Chapter 14. Oscillations

This striking computer-
generated 1mage demonstrates
an 1mportant type of motion:
oscillatory motion. Examples
of oscillatory motion include a
car bouncing up and down, a
ringing bell, and the current in
an antenna

Chapter Goal: To understand
systems that oscillate with
simple harmonic motion.
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Chapter 14. Oscillations

Topics:

Simple Harmonic Motion

Simple Harmonic Motion and Circular
Motion

Energy in Simple Harmonic Motion

The Dynamics of Simple Harmonic Motion
Vertical Oscillations

The Pendulum

Damped Oscillations

Driven Oscillations and Resonance
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Chapter 14. Reading Quizzes
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What is the name of the quantity
represented by the symbol @

A. Angular momentum

B. Angular frequency

C. Phase constant

D. Uniform circular motion
E. Centripetal acceleration
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What term is used to describe an
oscillator that ‘“‘runs down’’ and
eventually stops?

A. Tired oscillator

B. Out of shape oscillator
C. Damped oscillator

D. Resonant oscillator

E. Driven oscillator
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The starting conditions of an
oscillator are characterized by

he 1nitial acceleration.
he phase constant.

he phase angle.

he frequency.

A.
B.
C.

t!
t!
t!
t!
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Chapter 14. Basic Content and Examples
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Simple Harmonic Motion

A system can oscillate in many ways, but we will be
especially interested in the smooth sinusoidal oscillation
called Simple Harmonic Motion (SHM). The characteristic
equation for SHM 1is a cosine function.

2t

1) =A
x(1) COS -

The argument of the cosine function 1s in radians. The time
to complete one full cycle, or one oscillation, 1s called the
period, 7. The frequency, f, 1s the number of cycles per
second. Frequency and period are related by

| 1
—_ — T: —
f - or 7
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Simple Harmonic Motion

FIGURE 14.4 The position-versus-time graph for simple harmonic motion
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Simple Harmonic Motion

The oscillation frequency f 1s measured in cycles per
second, or Hertz.

We may also define an angular frequency w in radians per
second, to describe the oscillation.

. 21 L
w (In rad/s) = ra = 27f (in Hz)

The position of an object oscillating with SHM can then be

written as
x(t) = Acoswt

The maximum speed of this object 1s

27TA
Vinax — _T = 27fA = wA
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EXAMPLE 14.2 A system in simple harmonic
motion

QUESTION:

EXAMPLE 14.2 A system in simple harmonic motion
An air-track glider 1s attached to a spring, pulled 20.0 cm to the
right, and released at r = 0 s. It makes 15 oscillations in 10.0 s.

a. What 1s the period of oscillation?
b. What is the object’s maximum speed?
¢. What are the position and velocity at = 0.800 s?
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EXAMPLE 14.2 A system in simple harmonic
motion

MODEL An object oscillating on a spring 1s in SHM.
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EXAMPLE 14.2 A system in simple harmonic
motion

SOLVE a. The oscillation frequency is

15 oscillati
i Oi‘goaslons = 1.50 oscillations/s = 1.50 Hz

Thus the periodis T = 1/f = 0.667 s.

b. The oscillation amplitude is A = 0.200 m. Thus

2amA  27(0.200 m)
v e e

max — "op e
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EXAMPLE 14.2 A system in simple harmonic
motion

c. The object starts at x = +A at t = 0s. This 1s exactly the

oscillation described by Equations 14.2 and 14.6. The position
att = 0.800 s 1s

2Tt
X = Acos(%) = (0.200 m) cos

2 (0.800 s)
0.667 s

= (0.200 m)cos(7.54 rad) = 0.0625 m = 6.25 cm
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EXAMPLE 14.2 A system in simple harmonic
motion

