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Abstract

Granger causality (GC) and dynamic causal modeling (DCM) are the two key approaches used to determine the
directed interactions among brain areas. Recent discussions have provided a constructive account of the merits
and demerits. GC, on one side, considers dependencies among measured responses, whereas DCM, on the other,
models how neuronal activity in one brain area causes dynamics in another. In this study, our objective was to
establish construct validity between GC and DCM in the context of resting state functional magnetic resonance
imaging (fMRI). We first established the face validity of both approaches using simulated fMRI time series, with
endogenous fluctuations in two nodes. Crucially, we tested both unidirectional and bidirectional connections be-
tween the two nodes to ensure that both approaches give veridical and consistent results, in terms of model com-
parison. We then applied both techniques to empirical data and examined their consistency in terms of the
(quantitative) in-degree of key nodes of the default mode. Our simulation results suggested a (qualitative) con-
sistency between GC and DCM. Furthermore, by applying nonparametric GC and stochastic DCM to resting-
state fMRI data, we confirmed that both GC and DCM infer similar (quantitative) directionality between the
posterior cingulate cortex (PCC), the medial prefrontal cortex, the left middle temporal cortex, and the left an-
gular gyrus. These findings suggest that GC and DCM can be used to estimate directed functional and effective
connectivity from fMRI measurements in a consistent manner.

Keywords: dynamic causal modeling; effective connectivity; functional magnetic resonance imaging; Granger
causality; resting state

Introduction

Over the past years, many techniques have been pro-
posed to characterize how brain areas interact with

each other, under different experimental conditions. Several
neuroimaging studies are available, describing neuronal dy-
namics under rest and task, considering the merits and de-
merits of different approaches. The concepts of directed
functional connectivity and effective connectivity have be-
come prominent in neuroimaging research (Friston, 1994).
Directed functional connectivity, for example, Granger cau-
sality (GC) (Granger, 1969), assesses the recurrent functional
integration, among different brain areas. This approach is ex-
ploratory and rests on the notion of predictability and statis-

tical dependencies to establish causal relationships. On the
contrary, effective connectivity—as measured with dynamic
causal modeling (DCM) (Friston et al., 2003), considers the
influence of one neural system over the other. DCM is based
on theoretical assumptions and specifies different hypotheses
in terms of different models or architectures.

GC and DCM are the predominant techniques for explor-
ing directed coupling or connectivity among brain regions
using electroencephalography (EEG), magnetoencephalog-
raphy (MEG), and functional magnetic resonance imaging
(fMRI) data. However, both have been a topic of debate
for some time. GC has been used to provide useful descrip-
tions of directed functional connectivity using electrophysi-
ological data (Bastos et al., 2015; Bernasconi et al., 1999;
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Brovelli et al., 2004; Ding et al., 2000), electrocorticographic
data (Bosman et al., 2012), MEG or EEG data either at the
source or sensor level (following spatial filtering) (Barrett
et al., 2012), and spike train data derived from single-unit re-
cordings (Kim et al., 2011). Applications of GC to fMRI time
series have been considered as contentious because GC does
model the hemodynamic generation of observed signals from
underlying neuronal states (Friston, 2011b, 2009; Roebroeck
et al., 2011). FMRI studies suggest that the hemodynamic
response function (HRF) varies over the brain regions and
individuals (Aguirre et al., 1998), which can confound the
temporal precedence of neuronal events assumed by GC.
However, GC is a well-accepted measure in the analysis of
electrophysiological time series, because of zero temporal
lag between observed responses and their neuronal causes
(Brovelli et al., 2004; Friston et al., 2013). Seth et al.
(2013) showed both theoretically and in a series of simula-
tions that Granger causal inferences are robust to a wide va-
riety of changes in hemodynamic response properties, noting
that severe downsampling and/or excessive measurement
noise in fMRI data may lead to incorrect inferences.

