.1371/journal.pone.0044634.g003

Figure 4. Representative spectra from the PB group. The first column shows power, the second column coherence, the third and forth
columns pairwise GC.
doi:10.1371/journal.pone.0044634.g004

Cortico-Cardio-Respiratory Network Interactions
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Discussion

The respiratory modulation of cardiac activity rate variability is

well known as respiratory sinus arrhythmia (RSA) [15]. Cardiac

influence on ventilatory dynamics has been observed and

cardioventilatory coupling (CVC) has been suggested as a regular

mechanism [16]. In this study, we also observed the existence of

significant bidirectional influence between ECG and respiration

signals for all rats. The most significant change in GC at the deep-

shallow transition is the decrease of coupling from cardiac activity

to respiration for the KX group and from respiration to cardiac

activity for the PB group. It was shown in anaesthetized rats that a

longer duration of phase synchronization between cardiac activity

and respiration was observed with the concomitant decrease in

respiratory frequency [17]. Our results are consistent with these

previous findings. It was observed for some rats in the KX group

that the coupling from d wave to respiration increases after the

deep-shallow transition. Anesthetics are known to affect the

chemical synapses of the neuronal systems in the brain. It is

proposed that a neuronal hyperpolarization block at the level of

the thalamus, or thalamocortical and corticocortical reverberant

loops, could contribute to anesthetic-induced unconsciousness.

This is consistent with our result of the brain weakening its

influence on respiration during a deep stage of anesthesia. The

hypothalamus that controls sleep/wake states is known to be a key

target of anesthetics that act at GABA A receptors [18,19]. It is

known that pentobarbital acts at receptors [18], whereas ketamine

affects GABA and NMDA receptors and reduces the pre-synaptic

release of glutamine [20]. The effects on respiratory and

cardiovascular system are different between PB and KX. For

example, the level of respiratory depression caused while

anesthetized depends on which drug is used [21]. Our results of

different network activity patterns for the two different anesthetics

also indicate that these agents act differently, possibly at chemical

synapses. There are some differences in directed interactions using

the variance (amplitude)-based Granger causality and the phase-

based approach as in [5]. For example, rats which have significant

GC H?R or R?H did not have significant phase causality.The

phase-based approach for directionality (or coupling) as used in

Musizza et. al. [5] was not able to determine interactions with the

brain in the shallow anesthetic state of the KX group and in both

states (deep and shallow) of the PB group. This may indicate that

the mechanism of phase coupling is different from that of

amplitude coupling so that the amplitude is always affected but

the phase is not. In monkey and human studies of cortical

oscillation, different types of interaction (phase coupling, phase

continuity and amplitude coupling) were observed depending on

the distance of the cites [22]. For both KX and PB, theta waves

appears not during the deep stage of anesthesia but during the

light stage of anesthesia. The h wave in the hippocampus is

believed to be critical for temporal coding and decoding of active

neuronal ensembles and modification of synaptic weights associ-

ated with memory processes. Various anesthetic drugs are known

to affect the h wave [23]. The appearance of h activity at the

transition from a deep to shallow stage of anesthesia in the EEG

signals which we analyzed may be also related with these memory

Figure 5. Power, coherence and GC for the KX group. The summary histograms of average power, coherence and GC before and after
transition time for 10 rats in the KX group are shown here. The x-axis is the number of rats and y-axis is a value corresponding to the y-label. The
symbol ‘C’ in y-labels means cardiac, ‘R’ respiratory and ‘B’ brain, respectively. Symbols in parenthesis represent the frequency at which average was
calculated. For example, GC : C?R(C) means time average of GC was calculated along cardiac frequency (around 4 Hz). B here means the d-
frequency range. Blue bars represent time average before the transition (deep stage) and red bars represent time average after transition (shallow
stage). Horizontal black lines are threshold calculated by permutation test. Numbers in histograms are the average of time averages across all the rats
and its mean errors (deep stage upper and shallow stage lower). The mark * is put beside them if the distribution of time average is significantly
different (pv0:05) between deep and shallow stages.
doi:10.1371/journal.pone.0044634.g005
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processes. These results may reveal the origins of low-frequency

oscillations which are commonly reported in human EEG or blood

oxygen level-dependent (BOLD) fluctuating signals. For example,

it was reported in [24] that slow oscillation (0.02–0.2 Hz) exists in

the human cortex in the EEG during sleep. These slow oscillations

in the EEG (v0.1 Hz) could be of cardiovascular origins because

there are interactions between cardiovascular system and the

brain. There is also a debate about the origins of human BOLD

signal fluctuations. It was discovered that the slow fluctuations

(v0.1 Hz) are not just random noise but the fluctuations

measured in the left somatomotor cortex are specially correlated

with those in the right somatomotor cortex and with medial motor

Figure 6. Power, coherence and GC for the PB group. The summary histograms of average power, coherence and GC before and after
transition time for 10 rats the PB group are shown here. The same description of histograms as one for the KX group. Please note that that we do not
have the time averages before transition (deep stage) in Power (B) since the h-oscillations are present only in the shallow stage.
doi:10.1371/journal.pone.0044634.g006

Figure 7. Bivariate and conditional Granger causality. A:
Pairwise GC from the brain to the cardiac activity and B: GC from the
brain to the cardiac activity conditional on the respiration for one rat
from the KX group. The significant causality in A disappears in B, which
means the causality from the brain to the cardiac activity is likely to be
mediated by respiration during the deep stage of anesthesia.
doi:10.1371/journal.pone.0044634.g007

Figure 8. Summary of causal influences in the deep and light
stages of anesthesia for both groups. An arrow is marked if at least
one subject has significant time-averaged GC above threshold. The
width of arrows is proportional to the magnitude of average of time-
averaged GC through all the rats, which are written in Figure 5 and 6.
Arrows in red color means that the magnitude of GC changes
significantly between the two different stages of anesthesia.
doi:10.1371/journal.pone.0044634.g008
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areas in the absence of overt motor behavior [25]. In humans, the

main cardiac (around 1 Hz) and respiratory (around 0.3 Hz) peaks

were observed in the signals [26]. In this study also, we found that

the slow frequency oscillations exist in the cortico-cardio-

respiratory network activity. The nonparametric spectral approach

including GC can be used reliably to look at the cortico-cardio-

respiratory node and network activities associated with different

depths of anesthetic awareness.

Supporting Information

Electronic Supplementary Material S1 In this Electronic
Supplementary Material S1, we include the power,
coherence and Granger causality results for all rats in
the KX group in Fig. (S1, S2, S3, S4, S5, S6, S7, S8, S9,

S10) and for rats in the PB group in Fig. (S11, S12, S13,
S14, S15, S16, S17, S18, S19, S20).

(PDF)
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