The velocity at this instant of time is

|27t _ ~[27(0.800 s)
V, = —Vpax SIN e = —(1.88 m/s) sin

0.667 s
= —(1.88 m/s)sin(7.54rad) = —1.79 m/s = —179 cm/s

At t = 0.800 s, which is slightly more than one period, the
object is 6.25 cm to the right of equilibrium and moving to the
left at 179 cm/s. Notice the use of radians in the calculations.
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FIGURE 14.6 A projection of the circular
motion of a rotating ball matches the
simple harmonic motion of an object on

a spring.
(a) Light from projector
Turntable
Circular
motion
of ball
7~ Ball
|
Shadow :
. Screen
- ey
Oscillation of ball’s shadow
|
|
(b) Simple harmonic motion of block
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<4 >
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Simple Harmonic Motion

If the 1nitial position of an object in SHM 1is not A, then we
may still use the cosine function, with a phase constant
measured 1n radians.

In this case, the two primary kinematic equations of SHM
are:

x(t) = Acos(wt + ¢y)

V(1) = —wAsin(wt + ¢y) = — Vv Sin(wf + @)
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EXAMPLE 14.4 Using the initial conditions

QUESTION:

EXAMPLE 14.4 Using the initial conditions

An object on a spring oscillates with a period of 0.80 s and an
amplitude of 10 cm. Atr = 0 s, 1t 1s 5.0 cm to the left of equilib-
rium and moving to the left. What are its position and direction of
motion at ¢t = 2.0 s?

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.



EXAMPLE 14.4 Using the initial conditions

MODEL An object oscillating on a spring 1s in simple harmonic
motion.
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EXAMPLE 14.4 Using the initial conditions

SOLVE We can find the phasc constant ¢, from the initial condi-

tion x, = —5.0 cm = Acos¢,. This condition gives
X 1 2
by = cos_](f) = cos_"—z) = igﬂ' rad = *+120°

Because the oscillator is moving to the left at r = 0, it is in the
upper half of the circular-motion diagram and must have a phase
constant between 0 and 7 rad. Thus ¢, is 37 rad. The angular fre-
quency 1s

2T 2
T 0.80 s

= 7.85 rad/s
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EXAMPLE 14.4 Using the initial conditions

Thus the object’s position at time ¢t = 2.0 s is

x(1) = Acos(wt + @)
2
= (10 cm)cos|(7.85 rad/s)(2.0s) + =

= (10cm)cos(17.8rad) = 5.0 cm

The object is now 5.0 cm to the right of equilibrium. But which
way 1s it moving? There are two ways to find out. The direct way
is to calculate the velocity att = 2.0 s:

v, = —wAsin(wt + ¢,) = +68 cm/s

A
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EXAMPLE 14.4 Using the initial conditions

The velocity i1s positive, so the motion 1s to the right. Alterna-
tively, we could note that the phase at 1 = 2.0 s is ¢ = 17.8 rad.
Dividing by 7r, you can see that

¢ = 178rad = 5.67mrad = (47 + 1.677) rad

The 44 rad represents two complete revolutions. The “extra”
phase of 1.677 rad falls between 7 and 27 rad, so the particle in
the circular-motion diagram is in the lower half of the circle and
moving to the right.
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FIGURE 14.10 The energy is transformed
between kinetic energy and potential
energy as the object oscillates, but the
mechanical energy E = K + U doesn't

change.
Energy is transtormed between
kinetic and potential, but the total
mechanical energy E doesn’t change.
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Energy in Simple Harmonic Motion

Energy is conserved in SHM.

1 ) 1 ) 1 5, 1 2 1
E = S, + Ekx = EkA = Em(vmax) (conservation of energy)

FIGURE 14.11 Kinetic energy, potential
energy, and the total mechanical energy
for simple harmonic motion.

'The total mechanical
energy E is constant.