In contrast to GC, DCM relies on probabilistic graphical
models of distributed dynamics, which are specified in
terms of priors on connectivity or coupling parameters. It as-
sumes that causal interactions among brain areas are medi-
ated by hidden neuronal dynamics, specified in terms of
nonlinear differential equations in continuous time. The pa-
rameters of these equations reflect the connection strength,
which are estimated using Bayesian techniques (Stephan
et al., 2010). DCM eludes the controversies related to varia-
tions in the HRF because it models (regionally specific) hemo-
dynamic and neuronal state variables that generate observed
data. Furthermore, it has been shown that DCMs, which in-
clude hidden regions, outperform equivalent DCMs, based
only on regions that can be observed directly. For example,
Boly et al. (2012) showed that a DCM that included a hidden
thalamic source outperformed an equivalent DCM based only
on cortical sources. Hence, GC and DCM are based on differ-
ent assumptions and ideas, but both model neural interactions
and are concerned with directed causal interactions—and both
may provide complementary or even consistent perspectives
(Friston et al., 2013; Valdes-Sosa et al., 2011).

In the current study, we used the GC and DCM techniques
to analyze resting state fMRI (rsfMRI) data and compared the
resulting connectivity estimates. We assumed that both GC
and DCM could be applied to a common data set to ask
whether the connectivity parameters obtained from both tech-
niques show similar connectivity or network architecture.

We applied GC and DCM to simulated fMRI time series
data and to empirical rsfMRI data. For the simulations, we
used a stochastic integration scheme, with random fluctuations
on neuronal activity driving hemodynamic states—under a
simple (linear) model of neuronal coupling—to generate sim-
ulated fMRI time series data for two nodes. For posterior
estimates, we used a Bayesian filtering approach in general-
ized coordinates over the simulated data (Friston et al.,
2010). The nonparametric GC (Dhamala et al., 2008a) ap-
proach was then applied to the same simulated data to exam-
ine the direction of the information flow between these nodes
and to compare the results with those of DCM.

For the empirical data, we selected four brain regions of
default mode network (DMN): the posterior cingulate cortex

(PCC), the medial prefrontal cortex (mPFC), the left middle
temporal cortex (LMTC), and the left angular gyrus (LAG),
all of which are anatomically connected (Bajaj et al., 2013).
We performed connectivity analysis; applying GC and
DCM on the resulting rsfMRI data, collected from 17 healthy
subjects. Nonparametric GC (Dhamala et al., 2008a) was ap-
plied to characterize the network interactions among these
four nodes, and net in-degree was calculated for each node.
We then applied DCM to the same data by defining a
model space that allowed for various combinations of con-
nections. Finally, we compared the optimal model and its
connectivity parameters—obtained from Bayesian model
selection (BMS) and Bayesian model averaging (BMA),
respectively—with the corresponding estimates of GC.

Materials and Methods

Participants

We collected resting state fMRI data from 17 participants
(mean age: 25.2 – 4.7 years, 12 males, 5 females). All the
participants had normal neurological functioning and normal
or corrected to normal visual acuity. A written consent was
obtained from each participant before the experiment, and
all the participants were compensated for their participation
and time. Georgia State University Institutional Review
Board and the Joint Institutional Review Board of Georgia
State University and Georgia Institute of Technology,
Atlanta, approved experimental protocol. All the participants
were instructed to be at rest and relax with their eyes open,
focusing at the central cross on a computer screen.

Imaging

All the functional data were collected at BITC (Georgia
Tech and Emory University Biomedical Imaging Technol-
ogy Center, Atlanta) using 3-Tesla Siemens whole-body
MRI scanners. Functional imaging was 7 min and 54 sec
long and included a T2*-weighted echo planner imaging
(EPI) sequence (echo time [TE] = 40 ms; repetition time [TR] =
2000 ms; flip angle = 90�; field of view [FOV] = 24 cm,
matrix = 64 · 64; number of slices = 33 and slice thickness =
5 mm). High-resolution anatomical T1-weighted images
were acquired for anatomical references using a magnetization-
prepared rapid gradient-echo (MPRAGE) sequence with an
isotropic voxel size of 2 mm.

