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Face or House Image Perception:
Beta and Gamma Bands of Oscillations

in Brain Networks Carry Out Decision-Making

Ganesh B. Chand,1 Bidhan Lamichhane,1 and Mukesh Dhamala1–3

Abstract

Previous functional magnetic resonance imaging studies have consistently shown that perception of visual ob-
jects, such as faces and houses, involves distributed brain networks that include the fusiform face area (FFA),
parahippocampal place area (PPA), and dorsolateral prefrontal cortex (DLPFC). These regions are commonly
observed to be coactivated in BOLD measurements during perception of visual objects. In this study, we
aimed to disentangle node-level and network-level activities in millisecond timescale of perception and decision-
making in attempts to answer questions about timing and frequency of brain oscillatory activities. We used clear
and noisy face–house image categorization tasks and human scalp electroencephalography recordings combined
with source reconstruction techniques to study when and how oscillatory activity organizes within the FFA,
PPA, and DLPFC. We uncovered the dynamics of two oscillatory networks—beta (13–30 Hz) and gamma
(30–100 Hz). In beta band, the node and network activities were enhanced in time frame of 125–250 msec
after stimulus onset, the FFA and PPA acted as main outflow hubs and the DLPFC as a main inflow hub, and
network activities negatively correlated with behavior measures of noise levels (response times). In gamma
band, node and network activities were elevated in time frame of 0–125 msec after stimulus onset, the
DLPFC acted as a main outflow hub, and finally network activities were positively correlated with the noise
level. These findings broaden our understanding of temporal evolution of node and network features associated
with visual perceptual decision-making.

Keywords: dorsolateral prefrontal cortex (DLPFC); EEG source reconstruction; fusiform face area (FFA);
Granger causality; neural oscillations; para-hippocampal place area (PPA)

Introduction

Humans depend on their sensory organs to detect, recog-
nize, and classify the information present in their sur-

roundings, and such process encompasses a key mechanism
in the brain called sensory processing (Binder et al., 2004;
Britten et al., 1992; Chand and Dhamala, 2016a; Newsome
and Pare, 1988; Romo et al., 1998). Image categorization
tasks (Avidan and Behrmann, 2009; Engell and McCarthy,
2010; Haxby et al., 2001; Heekeren et al., 2004) have been
used extensively to better understand sensory processing in
visual domain. Image categorization (such as face versus
house) is considered a highly developed skill in cognitive de-
velopment of humans (Fairhall and Ishai, 2007; Ishai, 2008;

Nguyen et al., 2014). Despite extensive investigations, the
questions about timing and frequency of brain oscillatory
activities associated with face or house perception are less
answered.

Neuroimaging studies in humans suggest that a specific
brain area within the ventral temporal cortex (VTC) responds
more to faces than other visual objects (stimuli) and this
brain area in the right hemisphere is often referred to as
the fusiform face area (FFA) (Heekeren et al., 2004; Kanw-
isher and Yovel, 2006; Kanwisher et al., 1997). In a similar
vein, another brain area within the VTC activates more to
houses than other visual stimuli, and this brain area in the
left hemisphere is often called the parahippocampal place
area (PPA) (Aguirre et al., 1998; Baldauf and Desimone,
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2014; Epstein and Kanwisher, 1998; Haxby et al., 2001).
Functional magnetic resonance imaging (fMRI) studies
have revealed that a higher order cortical area in the brain,
named the dorsolateral prefrontal cortex (DLPFC), computes
higher-level cognitive functions (Bar et al., 2001; Carlson
et al., 2006; Gabrieli et al., 1998), including image categori-
zation (Heekeren et al., 2008; Pasupathy and Miller, 2005).
During image categorization (face or house), the DLPFC is
proposed to compute a decision by comparing the relevant
sensory evidence in the FFA and PPA for their respective
choices (Heekeren et al., 2008). However, how a sensory sig-
nal enters and organizes within this network has remained
less understood in a timescale of human sensory perception
and cognition. How do the DLPFC, FFA, and PPA causally
interact in a millisecond timescale, what the temporal flow of
underlying overall activity in these brain areas is, and what
frequency bands of information flow bind them in a network
are largely unknown to date.