Energy Potential energy
/ Kinetic energy
v

7
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EXAMPLE 14.5 Using conservation of energy

QUESTION:

EXAMPLE 14.5 Using conservation of energy

A 500 g block on a spring 1s pulled a distance of 20 ¢cm and
released. The subsequent oscillations are measured to have a
period of 0.80 s. At what position or positions is the block’s speed

1.0 m/s?
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EXAMPLE 14.5 Using conservation of energy

MODEL 'The motion is SHM. Energy is conserved.
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EXAMPLE 14.5 Using conservation of energy

SOLVE The block starts from the point of maximum displacement,
where E = U = 3kA”. At a later time, when the position is x and
the velocity is v,, energy conscrvation rcquircs
| 1 1
) e 2
—me kv =~ kg
2 2 2

Solving for x, we find

o m_v,?_ 2 (i)2
X—VA— K —\/A—w

where we used k/m = w* from Equation 14.24. The angular fre-

quency is casily found from the period: @ = 27/T = 7.85 rad/s.
Thus

= *0.15m = =15em

[ 1.0m/s \?
=] (020m)? - [——
= (020 (7.85 rad/s)

There are two positions because the block has this speed on either
side of equilibrium.
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Dynamics of Simple Harmonic Motion

The acceleration of an object in SHM 1s maximum when
the displacement 1s most negative, minimum when the
displacement 1s at a maximum, and zero when x = 0. The
derivative of the velocity 1s.

i N 2A
a =" = (—wAsinwt) w“A cos wt

Because x = A cos wt, this can be written as

a, = —w°x
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FIGURE 14.13 Position and acceleration
graphs for an oscillating spring. We've
chosen ¢, = 0.
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Dynamics of Simple Harmonic Motion

When we combine Hooke’s L.aw for a mass on a spring
with Newton’s second law, we obtain the equation of
motion for a mass on a spring.

k
a. = ——x
& m

The solution of this equation of motion 1s

x(t) = Acos(wt + )

where the angular frequency

k
w=27rf=\/%

1s determined by the mass and the spring constant.
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Vertical Oscillations

Motion for a mass hanging from a spring 1s the same as for
horizontal SHM, but the equilibrium position 1s affected.

FIGURE 14.17 The block oscillates around
the equilibrium position.
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EXAMPLE 14.7 Bungee oscillations

QUESTION:

EXAMPLE 14.7 Bungee oscillations

An 83 kg student hangs from a bungee cord with spring constant
270 N/m. The student 1s pulled down to a point where the cord 1s
5.0 m longer than its unstretched length, then released. Where 1s
the student, and what is his velocity 2.0 s later?
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EXAMPLE 14.7 Bungee oscillations

MODEL A bungee cord can be modeled as a spring. Vertical oscil-
lations on the bungee cord are SHM.
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EXAMPLE 14.7 Bungee oscillations

VISUALIZE FIGURE 14.18 shows the situation.

FIGURE 14.18 A student on a bungee cord oscillates
about the equilibrium position.

v S = - The bungee cord 1s
276 N/m : 910(]@]&(1 as a spring.
50 m A
Equilibrium — - -+ — - — - - - == &1 Iﬂsc,i”aﬁan
Release — — — = — — — A
83 ky
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EXAMPLE 14.7 Bungee oscillations

SOoLVE Although the cord is stretched by 5.0 m when the student is
released, this is not the amplitude of the oscillation. Oscillations
occur around the equilibrium position, so we have to begin by

finding the equilibrium point where the student hangs motionless.
The cord stretch at equilibrium is given by Equation 14.41:

m
AL=7g=3.0m

Stretching the cord 5.0 m pulls the student 2.0 m below the equi-
librium point, so A = 2.0 m. That 1s, the student oscillates with
amplitude A = 2.0 m about a point 3.0 m beneath the bungee
cord’s original end point.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.