Conventional image analysis

FMRI data were preprocessed using SPM8 (Wellcome
Trust Centre for Neuroimaging, London; www.fil.ion.ucl.ac
.uk/spm/software/spm8/), with slice time correction, motion
correction, coregistration, normalization, and spatial smooth-
ing. Motion correction to the first functional scan was per-
formed within participant, using a six-parameter rigid-body
transformation. The mean of the motion-corrected images
was coregistered to the individual structural image using a
12-parameter affine transformation. The images were then
spatially normalized to the Montreal Neurological Institute
(MNI) template (Talairach and Tournoux, 1988) by applying
a 12-parameter affine transformation, followed by a nonlin-
ear warping using basis functions (Ashburner et al., 1999).
Furthermore, images were smoothed with an 8-mm isotropic
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Gaussian kernel and high pass filtered in the temporal do-
main (to remove low-frequency drifts).

Regions of interest

For functional connectivity maps, we used the seed-based
correlation approach, choosing the PCC as a seed region (Fox
et al., 2009) with an 8 mm radius sphere centered at �6, �52,
40 in MNI coordinate system (Chang and Glover, 2010; Fox
et al., 2009). MARSBAR software package (http://marsbar
.sourceforge.net/) was used to create masks and extract blood
oxygen level-dependent (BOLD) time series for further net-
work analysis. Time series from a further three regions,
namely, mPFC (0, 48,�4), LMTC (�57,�19,�11), and LAG
(�46,�64, 25), were significantly positively correlated to PCC
( p < 0.05). Coordinates of these regions are reported in MNI
coordinate system. All these regions are known to be ana-
tomically connected to each other (Bajaj et al., 2013).

For effective connectivity analysis using DCM, the above
regions of interest (ROIs) were defined in SPM12 (www
.fil.ion.ucl.ac.uk/spm/software/spm12/) using the first eigen
variate of activations within a sphere of radius 8 mm in the
MNI coordinate system. Central coordinates for all the ROIs
were same for both analyses.

Dynamic causal modeling

DCM is based on dynamical systems theory: activity in one
area causes dynamics in another and this dynamics causes obser-
vations. The aim of DCM is to estimate the directed connectivity
mediating the dynamics or interactions among functionally con-
nected brain areas (Friston et al., 2003; Stephan et al., 2010).
Using bilinear approximations to coupled brain states and mod-
eling the influence of external inputs, DCM detects the coupling
between brain regions. Different models are constructed, where
each model has specific intrinsic connections that are modulated
by different external changes. Bayesian model selection is based
on the exceedance probability. This is a measure used to com-
pare the posterior probabilities of alternative models to find
the ‘‘winning’’ model (Stephan et al., 2009). BMS explores
the model space, scoring each model in terms of its model evi-
dence. To infer model parameters, one generally uses BMA
(Penny et al., 2010; Stephan et al., 2010). BMA computes a
weighted average of each parameter under each model, where
the weighting depends upon model evidence. It is particularly
useful when (1) one is interested in determining the strength
of a particular connection to compare across groups or (2)
there is no clearly winning model or (3) when different subjects
have different winning models. In these situations, the Bayesian
model average properly accommodates uncertainty about the
underlying model; here, connectivity architecture of directed
connections.

Granger causality

GC is based on the idea that causes precede and predict
their effects. GC can be implemented through parametric
(autoregressive [AR] modeling) or nonparametric (spectral
factorization based) methods (Dhamala, 2015; Dhamala
et al., 2008a). If the AR prediction of the first time series
‘‘X1’’ at present could be improved by including the past in-
formation of the second time series ‘‘X2’’, over and above
the information already in the past of X1 itself, one con-
cludes that X2 has a causal influence on X1. The role of

X1 and X2 can be reversed to address the causal influence
in the opposite direction. The spectral decomposition of
Granger’s time domain causality was proposed by Geweke
(1982, 1984). This characterization identifies the frequency
bands over which different areas interact with each other.
GC is based on a mathematical framework that extends the
well-accepted coherence measure. It rests upon dependen-
cies among data themselves without any reference to how
these dependencies are caused. In the current study, we
used nonparametric GC approach for pairwise GC calcula-
tion (Dhamala et al., 2008a). AR modeling, the basis of the
parametric GC technique, has proven effective for the data
modeled by low-order AR processes. However, AR methods
sometimes fail to capture complex spectral features in the
data that require higher order AR models (Mitra and Pesaran,
1999). Nonparametric GC approach bypasses the step of
parametric data modeling and combines the spectral density
matrix factorization with Geweke’s time series decomposi-
tion. Using the nonparametric spectral estimation technique
on time series for two nodes l and m, spectral density matrix
S( f )½ �, transfer function H( f )½ �, and noise covariance matrix