As the FFA, PPA, and DLPFC are often coactivated, it had
been hard to disentangle their causal features in longer time-
scale measures such as from fMRI. In this study, we recorded
human scalp electroencephalography (EEG) while partici-
pants performed face or house image categorization task,
reconstructed source waveforms, and used the spectral
Granger causality (GC) (Dhamala et al., 2008a, 2008b).
We tested our hypothesis that the FFA, PPA, and DLPFC in-
teract during face or house perception. We further added

noise to the images to examine whether a noisy stimulus
modulates the network activity.

Materials and Methods

Participants

Twenty-six neurologically normal human volunteers (21
males, five females) of age ranging from 22 to 38 years
(mean: 26.3 years, standard deviation (SD): 4.7 years) partic-
ipated in this study. A written informed consent was collected
from each participant before data collection. Experimental
protocol was approved by the Institutional Review Board of
Georgia State University. Three participants were excluded
from the final analyses because of low behavioral perfor-
mance and/or unmanageable artifacts and noise present in
their EEG data.

Stimuli

We used total 28 images of faces and houses (14 images of
each category). Face images were from the Ekman series
(Ekman and Friesen, 1976). Fast Fourier transforms (FFT)
of these images were computed, providing 28 magnitude
and 28 phase matrices. The average magnitude matrix of
this set was stored. Images were produced from the inverse
FFT (IFFT) of average magnitude matrix and individual
phase matrices. Phase matrix used for IFFT was a linear

FIG. 1. (A) Task paradigm: stimuli were presented for 150 msec, followed by black screen with question mark (‘‘?’’) for
1500 msec during which time participants responded with a keyboard button press, and ERPs and scalp distribution at 100,
170, 250, and 300 msec for (B) stimuli (faces and houses) with 0% noise level, (C) stimuli with 40% noise level, and (D)
stimuli with 55% noise level. Color images available online at www.liebertpub.com/brain

2 CHAND ET AL.



combination of original phase matrix computed during for-
ward Fourier transforms and random Gaussian noise matrix.
Resulting images had an identical frequency power spectrum
(corresponding to the average magnitude matrix) with graded
amount of noise similar to a previous study (Heekeren et al.,
2004). Finally, the stimuli consisted of three different noise
levels: 0%, 40%, and 55%. The E-Prime 2.0 software was
used to display the stimuli and control the task sequences.

Experimental design

Before experimental task, participants were briefly
explained about task paradigm. Participants sat in a dark
room (only source of light was from experimenter’s com-
puter screen) and viewing distance was *60 cm (chin
rest). Figure 1 shows a schematic of experimental paradigm
used. Experiment consisted of four blocks of 168 trials (672
trials in total with 224 trials for each noise level). On each
trial, a small fixation cross (‘‘+’’ in the middle of screen)
was presented for 500 msec. Then, a stimulus was presented
for 150 msec, followed by black screen with question mark
(‘‘?’’) for 1500 msec during which time participants were
allowed to indicate their decision (either face or house) by
keyboard button press. The responses after that delay were
considered incorrect.

Data acquisition and preprocessing

EEG data were acquired with a 64-channel EEG system
from Brain Vision LLC (www.brainvision.com). Analog
signal was digitized at 500 Hz. The impedances of each
electrode were kept below 10 kO, and the participants were
asked to minimize blinking, head movements, and swal-
lowing. EEG data were band-pass filtered between 1 and
100 Hz and notch filtered at 60 Hz digitally during record-
ings. Eye blinking was removed using independent com-
ponent analysis-based ocular correction. Data from three
subjects who had unmanageable artifacts and noise present
in their EEG data and/or low behavioral performance were
not included for further analysis. These preprocessing
steps were done using Brain Vision Analyzer 2.0 (www
.brainproducts.com).

Data analysis

The preprocessed EEG data were analyzed in the follow-
ing main steps: (1) computation of ERPs, (2) EEG-source re-
construction from ERPs and distributed dipole modeling and
reconstruction of single-trial source waveforms, and (3)
computation of spectral power and GC based on single-trial
source signals using parametric spectral approach (Dhamala
et al., 2008a, 2008b).

