
$\qquad$

Chapter 34 Ray Optics

$\qquad$
$\qquad$
$\qquad$
$\qquad$

IN THIS CHAPTER, you will learn about and apply the ray model of light $\qquad$

## Chapter 34 Preview

## What are light rays?

A light ray is a concept, not a physical thing. It is the line along which light energy flows. $\qquad$

- Rays travel in straight lines. Two rays can cross without disturbing one another.
- Objects are sources of light rays. $\qquad$
- Reflection and refraction by mirrors and lenses create images of objects. Points to which light rays converge are called real images. Points from which light rays diverge are called virtual images.
The eye sees an object or an image when diverging bundles of rays enter the pupil and are focused to a real image on the retina.


You'll use both graphical and mathematical techniques to analyze how light rays travel and how images are formed.
$\qquad$


## Chapter 34 Preview

## What is refraction?

Light rays change direction at the boundary when they move from one medium to another. This is called refraction, and it is the basis for image formation by lenses. Snell's law will allow you to find the angles on both sides of the boundary.
« LOOKING BACK Section 16.5 Index of refraction

## Chapter 34 Preview

## How do lenses form images?

Lenses form images by refraction.

- We'll start with ray tracing, a graphical method of seeing how and where images are formed.
- We'll then develop the thin-lens equation for more quantitative results.
The same methods apply to image formation by curved mirrors.

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$


## Reading Question 34.1

What is specular reflection?
A. The image of a specimen $\qquad$
B. A reflection that separates different colors
C. Reflection by a flat smooth object $\qquad$
D. Reflection in which the image is virtual and special $\qquad$
E. This topic is not covered in Chapter 34.

## Reading Question 34.1

What is specular reflection?
A. The image of a specimen
B. A reflection that separates different colors
C. Reflection by a flat smooth object
D. Reflection in which the image is virtual and special
E. This topic is not covered in Chapter 34.

## Reading Question 34.2

What is diffuse reflection?
A. A reflection that separates different colors
B. Reflection by a surface with tiny irregularities that cause the reflected rays to leave in many random directions
C. Reflection that increases in size linearly with distance from the mirror
D. Reflection in which the image is virtual
E. This topic is not covered in Chapter 34.

## Reading Question 34.2

What is diffuse reflection?
A. A reflection that separates different colors
B. Reflection by a surface with tiny irregularities that cause the reflected rays to leave in many random directions
C. Reflection that increases in size linearly with distance from the mirror $\qquad$
D. Reflection in which the image is virtual
E. This topic is not covered in Chapter 34.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Reading Question 34.3

A paraxial ray $\qquad$
A. Moves in a parabolic path. $\qquad$
B. Is a ray that has been reflected from a parabolic mirror.
C. Is a ray that moves nearly parallel to the optical axis.
D. Is a ray that moves exactly parallel to the optical axis.

## Reading Question 34.3

A paraxial ray
A. Moves in a parabolic path.
B. Is a ray that has been reflected from a parabolic mirror. $\qquad$
C. Is a ray that moves nearly parallel to the optical axis.
D. Is a ray that moves exactly parallel to the optical axis.
© 2017 Pearson Eduation, ino.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Reading Question 34.4

## A virtual image is

$\qquad$
A. The cause of optical illusions. $\qquad$
B. A point from which rays appear to diverge.
C. An image that only seems to exist. $\qquad$
D. The image that is left in space after you remove a viewing screen. $\qquad$
$\qquad$

O2017 Peasson Edxation, inc.

## Reading Question 34.4

A virtual image is
A. The cause of optical illusions.
B. A point from which rays appear to diverge.
C. An image that only seems to exist.
D. The image that is left in space after you remove a viewing screen.

## Reading Question 34.5

The focal length of a converging lens is
A. The distance at which an image is formed.
B. The distance at which an object must be placed to form an image. $\qquad$
C. The distance at which parallel light rays are focused.
D. The distance from the front surface to the back surface.

## Reading Question 34.5

The focal length of a converging lens is $\qquad$
$\qquad$
A. The distance at which an image is formed.
B. The distance at which an object must be placed to form an image. $\qquad$
C. The distance at which parallel light rays are focused.
D. The distance from the front surface to the back surface.
$\qquad$
$\qquad$


## The Ray Model of Light

## MODEL 34.1

Ray model of light
For use when diffraction is not significan.
An object is a source of light rays.

- Rays originate at every point on an object.
- Rays are sent in all directions.
- The eye sees by focusing a diverging bundle of light rays.
- Diverging rays enter the pupil and are focused on the retina.

Your brain perceives the object as being at the poin
from which the rays are diverging.

- Limitations: Use the wave model if diffraction is siglarger than about 1 mm , while the wave model is mor appropriate if openings are smaller than about 1 mm .