(S) are obtained (Dhamala et al., 2008a; Ding et al., 2006).
In the frequency domain, using S(f ) = H(f )SH�( f ), where

the transfer function H( f ) and the noise covariance matrix S
are derived from spectral matrix factorization, the causality
from m to l at frequency f can be calculated as follows:

Im!l( f ) = ln
Sll(f )

Sll( f )� (Smm�S2
lm=Sll)jHlm( f )j2

(1)

GC values are integrated over the frequency range 0.0021 Hz
(f1) to 0.1 Hz (f2) (Bajaj et al., 2015, 2014):

iGCm!l =
1

f2� f1

Zf2

f1

Im!l( f )df (2)

Finally, we estimated the total causal flow into a node
(total in-degree) m, as follows:

Fm = +
N

i = 1

Ii!mð Þ, (3)

where N is the total number of nodes in a network. Here, self-
causality is assumed to be zero: Ii!m = 0 for i = m.

Simulations

We used a stochastic integration scheme to generate syn-
thetic fMRI data from a model of coupled neurons and hemo-
dynamics (Friston et al., 2014b). The (neuronal) equations of
motion (Friston et al., 2014b) can be summarized as follows:

dx

dt
= A � x(t)þ v(t), (4)

where x(t) = [x1(t), x2(t), . . . :, xn(t)]T is a column vector of
hidden neuronal states for n regions.

As shown in Equation (4), the dynamics of these regions
depends upon the states of other regions and endogenous
fluctuations v(t). Hidden neuronal states here represent neu-
ronal activity and correspond to amplitude of order param-
eters, which summarize the dynamics of larger neuronal
populations. These neuronal states are supplemented with
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hemodynamic states (e.g., blood flow and deoxyhemoglobin
content) using corresponding equations of motion (Stephan
et al., 2007).

The MATLAB routine generating these synthetic data is
available as part of the SPM software (DCM12-DEM_demo_
DCM_LAP.m).

Using the above scheme, we simulated two sorts of cou-
pling: unidirectional and reciprocal for two regions, and for
each coupling, we generated simulated fMRI data for both
regions over 10,000 time-bins using TR of 3.22 sec (Friston
and Penny, 2011). In this study, each coupling architecture
represents a particular model—with either unidirectional or
reciprocal coupling. To specify the likelihood model for
DCM, we considered the probability of observing the data,
given the model parameters h, under each model. These pa-
rameters are shown in Table 1 (Friston et al., 2003, 2014b).

In the case of resting state fMRI—when there is no exogenous
input—each node shows smooth fluctuations. In this study, a
mean field assumption was adopted, where dynamics of one
node is calculated using the average neuronal activity in all
other nodes to which it is connected (Deco et al., 2008). To gen-
erate simulated BOLD responses, each node is equipped with
five hemodynamic states. A nonlinear function of two of these
hemodynamic states (deoxyhemoglobin and blood volume) is
then used to simulate observed BOLD (fMRI) responses.

When simulating unidirectional connectivity from the
first to the second node, the connectivity matrix (A) was as
follows:

A = � 0:5 0:01

0:7 � 0:5

� �
(5a)

On the contrary, for bidirectional connection we used the
following:

A = � 0:5 0:3
0:3 � 0:5

� �
(5b)

Model inversion was performed using the Bayesian filter-
ing approach in generalized coordinates, also known as Gen-
eralized filtering (Friston et al., 2010; Liu and Duyn, 2013),
under Gaussian priors (Friston et al., 2003). This estimates
the posterior density and covariance for all the unknown cou-
pling parameters.

GC and DCM

In brief, we applied (1) generalized filtering for DCM of
fMRI responses (Friston et al., 2010) and (2) nonparametric
GC (Dhamala et al., 2008a) to synthetic data, where we knew
the underlying architecture (i.e., unidirectional or reciprocal).

We wanted to find out whether these methods could distin-
guish between unidirectional and reciprocal coupling—and
whether they yield converging results.