Computation of ERPs. Continuous EEG data were
segmented into trials of 450-msec duration (prestimulus:
�50–0 msec, poststimulus: 0–400 msec) based on the
stimulus-onset time as a reference. The trials corresponding
to correct responses were separated and baseline correction
was performed using prestimulus duration. The trials that
had three SDs below or above the means were considered
as outliers ( Junghofer et al., 2000) and they were discarded
from the subsequent analysis.

EEG source and single-trial source waveform reconstruc-
tion. The ERPs of correct percept (only poststimulus)
were grand averaged across participants and imported to
BESA software version 5.3.7 (www.besa.de) to reconstruct
EEG sources. We used the low-resolution electromagnetic
tomography (LORETA) (Pascual-Marqui et al., 1994),
which renders Laplacian weighted minimum norm, to iden-
tify the localized sources of scalp potentials. Locations of

Table 1. The Anatomical Location, Dipole Orientation, and Dominant Activation Time Frame

of Localized Sources for Correctly Perceived Faces and Houses

Brain areas Talairach coordinates x, y, z (mm) Dipole orientations x, y, z Dominant activation period (msec)

RFFA 36.0, �47.0, �16.0 0.6, �0.7, �0.4 140–190
LPPA �30.0, �45.0, �10.0 �0.5, �0.8, �0.3 145–200
Left DLPFC �21.0, 39.0, 28.0 �0.3, 0.9, 0.4 210–245

DLPFC, dorsolateral prefrontal cortex; LPPA, left parahippocampal place area; RFFA, right fusiform face area.

FIG. 2. Behavior responses. (A) Behavioral performance
significantly decreased, but (B) the RT significantly increased
with the increase of noise level in the stimuli (*p < 0.05,
**p < 10�4, and ns, not significant). RT, response time.
Color images available online at www.liebertpub.com/brain
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sources can be constrained to the cortical surface and their
orientations perpendicular to the local cortical surface based
on neurophysiological information that the sources of EEG
are postsynaptic currents in cortical pyramidal cell and di-
rection of these currents is perpendicular to the cortical sur-
face (Dale and Sereno, 1993; Hamalainen et al., 1993). Peak
activities of these sources were marked as network nodes for
connectivity analyses. Using single-trial EEG data, we fitted
dipoles at locations of peak activation of localized sources—
the FFA, PPA, and DLPFC with dipole orientations (Table 1).
The single-trial source signals were then extracted using a
four-shell spherical head model and a regularization constant
of 1% for inverse operator as done in a previous study
(Adhikari et al., 2014; Chand and Dhamala, 2016b). These
source signals were used for connectivity analyses.

Spectral power and GC analyses. We computed power
spectra using the parametric method (Chand and Dhamala,
2014; Dhamala et al., 2008a, 2008b) from source waveforms

of the FFA, PPA, and DLPFC. The optimal model order,
which is four for these data, was selected by comparing the
spectral power from both parametric and nonparametric ap-
proaches (Dhamala et al., 2008a) at different model orders
and picking the model order that renders the lowest power
difference between two approaches. We first computed GC
spectra using a sliding window to see the activity over the en-
tire time frame (Supplementary Fig. S1; Supplementary Data
are available online at www.liebertpub.com/brain). To fur-
ther access how power and GC spectra change over time, we
then segmented the trials in three time frames. Activity at the
FFA, PPA, and DLPFC peaked around 140–245 msec (as
shown in Fig. 4 and Table 1). We used this time frame in a
segment and considered other equal intervals before and after
it, and therefore we had three time frames. GC—the measure
of directional influence from one oscillatory process to an-
other (Dhamala et al., 2008b)—was computed from source
waveforms of network nodes. Threshold value of GC, for
statistical significance, was computed from surrogate data by

FIG. 3. ERPs over the
occipital–temporal channels.
(A) EEG montage consisting
of 64 channels, (B) the N170-
component of ERP over the
left occipital–temporal
channels, and (C) the N170-
component of ERP over the
right occipital–temporal
channels. Color images
available online at www
.liebertpub.com/brain
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using permutation tests and a gamma-function fit (Adhikari
et al., 2014; Blair and Karniski, 1993; Chand and Dhamala,
2016a) under a null hypothesis of no interdependence at the
significance level p < 10�3.