Objects

- The diverging rays from a point source are emitted in all directions.
- Each point on an object is a point source of light rays.
- A parallel bundle of rays could be a laser beam or light from a distant object.
$\qquad$



## Ray Diagrams

- Rays originate from every point on an object and travel outward in all directions, but a diagram trying to show all these rays would be messy and confusing.
To simplify the picture, we use a ray diagram showing
$\qquad$ only a few rays.


Q2017 Pearson Eduxation, Inc.

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## QuickCheck 34.1

The dark screen has a small hole, $\approx 2 \mathrm{~mm}$ in diameter. The lightbulb is the only source of light. What do you see on the viewing screen?


A.

B.

C.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Example 34.1 Light Reflecting from a Mirror

EXAMPLE 34.1 | Light reflecting from a mirror |
| :--- | :--- |

A dressing mirror on a closet door is 1.50 m tall. The bottom is
0.50 m above the floor. A bare lightbulb hangs 1.00 m from the closet door, 2.50 m above the floor. How long is the streak of reflected light across the floor?
MODEL Treat the lightbulb as a point source and use the ray model of light.


Example 34.1 Light Reflecting from a Mirror
EXAMPLE 34.1 Light reflecting from a mirror
solve Figure 34.8 has used the law of reflection to set the angles of reflection equal to the angles of incidence. Other angles have been identified with simple geometry. The two angles of incidence are
$\qquad$
$\qquad$
$\qquad$

$$
\begin{aligned}
& \theta_{1}=\tan ^{-1}\left(\frac{0.50 \mathrm{~m}}{1.00 \mathrm{~m}}\right)=26.6^{\circ} \\
& \theta_{2}=\tan ^{-1}\left(\frac{2.00 \mathrm{~m}}{1.00 \mathrm{~m}}\right)=63.4^{\circ}
\end{aligned}
$$

$\qquad$

$\qquad$

Example 34.1 Light Reflecting from a Mirror

$$
\begin{aligned}
& \text { EXAMPLE } 34.1 \text { Light reflecting from a mirror } \\
& \text { solve The distances to the points where the rays strike the floor } \\
& \text { are then } \\
& \qquad l_{1}=\frac{2.00 \mathrm{~m}}{\tan \theta_{1}}=4.00 \mathrm{~m} \\
& \qquad l_{2}=\frac{0.50 \mathrm{~m}}{\tan \theta_{2}}=0.25 \mathrm{~m} \\
& \text { Thus the length of the light streak is } l_{1}-l_{2}=3.75 \mathrm{~m} \text {. }
\end{aligned}
$$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

2017 Pearson Edxation, int

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


The Plane Mirror


Your eye intercepts only
a very small fraction of all the reflected rays.
©2017 Pearson Educatoon, Ino.
Slide $34-40$

## QuickCheck 34.3

You are looking at the image of a pencil in a mirror. What do you see in the mirror if the top half of the mirror is covered with a piece of dark paper?
A. The full image of the pencil
B. The top half only of the pencil
C. The bottom half only of the pencil
D. No pencil, only the paper

## QuickCheck 34.3

You are looking at the image of a pencil in a mirror. What do you see in the mirror if the top half of the mirror is covered with a piece of dark paper?

## A. The full image of the

 pencilB. The top half only of the pencil
C. The bottom half only of the pencil
D. No pencil, only the paper
$\qquad$

| Example 34.2 How High Is the Mirror? |
| :--- | :--- |
| $\qquad$EXAMPLE 34.2 <br> If your height is $h$, what is the shortest mirror on the wall in which <br> you can see your full image? Where must the top of the mirror be <br> hung? <br> MODEL Use the ray model of light. |


$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Example 34.2 How High Is the Mirror?

```
XAMPLE 34.2 How high is the mirror?
Solve The disance between these wop poins on the mirror is your ce. Thus the stontest mirror in which you can secyour full
jour eye if it strikes the mirror between these two points. Piecess hung midway between your eyses and the top of your head.
*)
```



## Refraction

- Two things happen when a light ray is incident on a smooth boundary between two transparent materials:

1. Part of the light reflects from the boundary, obeying the law of reflection.
2. Part of the light continues into the second medium. The transmission of light
 from one medium to another, but with a change in direction, is called refraction.

2017 Pearson Edxasion, lno.

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Refraction

- The figure shows a wave crossing the boundary between two media, where we're assuming $n_{2}>n_{1}$.
- Because the wavelengths differ on opposite sides of the boundary, the wave fronts can stay lined up only if the waves in the two media are traveling in different directions.



## QuickCheck 34.4

A laser beam passing from medium 1 to medium 2 is refracted as shown. Which is true?
A. $n_{1}<n_{2}$
B. $n_{1}>n_{2}$

C. There's not enough information to compare $n_{1}$ and $n_{2}$.

## QuickCheck 34.4

A laser beam passing from medium 1 to medium 2 is refracted as shown. Which is true?
A. $n_{1}<n_{2}$
B. $n_{1}>n_{2}$
C. There's not enough information to compare $n_{1}$ and $n_{2}$.