We then applied GC and DCM to the empirical data from
four well-characterized nodes of the default mode. Our goals
here were to (1) see whether the rank order of in-degree
based upon GC estimates was consistent with the winning
model obtained from DCM, using BMS, and (2) check if
in-degree measures calculated using GC are related with con-
nectivity strengths calculated from DCM using BMA.

To accomplish the above-mentioned goal (1), we used ran-
dom effects Bayesian model selection (RFX BMS) approach
has implemented in DCM12 in the SPM12a package to com-
pute expected and exceedance probability of five plausible
models based upon the literature (see details in Results sec-
tion). To address goal (2), we obtained BMA coupling pa-
rameters by averaging over the five models above. The
average afferent effective connectivity was then compared
with total in-degree computed using GC.

For computational efficiency, Occam’s window was ap-
plied during BMA, which discards all the models with prob-
ability ratio <0.05, relative to the best model (Penny et al.,
2010; Stephan et al., 2010). Using the correlation coefficient,
we compared the average in-degree of all nodes in each sub-
ject, estimated with nonparametric GC and the effective con-
nectivity estimated with DCM, to determine if there was a
significant relationship between the two.

Results

Directed functional and effective
connectivity—simulated data

Using generalized (Bayesian) filtering, we estimated ef-
fective connectivity, under the two (unidirectional and recip-
rocal) models (Fig. 1) from the simulated time series data
(Friston and Penny, 2011). The same data were then used
to calculate the GC using nonparametric GC. We found
that the directionality between the nodes obtained from
DCM was consistent with the directionality obtained from
GC—both showing unidirectional (Fig. 1A) and bidirec-
tional connections (Fig. 1B) between the two nodes, under
the appropriate model.

Figure 1 shows the connectivity or adjacency matrices that
provide a quantitative estimate of the directed functional or
effective connectivity. The posterior estimates from DCM
represent effective connectivity, and the GC matrices repre-
sent directed functional connectivity between the nodes cal-
culated using nonparametric GC. One can see that when data
were simulated with asymmetric (unidirectional) coupling,
both the DCM and GC estimates are asymmetric (with a

Table 1. Biophysical Priors on Parameters

Parameter Definition

Prior mean Prior variance

Unidirectional Reciprocal Unidirectional Reciprocal

ln (�Aii) Inhibitory self-connections ln(0.5) ln(0.5) 1/256 1/256
Aij Extrinsic effective connectivity 1/128 1/128 1/64 1/16
C Exogenous input scaling 0 0 1 1
ln (a) Amplitude of fluctuations 0 0 1/64 1/64
ln (b) Exponent of fluctuations 0 0 1/64 1/64
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greater connectivity from the first to the second node). Con-
versely, when connectivity was symmetric (reciprocal), both
GC and DCM estimated the effective and functional connec-
tivity to be the same in both directions.

GC: directed functional connectivity—empirical data

In the analysis of the empirical data, the in-degree for each
node (from the remaining three nodes) was calculated using
Equation (3). Figure 2 shows the total in-degree for each
node, integrated over the frequency band 0.0021–0.1 Hz, av-
eraging over all the trials (subjects and voxels combined).
We found the minimum in-degree for mPFC (R2) and the
maximum for LAG (R4) in the order: LAG (R4)>PCC
(R1)>LMTC (R3)>mPFC (R2).

DCM: effective connectivity–empirical data

Five models were compared using DCM, where the ‘‘op-
timal’’ model was identified using BMS. Models were based
on the anatomical connections with established literature
(model: 1) and the in-degree obtained from nonparametric
GC approach (models: 2–5) (Fig. 3). In this study, model-1
represents bidirectional connections among all the nodes,
whereas models 2–5 represent total in-degree [LAG (R4)
(model-2)>PCC (R1) (model-3)>LMTC (R3) (model-4)>
mPFC (R2) (model-5)] in the same order suggested by the
GC analysis (Fig. 2). Using RFX-BMS approach, we found

that model-1 was the winning model and model-2 was the
second best model (Fig. 4). This suggested that there are di-
rect projections to LAG (R4) from the remaining regions.
This was consistent with GC, where we obtained the greatest
in-degree for LAG (R4) (Fig. 2).