Brain–behavior relationship

Response time (RT) of each participant for each stimulus
was recorded. To examine brain–behavior correlation, RTs
for all three noise levels (only correct responses) were con-
verted into z scores and plotted with GC peak values in
each band. The relationship between GC and RT was tested
using both Spearman’s rank correlation and Pearson’s corre-
lation. The results reported here are in terms of Spearman’s
rank correlation method, followed by false discovery rate
(FDR) of multiple comparisons (Benjamini and Hochberg,
1995). If p < 0.05 (FDR corrected), the correlation was con-
sidered significant.

Results

Behavioral results

The overall performance—a ratio of the number of correct
decisions to the total number of responses (correct and incor-
rect both)—was calculated for all three noise levels. Per-
formance was compared between all three possible pairs of
noise levels using the Mann–Whitney U test. We found
that the performance decreased significantly with increase
in noise level. In contrast, RT increased significantly with in-
crease in noise level (Fig. 2).

Electrophysiological (Brain) results

ERP features. The average ERPs for correct responses
were computed for 0% noise (faces and houses, separately)
to examine the related ERP features over occipital–temporal

channels. Figure 3A is the Brain Products 10–20 EEG system
showing standard channel information. We found the first
negative peak at *170 msec, which is often called N170-
component. The ERPs for 0% faces are significantly higher
than that of 0% houses ( p = 0.004).

Temporal evolution of cortically localized sources. Aver-
age ERPs for correct responses were used for the inverse
technique, LORETA (Pascual-Marqui et al., 1994), to find
cortically localized sources. Figure 4 shows the location of
peak source activity (shown by crossing of lines) as it tra-
versed the cortical surface (first row) and the locations and
orientations of fitted dipoles used to obtain the single-trial
source waveforms (second row). Earliest peak of cortical ac-
tivity occurred in the visual area (BA17/18) at *60 msec
after stimulus onset. We observed activation in the areas of
VTC (BA37: right FFA and left PPA) at *160 msec and fi-
nally in the left DLPFC (BA9) at *224 msec. Table 1 lists
the ERP source locations, dipole orientations of source
model, and dominant activation time frame of cortical sour-
ces. Dipoles fitted at the locations and orientations shown
explained *80% of variance in the EEG signal for trials
with correct responses.

Power and GC spectra

Network of the DLPFC, FFA, and PPA for 0% noisy
stimuli. We first computed GC spectra using a sliding win-
dow technique to observe the activity over the entire time
frame (Supplementary Fig. S1). We further computed GC
spectra for faces & houses (Supplementary Fig. S5). To fur-
ther better access how power and GC spectra change over
time, we then performed calculations at three time frames.
Power spectra computed in three consecutive time frames—
TF1 (0–125 msec), TF2 (125–250 msec), and TF3 (250–
375 msec)—at the DLPFC, FFA, and PPA showed peak

FIG. 4. Spatiotemporal
profiles of peak source-level
brain activity. The first row
shows peak source-level
brain activity in the FFA and
PPA at 160 msec and the
DLPFC at 224 msec, and the
second row shows fitted di-
poles at those nodes. DLPFC,
dorsolateral prefrontal
cortex; FFA, fusiform face
area; PPA, parahippocampal
place area. Color images
available online at www
.liebertpub.com/brain

OSCILLATORY NETWORKS IN FACE OR HOUSE PERCEPTION 5



activity in beta band and gamma band when the participants
perceived 0% noisy stimuli (Supplementary Fig. S2). Overall
power over these nodes was compared among these TFs using
the Mann–Whitney U test. We found that beta power was sig-
nificantly higher in TF2 compared with other TFs; however,
gamma power was significantly higher in TF1 (Fig. 5).