EXAMPLE 14.7 Bungee oscillations

The student’s position as a function of
time, as measured from the equilibrium position, is

y(t) = (2.0 m)cos(wt + o)
where @ = V k/m = 1.80 rad/s The initial condition

Yo = Acosgpy = —A

requires the phase constant to be ¢, = 7 rad. At r = 2.0 s the stu-
dent’s position and velocity are

y = (2.0 m)cos((1.80 rad/s)(2.0s) + 7 rad) = 1.8 m

v, = —wAsin(wt + ¢y) = —1.6 m/s

Y
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EXAMPLE 14.7 Bungee oscillations

The student is 1.8 m above the equilibrium position, or 1.2 m
below the original end of the cord. Because his velocity 1s nega-

tve, he’s passed through the highest point and is heading back
down.
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The Pendulum

Consider a mass m attached to a
string of length L. If it1s
displaced from its lowest
position by an angle 6,
Newton’s second law for the
tangential component, parallel
to the motion, 1S

(Fred): = EFr = (Fg); = —mgsinf = ma,
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FIGURE 14.19 The motion of a

pendulum.
(a)
6 and s are @ and s are
negative on positive on
the left. the right.
L
m
s
\
Arc length
(b)
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has a tangential F.
component —mg sinfl.



The Pendulum

Suppose we restrict the pendulum’s oscillations to small
angles (< 10°). Then we may use the small angle

approximation sin 6 = 6, where 6 is measured in radians.
Since 6 = s/L, the net force on the mass 1s

T mg
(Fs )y = — g

and the angular frequency of the motion 1s found to be

cu=27rf=\/%
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EXAMPLE 14.9 The maximum angle of a
pendulum

QUESTION:

EXAMPLE 14.9 The maximum angle of a pendulum

A 300 g mass on a 30-cm-long string oscillates as a pendulum. It
has a speed of 0.25 m/s as it passes through the lowest point. What
maximum angle does the pendulum reach?
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EXAMPLE 14.9 The maximum angle of a
pendulum

MODEL Assume that the angle remains small, in which case the
motion is simple harmonic motion.
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EXAMPLE 14.9 The maximum angle of a
pendulum

SOLVE The angular frequency of the pendulum is

g 9.8 m/s”
— —_— = = 5 2
w \/; A/ 0.30 5.72 rad/s

The speed at the lowest pointis v, = @A, so the amplitude 1s

5 - T 0.25 m/s 0.0437
—_— S‘ ; ! — — ; & m
ti W 5.72 rad/s

The maximum angle, at the maximum arc length s,,,, 18

Sn‘“_]_}{ 0.04347 m
9, =-"% = 0.145 rad = 8.3°
A 0.30 m e
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EXAMPLE 14.9 The maximum angle of a
pendulum

ASSESS Because the maximum angle is less than 10°, our analysis
based on the small-angle approximation is valid.
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Tactics: Identifying and analyzing simple
harmonic motion

1ACTIS®  Identifying and analyzing simple harmonic motion (MP)

P .y
. W

@ If the net force acting on a particle is a linear restoring force, the motion will
be simple harmonic motion around the equilibrium position.

@ The position as a function of time 1s x(7) = Acos(wt + ¢,). The velocity as
a function of time is v.(f) = —wAsin(wt + ¢(). The maximum speed is
Vmax — @A. The equations are given here in terms of x, but they can be writ-
ten in terms of y, 6, or some other parameter if the situation calls for it.
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Tactics: Identifying and analyzing simple
harmonic motion

© The amplitude A and the phase constant ¢ are determined by the initial con-
ditions through x; = Acos¢gand vy, =  wAsind,,.

© The angular frequency @ (and hence the period T' = 27/w) depends on the
physics of the particular situation. But @ does not depend on A or ¢,

© Mechanical energy is conserved. Thus smv? + 3kx? = 3kA? = 3m (V)™
Energy conservation provides a relationship between position and velocity
that i1s independent of time.

Exercises 7—12, 15—19
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Damped Oscillations

e An oscillation that runs down and stops 1s called

a damped oscillation.

* One possible reason for dissipation of energy is the

drag force due to air resistance.

e This 1s difficult to calculate exactly but a good model for
a slowly moving object is

D= —bv (model of the drag force)
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Damped Oscillations

When a mass on a spring experiences the force of the spring
as given by Hooke’s Law, as well as a drag force of
magnitude |DI=bv, the solution 1s

x(t) = Ae ""cos(wt + ¢y) (damped oscillator)

where the angular frequency is given by

_\/ﬁ_ b’ _\/ , b
@ m 4m2_ o 4m?
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Damped Oscillations

FIGURE 14.23 Position-versus-time graph
for a damped oscillator.