GC versus DCM—a comparative evaluation

The total in-degree for each node was compared to the av-
erage afferent connectivity for each node following BMA,
averaging over all the subjects (Fig. 5A) and considering
the subject-specific values for each node (Fig. 5B). Although
we found higher in-degree for LMTC relative mPFC
(whereas connectivity strength for LMTC was lower than
mPFC), the results in Figure 5A suggest that a higher (GC)
in-degree for a node is associated with a stronger (BMA)
connection to that node and vice versa. This is further con-
firmed in Figure 5B, which shows a positive significant linear
relationship (r = 0.38, p < 0.01) between the two directed
connectivity measures, when subject-specific measures are
taken into account.

Discussion

In the current report, we investigated the directed coupling
between two regions by modeling synthetic data (Friston
et al., 2010). We obtained consistent inferences about di-
rected connections, when we applied a nonparametric GC

FIG. 1. Connectivity between two sample nodes. (A) Asymmetric (unidirectional) and (B) symmetric (bidirectional) cou-
pling between two nodes estimated from simulated time series data are shown. In this study, the adjacency matrices encoded
the weighted coupling that provides a quantitative estimate of the directed functional or effective connectivity, posterior es-
timates (DCM) represent effective connectivity and GC matrices (calculated using nonparametric GC approach) represent
directed functional connectivity. DCM, dynamic causal modeling; GC, Granger causality.
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scheme and DCM to the synthetic data. Furthermore, using
resting state MRI data, we computed Granger causal connec-
tivity within the DMN comprising four regions (PCC, mPFC,
LMTC, and LAG), which are anatomically connected. We es-
timated effective connectivity among these regions by defining
a model space using DCM and compared average (afferent)
connectivity to the total in-degree for each node obtained
from GC approach. The winning model structure and Bayesian
parameter averages (obtained from BMS) and the in-degree
measures obtained from GC were found to be consistent. In ad-
dition, the connectivity from BMA was significantly correlated
with directed functional connectivity values obtained from GC.
Note that we did not assume that an asymmetry in GC means
that a connection in the DCM is unidirectional. We simply con-
sidered the possibility that some directed connections could be
zero by including (reduced) models in our model space—and
then averaged over models using BMA. This accommodates
a degree of uncertainty about the architecture generating the
data. To our knowledge, these are new findings that speak to
the convergence of GC and DCM and offer a degree of con-
struct validity to both (Friston, 2011a, 2013; Mahroos and
Kadah, 2011; Valdes-Sosa et al., 2011).

To redress face validity of both schemes, we used syn-
thetic data, where we knew the underlying connectivity ar-
chitecture. Using these simulated data, we found that both
GC and DCM could recover the asymmetric (unidirectional)
and symmetric (reciprocal) connectivity used to generate the
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FIG. 2. GC analysis: In-degree for each of the four ROIs.
Total in-degree, calculated from GC analysis, for each region
is shown from the other three regions in ascending order.
ROIs, regions of interest.

FIG. 3. Defining a model space for DCM analysis. A base-model (model-1) is defined on the basis of anatomical connec-
tions (shown with solid lines) among the four ROIs, whereas models (2–5) are based on in-degree values calculated from GC
analysis. In this study, LAG (R4) has the maximum in-degree (model-2), followed by PCC (R1) (model-3), LMTC (R3)
(model-4), and mPFC (R2) (model-5), shown with solid lines, whereas anatomical connections in models 2–5 are shown
with dashed lines. LMTC, left middle temporal cortex; mPFC, medial prefrontal cortex; PCC, posterior cingulate cortex.
LAG, left angular gyrus. Color images available online at www.liebertpub.com/brain
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data. Note that we simulated data, using the same sort of
(DCM) model that was used for estimating effective connec-
tivity. One might think that a more balanced test of the ability
of DCM and GC to recover directed effective and functional
connectivity might entail simulating data using models based
upon DCM and GC, and then using both procedures to infer
coupling with both sorts of simulated data. However, this is
not possible, because the models underlying GC (especially
nonparametric models) are not generative models. In other
words, GC does not provide a model that can be used to gen-
erate data. Although one can generate time series using an
AR process—of the sort used in GC—the implicit regression
model simply describes dependencies among observed data.

This is fundamentally different from having a forward or
generative model that generates observed data from latent
or hidden neuronal states.