GC spectra were calculated to assess the oscillatory neural
network interactions among these nodes. Figure 6 shows GC
spectra as a function of frequency, where horizontal lines rep-
resent statistically significant threshold value. Beta band net-
work interactions among these nodes are enhanced in TF2
relative to the other TFs (other columns). The overall beta
connectivity strength among these nodes was significantly
higher in TF2 compared with other TFs (Fig. 7A); however,
overall gamma connectivity strength was higher in TF1
(Fig. 7B). Net beta outflow calculations at each node in TF2
(time frame of higher power and connectivity) revealed that
the FFA and PPA act as main outflow hubs and the DLPFC
acts as a main inflow hub within a network (Fig. 8A). In con-
trast, net gamma outflow calculations in TF1 (time frame of
higher power and connectivity) uncovered that the DLPFC
acts as the main outflow hub within a network (Fig. 8B).

Network of the DLPFC, FFA, and PPA for 40% and 55%
noisy stimuli. Power spectra were also computed in TF1,
TF2, and TF3 at the DLPFC, FFA, and PPA when partici-
pants perceived 40% and 55% noisy stimuli. Power spectra
calculations also demonstrated peak activity in beta band
and gamma band (Supplementary Figs. S3 and S4). Both
beta and gamma overall powers were significantly enhanced
with increase in noise level of stimuli (Fig. 9). GC spectra
were computed to further assess the interactions among
these nodes.

FIG. 5. Power comparison at the DLPFC, FFA, and PPA in
three consecutive time frames (TF1: 0–125 msec, TF2: 125–
250 msec, and TF3: 250–375 msec) for 0% noise level. (A)
Beta power is significantly higher in the TF2 compared
with other TFs, and (B) Gamma power is significantly higher
in the TF1 compared with other TFs (*p < 0.01, **p < 10�4,
and n.s., not significant). Color images available online at
www.liebertpub.com/brain

FIG. 6. GC spectra of all
possible pairs among the
FFA, PPA, and DLPFC for
0% noise level in three con-
secutive time frames (TF1:
0–125 msec, TF2: 125–
250 msec, and TF3: 250–
375 msec mentioned at the
top of each column) showing
beta and gamma oscillations.
GC, Granger causality. Color
images available online at
www.liebertpub.com/brain
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Beta overall network interactions among these nodes were
compared among three noise levels. We found that overall
beta connectivity strengths were significantly suppressed
with increase in noise level of stimuli (Fig. 10A). One the
other hand, we uncovered that overall gamma connectivity
strengths were significantly enhanced with increase in
noise level of stimuli (Fig. 10B).

Brain–behavior correlation

In gamma band, the RTs positively correlated with the
measures of network activity, especially in the FFA-PPA
pair (Fig. 11A, B). The correlation coefficient (r) and corre-
sponding p value (FDR corrected) are presented. In beta band
(Fig. 11C–F), the measures of connectivity showed a nega-
tive trend with the RTs, but did not reach a significant thresh-
old after FDR correction, except the FFA to PPA connection
(Fig. 11E).

Discussion

The present study examined the neural oscillatory
networks and their dynamics in face or house image catego-
rization. The key nodes involved in such visual processing—
FFA, PPA, and DLPFC—often coactivate even in millisec-
onds, therefore making it difficult to clearly identify their
distinct functional roles within a network in previous fMRI
studies. This study resolved the overall temporal flow of
activation (in msec) in the FFA, PPA, and DLPFC by
source localization of EEG recordings. Using GC analy-
ses, we found two distinct oscillatory networks—beta band
and gamma band—and their temporal dynamics. First, we

FIG. 7. Comparison of overall connectivity strength within
the FFA, PPA, and DLPFC among three consecutive time
frames (TF1: 0–125 msec, TF2: 125–250 msec, and TF3:
250–375 msec) for 0% noise level in (A) beta band and (B)
gamma band (*p < 0.05, **p < 10�4, and n.s., not significant).
Color images available online at www.liebertpub.com/brain