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$

## Example 34.4 Measuring the Index of Refraction

EXAMPLE 34.4 Measuring the index of refraction
FIGURE 34.18 shows a laser beam deflected by a $30^{\circ}-60^{\circ}-90^{\circ}$ prism. What is the prism's index of refraction?

MODEL Represent the laser beam with a single ray and use the ray model of light.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
©2017 Pearson Edxation, Ino
Slide $34-56$

## Example 34.4 Measuring the Index of Refraction

EXAMPLE 34.4 Measuring the index of refraction visualize figure 34.19 uses the steps of Tactics Box 34.1 to $\qquad$ draw a ray diagram. The ray is incident perpendicular to the front face of the prism $\left(\theta_{\text {incident }}=0^{\circ}\right)$, thus it is transmitted through the first boundary without deflection. At the second boundary it is especially important to draw the normal to the surface at the poin of incidence and to measure angles from the normal.

$\theta_{1}$ and $\theta_{2}$ are measured from the normal.

Example 34.4 Measuring the Index of Refraction
EXAMPLE 34.4 Measuring the index of refraction solve From the geometry of the triangle you can find that the laser's angle of incidence on the hypotenuse of the prism is $\theta_{1}=30^{\circ}$ the same as the apex angle of the prism. The ray exits the prism at angle $\theta_{2}$ such that the deflection is $\phi=\theta_{2}-\theta_{1}=22.6$. Thu $\theta_{2}=52.6^{\circ}$. Knowing both angles and $n_{2}=1.00$ for air, we can us
Snell's law to find $n_{1}$.

$$
n_{1}=\frac{n_{2} \sin \theta_{2}}{\sin \theta_{1}}=\frac{1.00 \sin 52.6^{\circ}}{\sin 30^{\circ}}=1.59
$$


© 2017 Pearson Education, Ino.
$\theta_{1}$ and $\theta_{2}$ are measured from the normal.
Slide $34-58$

| Example 34.4 Measuring the Index of Refraction |  |  |
| :---: | :---: | :---: |
| $n_{1}=1.59$ | TABLE 34.1 Indices of refraction |  |
| EXAMPLE 34.4 Measuring the index of refraction ASSESS Referring to the indices of refraction in Table 34.1, we see that the prism is made of plastic. | Medium | $n$ |
|  | Vacuum | 1.00 exactly |
|  | Air (actual) | 1.0003 |
|  | Air (accepted) | 1.00 |
|  | Water | 1.33 |
|  | Ethyl alcohol | 1.36 |
|  | Oil | 1.46 |
|  | Glass (typical) | 1.50 |
|  | Polystyrene plastic | 1.59 |
|  | Cubic zirconia | 2.18 |
|  | Diamond | 2.41 |
|  | Silicon (infrared) | 3.50 |
| ${ }^{2017}$ Pearson Education, Inc. |  | Slide $34-59$ |

## Total Internal Reflection

When a ray crosses a boundary into a material with a lower index of refraction, it bends away from the normal.

- As the angle $\theta_{1}$ increases, the refraction angle $\theta_{2}$ approaches
$\qquad$ $90^{\circ}$, and the fraction of the light energy transmitted decreases while the fraction reflected increases.

The critical angle of incidence occurs when $\theta_{2}=90^{\circ}$ :

$$
\theta_{\mathrm{c}}=\sin ^{-1}\left(\frac{n_{2}}{n_{1}}\right)
$$

- The refracted light vanishes at the critical angle and the reflection becomes $100 \%$ for
 any angle $\theta_{1}>\theta_{\text {c }}$.
2017 Peasone Edarabon, 10.
$\qquad$


## Total Internal Reflection

The angle of incidence is increasing $\qquad$ Transmission is getting weaker. $\qquad$


Critical angle when $\theta_{2}=90^{\circ}$
Reflection is getting stronger. $\longrightarrow$
Total internal reflection occurs when $\theta_{1} \geq \theta_{\text {c }}$.
©2017 Pearson Educatoon, Inc.

## QuickCheck 34.5

A laser beam undergoes two refractions plus total internal reflection at the interface between medium 2 and medium 3 . Which is true?
A. $n_{1}<n_{3}$
B. $n_{1}>n_{3}$

C. There's not enough information to compare $n_{1}$ and $n_{3}$.

Slide $34-62$

## QuickCheck 34.5

A laser beam undergoes two refractions plus total internal reflection at the interface between medium 2 and medium 3 . Which is true?
A. $n_{1}<n_{3}$
B. $n_{1}>n_{3}$

C. There's not enough information to compare $n_{1}$ and $n_{3}$.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$ 2017 Peasson Eduasion, Inc. $\qquad$

## Example 34.5 Total Internal Reflection

## EXAMPLE 34.5 Total internal reflection

A small lightbulb is set in the bottom of a $3.0-\mathrm{m}$-deep swimming
pool. What is the diameter of the circle of light seen on the water's
surface from above?
MODEL Use the ray model of light.