Mathematically, this means that although one can always
derive the AR equivalent of a time series generated by a
DCM, it is not possible to uniquely identify the underlying
(effective) connectivity that generated the AR coefficients.
A fuller discussion of this can be found in Friston et al. (2014a)
and Valdes-Sosa et al. (2011). In practice, this means that
the only way to generate plausible fMRI time series is to
use a DCM-like model to produce correlated observations—
and then proceed (as we have above) by inferring the cou-
pling in terms of parameter estimates; namely, the effective

FIG. 4. Model expected and
model exceedance probability.
Model expected probability and
model exceedance probability for
five models are calculated using
RFX-BMS approach in DCM. In
this study, base model (model-1) is
the winning model that shows
maximum model exceedance prob-
ability of 78%, whereas the second
best model (model-2) shows model
exceedance probability of 22%
verifying maximum in-degree for
LAG (R4). RFX-BMS, random ef-
fects Bayesian model selection.

FIG. 5. Explicit compari-
son of in-degree values
obtained from GC and con-
nectivity strength parameters
obtained from DCM. (A)
Total in-degree for each re-
gion, averaged over all the
subjects and over the fre-
quency interval 0.0021–
0.1 Hz, is compared to aver-
age afferent connection
strength for corresponding
region, averaged over all the
subjects. In this study, error
bars represent standard error
of mean. (B) A significant
positive linear relationship
(r = 0.38, p = 0.0025) is found
between the two measures of
afferent connectivity over the
four nodes from each subject.
Color images available
online at www.liebertpub
.com/brain
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connectivity for DCM and the autoregression coefficients
(or spectral equivalents) for GC. Granger causality then
rests upon an implicit form of Bayesian model comparison—
comparing models with and without particular coefficients.
This model comparison is similar to the model comparison
used by DCM, when trying to identify particular architectures.
This highlights a further fundamental difference between
measures of coupling using GC and DCM: the measures in
GC pertain to the significance of directed functional connec-
tivity—as assessed by comparing models with and without a
particular dependency; whereas the estimated connectivity
DCM is a quantitative measure of the coupling strength.

Furthermore, from empirical data analysis, we found
that—within DMN—the directionality obtained from DCM
analysis was consistent with the directionality obtained
from GC. Both the approaches showed that LAG was sub-
jected to the largest influences from other areas, with de-
creasing influences on PCC, LMTC, and the least on
mPFC. We found a significant positive linear relationship be-
tween in-degree parameters and average connection strength
parameters, considering values over all the subjects and
nodes. Previous studies have illustrated the utility of GC
and DCM for connectivity analysis, using simulated data
as well as empirical fMRI/EEG data (Bressler and Seth,
2010; Friston et al., 2003; Li et al., 2011; Seth et al., 2013).
Although none of the studies has compared the results of
GC and DCM directly, some have discussed their integration
(Friston et al., 2013; Mahroos and Kadah, 2011; Mitra and
Pesaran, 1999; Valdes-Sosa et al., 2011).

In this study, we found that the first model was the winning
model over other models, since these four areas are known to
be connected to each other functionally as well as anatomi-
cally (Bajaj et al., 2013). Furthermore, model 2—with the
maximum in-degree to LAG—was the second best model.
This model, along with other models constituting the
model space, was constructed by assuming that GC values
reflect the directionality of coupling between the nodes.

GC is based on empirical observations, which enable the
estimation of AR coefficients. We used the nonparametric
GC approach in this study—instead of parametric approach
that requires the proper determination of model order to bal-
ance variance and complexity and sometimes fails to capture
complex data features (Dhamala et al., 2008b; Mitra and
Pesaran, 1999). The application of GC to fMRI had been a
topic of debate in recent years. Some studies have considered
empirical and theoretical concerns regarding its application
to fMRI data (Friston, 2009; Friston, 2011a; Zou and Feng,
2009). It has been suggested that GC cannot infer the true di-
rection of the causal influences because of variability in the
shape and latency of HRFs in different brain regions and dif-
ferent subjects (Aguirre et al., 1998; David et al., 2008;
Schippers et al., 2011). However, a simulation study by
Deshpande et al. (2010) found that GC was sufficiently flex-
ible to accommodate hemodynamic variability. Bressler and
Seth (2010) illustrated the applicability of GC to fMRI—
showing GC can estimate causal statistical influences from
simultaneously recorded neural time series data. Moreover,
deconvolution of fMRI BOLD signals can be used to recover
measures of the underlying neural processes (Aquino et al.,
2014; David et al., 2008). Besides neural activity, various
other factors such as slice timing differences, baseline cere-
bral blood flow, baseline hematocrit, hemodilution, alcoholic/