FIG. 8. Net causal outflow computed in (A) beta band
in TF2 (125–250 msec) and (B) gamma band in TF1
(0–125 msec) (*p < 0.05, **p < 10�3, and n.s., not significant).
Color images available online at www.liebertpub.com/brain

FIG. 9. Comparison of overall power at the FFA, PPA, and
DLPFC among all three noise levels in (A) beta band in TF2
(125–250 msec) and (B) gamma band in TF1 (0–125 msec)
(*p < 0.01, **p < 10�6, and n.s., not significant). Color
images available online at www.liebertpub.com/brain
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demonstrated that beta power and beta causal interactions at
both nodes and within network were significantly higher in
125–250-msec time frame, the FFA and PPA played as
main outflow hubs and the DLPFC acted as an inflow hub
within the network, and network interactions were negatively
correlated with increase in noise level of stimuli. Second,
gamma power and gamma causal interactions at nodes and
within network were significantly higher in 0–125-msec
time frame, the DLPFC acted as the outflow hub, and net-
work interactions were positively correlated with increase
in noise levels of stimuli. We have chosen to use GC methods
in this study although other methods such as dynamic causal
modeling (DCM) (Stephen et al., 2010) can achieve similar
goals. GC is a data-driven technique and relies on fewer as-
sumptions about the underlying interactions and dynamics.
GC is also computationally less intensive than DCM. Recent
studies indicate that if applied appropriately, both GC and
DCM can yield similar and consistent results.

Earliest peak of cortical activity occurred in the visual cor-
tex (BA17/18) at *60 msec after stimulus onset, which was
in accord with previous findings (Vanni et al., 2001). Peak
activation then occurred in the VTC (BA37: the right FFA
and the left PPA) at *160 msec. Activation of FFA and
PPA for perception of faces or houses was consistent with
fMRI and MEG investigations (Baldauf and Desimone,
2014; Haxby et al., 2001; Ishai, 2008; Ishai et al., 2005;
Kanwisher and Yovel, 2006). Moreover, activation time
frame of FFA was also similar to prior reports (Herrmann
et al., 2005; Wynn et al., 2008). The peak activation observed
in the DLPFC (BA9) at *224 msec was close in accord with
an electrophysiological study that reported activation of the
DLPFC at *170–210 msec (Adhikari et al., 2014); however,

FIG. 10. Comparison of overall connectivity strength be-
tween the FFA, PPA, and DLPFC among all three noise levels
in (A) beta band in TF2 (125–250 msec) and (B) gamma band
in TF1 (0–125 msec) (*p < 0.05, **p < 10�3, and n.s., not sig-
nificant). Color images available online at www.liebertpub
.com/brain

FIG. 11. Relationship between connectivity strength (GC) and RT of all three noise levels in TF1 (0–125 msec) for gamma
band (A, B) and in TF2 (125–250 msec) for beta band (C–F) ( p values are FDR corrected). Color images available online at
www.liebertpub.com/brain
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it was in a somatosensory domain. Activation of the DLPFC
in decision-making has been repeatedly reported in previous
fMRI and EEG studies (Adhikari et al., 2014; Heekeren
et al., 2004, 2006, 2008; Liu et al., 2013; Philiastides and
Sajda, 2007). Our findings thus resolved a systematic source-
level activation pattern of temporal evolution in the FFA,
PPA, and DLPFC for visual face or house categorization.
One limitation of our study is it lacks activation of the supe-
rior temporal sulcus, which is usually reported in a distrib-
uted network for face perception (Haxby et al., 2000).