-------- A 1s the initial amplitude.
A %“' The envelope of the
A\ :
. SRR —— amplitude decays
ﬁ % a4 exponentially:
- W \I.*.'. x et Ae—brﬂm

h = - max
ﬁ ‘ﬁ NAAY/
VAVATAAE

0 J‘U—f
b
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Driven Oscillations and Resonance

e Consider an oscillating system that, when left to

itself, oscillates at a frequency f,. We call this the
natural frequency of the oscillator.

e Suppose that this system is subjected to a

periodic external force of frequency f_,,. This frequency
is called the driving frequency.

e The amplitude of oscillations 1s generally not very high
it f,, differs much from f,.

* As f.,, gets closer and closer to f,, the amplitude of

the oscillation rises dramatically.
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Driven Oscillations and Resonance

FIGURE 14.26 The response curve shows
the amplitude of a driven oscillator at
frequencies near its natural frequency of
2.0 Hz.

Amplitude

The oscillation has
maximum amplitude
when f,, = f,. This

1S resonance.

The oscillation has
only a small amplitude
when fm‘ lefcys )

¥  substantially from f,,.

ot (HLZ)

U Jext

I
| 2
»
“This is the natural
frequency.
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Driven Oscillations and Resonance

A singer or musical instrument can

shatter a crystal goblet by matching the

goblet's natural oscillation frequency.
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Chapter 14. Summary Slides
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General Principles

Dynamics

SHM occurs when a linear restoring force acts to return
a system to an equilibrium position.

Horizontal spring W ﬁ@m
(Fnet)x = —kx LAAAAN) (|} '{
Vertical spring
The origin is at the equilibrium )
position AL = mgl/k. %
(Fnet)y = _ky g&
-
_JE 1o /E =
) \/ = 'n'\’ : N~
Pendulum
m
(Fnet)r e _(_8)5 |
g L
s L -\
G =l T =2m|—
\/L \/ g ['r ?,D
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General Principles

Energy

If there is no friction or All kinetic
dissipation, kinetic and

potential energy are , 3 AR
alternately transformed MMW"MW’W

into each other, but the

total mechanical energy = 0
E = K + U is conserved. A

All potential
1 1
E= —mvf + —kx?
2 2
| 2 L
= _m(vmax)

kAE

B | = 1D

In a damped system, the 0.37E,
energy decays exponentially

E = Eoe 7 0
where 7 is the time constant.
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Important Concepts

Simple harmonic motion (SHM) is a sinusoidal oscillation
with period T and amplitude A.

1
Frequency f = —

X T
T A ~ :
Angular frequency /\ /\
0 0 f
— 2 = —
_A -

Position x(r) = Acos(wt + ¢,)

27t
= Acos|—— + ¢,
i
Velocity v, (1) = —v,,,, sin(w! + ¢y) with maximum speed
Vmax = (I)A
Acceleration a, = —w’x
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Important Concepts

SHM is the projection ¥
onto the x-axis of -
uniform circular motion. P

|

: A .

¢ = wt + ¢, is the phase ¢: 2

' |
The position at time ¢ is : %o !

\ Olx = Acos \1
x(1) = Acos¢ A Xy = Acosdy
= Acos(wt + o) \ /

The phase constant ¢,
determines the initial conditions:

xy = Acosdy Vor = —wASIng,
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Applications

Resonance

; ; Amplitude
When a system is driven by :

a periodic external force, it
responds with a large-amplitude
oscillation if f_.. = f,, where

fo 18 the system’s natural
oscillation frequency, or

resonant frequency. r = Jen
J1
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Applications

Damping

If there is a drag force D = —bv, AL .
where b 1s the damping constant, \
then (for lightly damped systems) i

¥(f) = Ae "“Teos(wt + dp) 0

The time constant for energy loss
is 7 = m/b.
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Chapter 14. Questions
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An object moves with simple harmonic
motion. If the amplitude and the period are
both doubled, the object’s maximum speed
is

A. quartered.
B. halved.
C. unchanged.

D. doubled.
E. quadrupled.
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An object moves with simple harmonic
motion. If the amplitude and the period are
both doubled, the object’s maximum speed
is

A. quartered.
B. halved.

¢/ C. unchanged.
D. doubled.