lipid intakes, and different respiration rates across individu-
als are also responsible for HRF variability (Deshpande
et al., 2010; Levin et al., 1998; Levin et al., 2001; Nosewor-
thy et al., 2003). Furthermore, it was also found that lower
sampling rates and noise could confound fMRI GC (Desh-
pande et al., 2010; Seth et al., 2013; Solo, 2007).

In the near future, because of advances in technology, it
may be that concerns about lower sampling rate will not re-
main a major problem (Feinberg et al., 2010). Wen et al.
(2013) addressed the effect of various factors such as (1) la-
tency differences in HRF across brain areas, (2) low sam-
pling rates, and (3) noise by linking fMRI GC and neural
GC using simulated data. For TR = 2 sec and signal-to-
noise ratio (SNR) = 5 (20% noise), they found a significant
positive linear relationship (r = 0.96, p = 0) between the neu-
ral GC and fMRI GC in case of unidirectional coupling, but
no correlation was found for reciprocal coupling. Interest-
ingly, the correlation improved at higher sampling rates.
This study is in agreement with other studies suggesting
that the HRF had a less severe impact on GC calculations,
whereas downsampling and noise can confound GC (Nala-
tore et al., 2007, 2009; Wen et al., 2013).

Hence, despite concerns regarding the use of GC with
fMRI data, there are numerous studies available endorsing
GC. We combined GC and DCM to compare both ap-
proaches, using the in-degree from GC as priors in the con-
struction of a model space for DCM. Since DCM is well
established for fMRI data—and we found an association be-
tween GC and DCM—the contribution of the current work is
to establish their construct validity both in terms of model
identification and quantitative estimation of directed cou-
pling. Furthermore, we have illustrated how GC may provide
useful constraints on the construction of model spaces or
hypotheses that can be tested subsequently using DCM.
We expect this work may address some previous concerns
regarding connectivity analyses and contribute to the further
study of distributed neuronal dynamics.

It should be acknowledged that the current results do not
establish the criteria for a convergence between GC and
DCM. They only provide proof of principle that convergence
can be obtained under idealized settings; for example, the ex-
ceedingly long time series of the sort used in simulations. A
formal analysis of the criteria for convergent results would
entail a thorough analysis of the robustness and validity of
both approaches under plausible assumptions of realistic syn-
thetic data. Clearly, these are important (and outstanding) is-
sues in their own right—irrespective of the construct facility
we have tried to address. In summary, it might be better to
regard the current report as a description of a protocol that
can be used to assess the face and construct validity of GC
and DCM, using simulated data. The future work should as-
sess (1) how the convergence between the two approaches
depends upon the data quality (signal-to-noise ratio, nonsta-
tionarity, strength of interactions), (2) how these two ap-
proaches compare in computation time for time series
lengths and the size of the ROI, and (3) how the explicit con-
nectivity changes in DCM relate to changes in GC estimates.

Conclusions

Using simulated data for two regions, we found that both
directed functional connectivity and effective connectivity
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reflect asymmetries in the coupling between regions. Using
empirical fMRI data, we found that an anatomically inter-
connected network of four nodes (PCC, mPFC, LMTC,
LAG) was engaged during the resting state. Furthermore,
we performed DCM analysis on this network, using GC to
elaborate a hypothesis or model space. Directionality
among the four regions reflected by the winning model
obtained using BMS was consistent with the directed func-
tional connectivity obtained from nonparametric GC. Fur-
thermore, quantitatively, the positive correlation between
connectivity obtained from BMA and in-degree parameters
obtained from GC confirmed the consilience of both ap-
proaches for rsfMRI data. Future investigations of more
complex data (e.g., task based and clinical) are required to
generalize our construct validation of GC and DCM for
fMRI data.
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