Power spectra at the FFA, PPA, and DLPFC showed peak
activity in beta band and gamma band when the participants
categorized face or house images. Prior studies have linked
beta oscillations with motor functions (Baker, 2007; Chakarov
et al., 2009; Davis et al., 2012; Klostermann et al., 2007; Riddle
and Baker, 2006). Beta oscillations are shown in maintaining
accuracy of task in decision-making (Hipp et al., 2011; Siegel
et al., 2011). Gamma oscillations have been demonstrated in a
wide range of brain processes, including multisensory and sen-
sorimotor integration, attention, memory formation, and per-
ceptual binding (Buzsaki and Wang, 2012; Fries, 2009;
Jensen et al., 2007; Senkowski et al., 2008). These neural os-
cillatory features reflect the distinct aspect of neuronal syn-
chronization similar to that observed in auditory–visual
(Hipp et al., 2011) and somatosensory (Adhikari et al., 2014)
perceptions. GC spectra results demonstrated that interareal
brain synchronization and interactions were mediated by
beta band and gamma band. The anatomical interareal and
laminar neural circuitry in the brain might support the occur-
rence of such oscillatory activities and their modulations in
cognitive tasks (Buzsaki and Wang, 2012; Siegel et al.,
2012). Anatomical studies have provided the evidence of
rich connections of the DLPFC with sensory brain areas
(Miller and Cohen, 2001). The DLPFC receives visual, so-
matosensory, and auditory sensory inputs from occipital, pari-
etal, and temporal cortices (Petrides and Pandya, 1999) and its
anatomical connection with premotor/motor areas supports the
motor outputs (Lu et al., 1994).

Beta power and beta network activity were significantly
higher in the 125–250-msec time frame after stimulus
onset, consistent with average source-level peak activities.
Causal outflow calculations further demonstrated that the
lower order sensory areas (FFA and PPA) acted as outflow
hubs and the DLPFC as the inflow hub. This was supported
by the model of feedforward hierarchical integration process
from sensation to those that ultimately end up into action
(Mazurek et al., 2003; Smith and Ratcliff, 2004). As cortical
circuits implementing cognitive processes might engage
highly recurrent interactions (Wang, 2008) mediated by bidi-
rectional cortico-cortical connections (Felleman and Van
Essen, 1991), our results also demonstrate that interactions
were bidirectional, such as in the time frame of highest activ-
ity (TF2). Overall beta connectivity strength was signifi-
cantly suppressed for elevated noise level of stimuli. Since
beta oscillation has been reported for better accuracy or pre-
cision during perceptual decision-making (Hipp et al., 2011;
Siegel et al., 2011), the network activity suppressed in our re-
sults might implicate the underlying neural mechanisms that
have also been behaviorally reflected for elevated noise lev-
els. Such suppression might result due to less flow of
decision-related information among the FFA, PPA, and
DLPFC when the stimuli were degraded.

In contrast, gamma band results revealed that node and
network activities were higher in 0–125-msec time frame
compared with other time frames. Net causal outflow calcu-
lations further uncovered that the DLPFC was the outflow
hub. This was in accord with a well-known role of DLPFC
in top-down processing for attentional selection of relevant
sensory information and sensory updating (Miller and
Cohen, 2001). We provided this direct evidence from tempo-
ral evolution of enhanced gamma activity. Gamma oscilla-
tions have been consistently reported for perceptual
binding (Uhlhaas and Singer, 2006; Uhlhaas et al., 2008)
for a variety of tasks. Enhanced features of the node and
the network activities with increase in noise might imply
that such bindings are required when sensory information
is limited. Recent reports also suggest that the larger predic-
tion error is associated with increase in gamma activity (van
Pelt et al., 2016) and larger precision or accuracy is associ-
ated with increase in beta activity (Hipp et al., 2011; Siegel
et al., 2011). Therefore, an increase in connectivity in gamma
band and a decrease in connectivity in beta band with noise
levels are also consistent with functional role of beta and
gamma oscillations as suggested by the theory of prediction
error framework (van Pelt et al., 2016).

In summary, we evaluated the timing and oscillatory net-
work dynamics in the key nodes—the FFA, PPA, and
DLPFC—of face or house perception. We demonstrated
that beta band node and network activities were most active
at 125–250 msec, the FFA and PPA acted as main outflow
hubs, and the beta network was negatively correlated with in-
crease in noise levels of face or house images. We further
found that gamma band node and network activities were
most active at 0–125 msec, the DLPFC acted as the main out-
flow hub, and the network was correlated with noise level.
These findings provide important insights about how sensory
information enters and organizes in the FFA, PPA, and
DLPFC in visual perceptual decision-making.
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