
Chapter 14. Oscillations

This striking computer-

generated image demonstrates 

an important type of motion: 

oscillatory motion. Examples 

of oscillatory motion include a 

car bouncing up and down, a 
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car bouncing up and down, a 

ringing bell, and the current in 

an antenna

Chapter Goal: To understand 

systems that oscillate with 

simple harmonic motion.



Topics:

• Simple Harmonic Motion  

• Simple Harmonic Motion and Circular 

Motion  

Chapter 14. Oscillations 

Copyright © 2008 Pearson Education, Inc.,  publishing as Pearson Addison-Wesley.

• Energy in Simple Harmonic Motion  

• The Dynamics of Simple Harmonic Motion  

• Vertical Oscillations  

• The Pendulum  

• Damped Oscillations  

• Driven Oscillations and Resonance  
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What is the name of the quantity 

represented by the symbol ωωωω

A. Angular momentum

B. Angular frequency

C. Phase constant
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C. Phase constant

D. Uniform circular motion

E. Centripetal acceleration



What term is used to describe an 

oscillator that “runs down” and 

eventually stops?

A. Tired oscillator

B. Out of shape oscillator

C. Damped oscillator
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C. Damped oscillator

D. Resonant oscillator

E. Driven oscillator



The starting conditions of an 

oscillator are characterized by

A. the initial acceleration.

B. the phase constant.

C. the phase angle.

D. the frequency.
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D. the frequency.



Chapter 14. Basic Content and Examples

Copyright © 2008 Pearson Education, Inc.,  publishing as Pearson Addison-Wesley.

Chapter 14. Basic Content and Examples



Simple Harmonic Motion

A system can oscillate in many ways, but we will be 

especially interested in the smooth sinusoidal oscillation 

called Simple Harmonic Motion (SHM).  The characteristic 

equation for SHM is a cosine function.
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The argument of the cosine function is in radians. The time 

to complete one full cycle, or one oscillation, is called the 

period, T.  The frequency, f, is the number of cycles per 

second.  Frequency and period are related by



Simple Harmonic Motion
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Simple Harmonic Motion

The oscillation frequency f is measured in cycles per 

second, or Hertz.

We may also define an angular frequency ω in radians per 

second, to describe the oscillation.
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The position of an object oscillating with SHM can then be 

written as

The maximum speed of this object is



EXAMPLE 14.2 A system in simple harmonic 

motion

QUESTION:
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Simple Harmonic Motion

If the initial position of an object in SHM is not A, then we 

may still use the cosine function, with a phase constant 

measured in radians.

In this case, the two primary kinematic equations of SHM 

are: 
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are: 



EXAMPLE 14.4 Using the initial conditions

QUESTION:
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Energy in Simple Harmonic Motion

Energy is conserved in SHM.
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EXAMPLE 14.5 Using conservation of energy

QUESTION:

Copyright © 2008 Pearson Education, Inc.,  publishing as Pearson Addison-Wesley.



EXAMPLE 14.5 Using conservation of energy

Copyright © 2008 Pearson Education, Inc.,  publishing as Pearson Addison-Wesley.



EXAMPLE 14.5 Using conservation of energy

Copyright © 2008 Pearson Education, Inc.,  publishing as Pearson Addison-Wesley.



Dynamics of Simple Harmonic Motion

The acceleration of an object in SHM is maximum when 

the displacement is most negative, minimum when the 

displacement is at a maximum, and zero when x = 0.  The 

derivative of the velocity is.
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Because x = A cos ωt, this can be written as
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Dynamics of Simple Harmonic Motion

When we combine Hooke’s Law for a mass on a spring 

with Newton’s second law, we obtain the equation of 

motion for a mass on a spring.
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The solution of this equation of motion is

where the angular frequency

is determined by the mass and the spring constant.



Vertical Oscillations

Motion for a mass hanging from a spring is the same as for 

horizontal SHM, but the equilibrium position is affected.
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EXAMPLE 14.7 Bungee oscillations

QUESTION:
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The Pendulum

Consider a mass m attached to a 

string of length L.  If it is 

displaced from its lowest 

position by an angle θ, 

Newton’s second law for the 
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Newton’s second law for the 

tangential component, parallel 

to the motion, is



The Pendulum

Suppose we restrict the pendulum’s oscillations to small 

angles (< 10°).  Then we may use the small angle 

approximation sin θ ≈ θ, where θ is measured in radians.  

Since θ = s/L, the net force on the mass is
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and the angular frequency of the motion is found to be



EXAMPLE 14.9 The maximum angle of a 

pendulum

QUESTION:
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Tactics: Identifying and analyzing simple 

harmonic motion
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Damped Oscillations

• An oscillation that runs down and stops is called 

a damped oscillation.

• One possible reason for dissipation of energy is the 

drag force due to air resistance.  

• This is difficult to calculate exactly but a good model for 

Copyright © 2008 Pearson Education, Inc.,  publishing as Pearson Addison-Wesley.

• This is difficult to calculate exactly but a good model for 

a slowly moving object is



Damped Oscillations

When a mass on a spring experiences the force of the spring 

as given by Hooke’s Law, as well as a drag force of 

magnitude |D|=bv, the solution is
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where the angular frequency is given by



Damped Oscillations
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Driven Oscillations and Resonance

• Consider an oscillating system that, when left to 

itself, oscillates at a frequency f0.  We call this the 

natural frequency of the oscillator.

• Suppose that this system is subjected to a 

periodic external force of frequency fext.  This frequency 
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periodic external force of frequency fext.  This frequency 

is called the driving frequency.

• The amplitude of oscillations is generally not very high 

if fext differs much from f0.

• As fext gets closer and closer to f0, the amplitude of 

the oscillation rises dramatically.  



Driven Oscillations and Resonance
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Driven Oscillations and Resonance
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General Principles
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Chapter 14. Questions



An object moves with simple harmonic 

motion. If the amplitude and the period are 

both doubled, the object’s maximum speed 

is

A. quartered.

B. halved.
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B. halved.

C. unchanged.

D. doubled.

E. quadrupled.
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The figure shows four oscillators at t = 0. 

Which one has the phase constant
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Four springs have been compressed from 

their equilibrium position at x = 0 cm. 

When released, they will start to oscillate. 

Rank in order, from highest to lowest, the 

maximum speeds of the oscillations. 

A. c > b > a > d
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B. c > b > a = d

C. a = d > b > c

D. d > a > b > c

E. b > c > a = d
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B. c > b > a = d

C. a = d > b > c

D. d > a > b > c

E. b > c > a = d



This is the position 

graph of a mass on a 

spring. What can you 

say about the velocity 

and the force at the 

instant indicated by the 

dotted line?
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A. Velocity is zero; force is to the right.

B. Velocity is zero; force is to the left.

C. Velocity is negative; force is to the left.

D. Velocity is negative; force is to the right.

E. Velocity is positive; force is to the right.

dotted line?
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One person swings on a swing and finds 

that the period is 3.0 s. Then a second 

person of equal mass joins him. With two 

people swinging, the period is

A. 6.0 s.

B. >3.0 s but not necessarily 6.0 s.
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B. >3.0 s but not necessarily 6.0 s.

C. 3.0 s.

D. <3.0 s but not necessarily 1.5 s.

E. 1.5 s.
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Rank in order, from largest to smallest, the 

time constants τa – τd of the decays shown in 

the figure. A.

B.

C.

D.

E.
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