E. quadrupled.
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The figure shows four oscillators at ¢ = 0.
Which one has the phase constant ¢, = 7/4 rad?

—A A
< <
(a) | T :
MWWWWWML_| :
Co Lo
(b) | B
MWW .
i i
(C) | I _..|
ANAN AN |
I | | :
ANAAAAAANAAAL ] |
] | | |
I | | |
T T T T T X
—100 =71 0 71 100
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The figure shows four oscillators at ¢ = 0.
Which one has the phase constant ¢, = 7/4 rad?
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Four springs have been compressed from
their equilibrium position at x = (0 cm.
When released, they will start to oscillate.
Rank in order, from highest to lowest, the
maximum speeds of the oscillations.

Ikl | |

@  MWWWWO 4m |
1 | | | |
Ekl | | I

(b)  WWO 4m | | :
kl | | |

© o 2m ,

x (cm)

GV \VA VA VaVAVAVA Vo VoV @Y I
0
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Four springs have been compressed from
their equilibrium position at x = (0 cm.
When released, they will start to oscillate.
Rank in order, from highest to lowest, the
maximum speeds of the oscillations.

x (cm)

RENP YR
@ WVWWWWOdm A.c>b>a>d

%kl | | I [
®  WWO4m | v'B.c>b>a=d
© w0 C.a=d>b>c
et D.d>a>b>c

@ AAAANNANNANINVOm
e | E.b>c>a=d

' 0

|
~20 —15 —10 -5
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This is the position X

sraph of amassona 4 :
spring. What can you \ /\ : /\ /
0 \/ t

say about the velocity .
and the force at the _,_ '
instant indicated by the |
dotted line?

A. Velocity 1s zero; force 1s to the right.

B. Velocity 1s zero; force 1s to the left.

C. Velocity 1s negative; force 1s to the left.
D. Velocity 1s negative; force 1s to the right.
E. Velocity 1s positive; force 1s to the right.
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This is the position

sraph of amassona 4 :
spring. What can you \ /\ | /\ /
0 \/ t

say about the velocity .
and the force at the _,_ '
instant indicated by the |
dotted line?

¢ A. Velocity is zero; force is to the right.
B. Velocity 1s zero; force 1s to the left.
C. Velocity 1s negative; force 1s to the left.
D. Velocity 1s negative; force 1s to the right.
E. Velocity 1s positive; force 1s to the right.
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One person swings on a swing and finds
that the period is 3.0 s. Then a second
person of equal mass joins him. With two
people swinging, the period is

A. 6.0 s.
B. >3.0 s but not necessarily 6.0 s.
C.3.0s.

D. <3.0 s but not necessarily 1.5 s.
E. 1.5s.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.



One person swings on a swing and finds
that the period is 3.0 s. Then a second
person of equal mass joins him. With two
people swinging, the period is

A. 6.0 s.
B. >3.0 s but not necessarily 6.0 s.

v/ C.3.0s.
D. <3.0 s but not necessarily 1.5 s.

E. 1.5s.
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(a) (b) (c) (d)

tlme constants 7, — 74 of the decays shown in
the figure. A r

B.
C. T, T,=Ty~T
D.

C a
E. Td>Tb>Tc>Ta
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(a) (b) (c) (d)

tlme constants 7, — 74 of the decays shown in
the figure. A 7.>7, =1,>1
B. Ta>Tb>Tc>Td

C. T, T,=Ty~T

¢D° Td>Tb:Tc>Ta

E. 74y~ 1%,~7.~>1

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.