©2017 Pearson Education, Ino.

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Fiber Optics

- The most important modern application of total internal reflection (TIR) is optical fibers.
- Light rays enter the glass fiber, then impinge on the inside wall of the glass at an angle above the critical angle, so they undergo TIR and remain inside the glass.
- The light continues to "bounce" its way down the tube as if it were inside a pipe.


Image Formation by Refraction

If you see a fish that appears to be swimming close to the front window of the aquarium, but then look through the side of the aquarium, you'll find that the fish is actually farther from the window than you thought.

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Image Formation by Refraction

- Rays emerge from a material with $n_{1}>n_{2}$.
- Consider only paraxial rays, for which $\theta_{1}$ and $\theta_{2}$ are quite small.
- In this case:

$$
s^{\prime}=\frac{n_{2}}{n_{1}} s
$$

where $s$ is the object
distance and $s^{\prime}$ is the image distance.

- The minus sign tells us that
 we have a virtual image


## QuickCheck 34.6

A fish in an aquarium with flat sides looks out at a hungry cat. To the fish, the distance to the cat appears to be
A. Less than the actual distance.
B. Equal to the actual distance. $\qquad$
C. More than the actual distance.

## QuickCheck 34.6

A fish in an aquarium with flat sides looks out at a hungry cat. To the fish, the distance to the cat appears to be
A. Less than the actual distance.
B. Equal to the actual distance.
C. More than the actual distance.

$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$


## Example 34.6 An Air Bubble in a Window

EXAMPLE 34.6 An air bubble in a window
SOLVE The index of refraction of the glass is $n_{1}=1.50$. The bubble
is in the center of the window, so the object distance from either side of the window is $s=2.5 \mathrm{~cm}$. On the water side, the image distance is

$$
s^{\prime}=-\frac{n_{2}}{n_{1}} s=-\frac{1.33}{1.50}(2.5 \mathrm{~cm})=-2.2 \mathrm{~cm}
$$

The minus sign indicates a virtual image. Physically, the fish sees the bubble 2.2 cm behind the surface. The image distance on the water side is

$$
s^{\prime}=-\frac{n_{2}}{n_{1}} s=-\frac{1.00}{1.50}(2.5 \mathrm{~cm})=-1.7 \mathrm{~cm}
$$

So the sailor sees the bubble 1.7 cm behind the surface.
ASSESS The image distance is less for the sailor because of the larger difference between the two indices of refraction.


## Converging Lenses

## - A converging lens is

thicker in the center
than at the edges.

- The focal length $f$ is the distance from the lens at which rays parallel to the optical axis converge.
- The focal length is a property of the lens, independent of how the lens is used.

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Q2017 Pearson Edacation. Inc.
Slide $34-77$

## Diverging Lenses

## - A diverging lens is

 thicker at the edges than in the center.- The focal length $f$ is the distance from the lens at which rays parallel to the optical axis appear to diverge.
- The focal length is a property of the lens, independent of how the lens is used.



## QuickCheck 34.7

You can use the sun's rays and a lens to start a fire. To do so, you should use $\qquad$
A. A converging lens.
B. A diverging lens.
C. Either a converging or a diverging lens will work if you use it correctly. $\qquad$
$\qquad$
$\qquad$

## QuickCheck 34.7

You can use the sun's rays and a lens to start a fire. To do so, you should use
A. A converging lens.
B. A diverging lens.
C. Either a converging or a diverging lens will work if you use it correctly.


## Thin Lenses: Ray Tracing

- Three situations form the basis for ray tracing through a thin converging lens.
- Situation 2:

A ray through the near focal point of a thin lens becomes parallel to the optic axis after passing through the lens.


Any ray passing through the near focal point emerges from the lens parallel to the optical axis.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## QuickCheck 34.8

A lens produces a sharply focused, inverted image on a screen. What will you see on the screen if the lens is removed?
A. An inverted but blurry image

B. An image that is dimmer but otherwise unchanged
C. A sharp, upright image
D. A blurry, upright image
E. No image at all

## QuickCheck 34.8

A lens produces a sharply focused, inverted image on a screen. What will you see on the screen if the lens is removed?
A. An inverted but blurry image

B. An image that is dimmer but otherwise unchanged
C. A sharp, upright image
D. A blurry, upright image
E. No image at all $\qquad$

## QuickCheck 34.9

A lens produces a sharply focused, inverted image on a screen. What will you see on the screen if a piece of dark paper is lowered to cover the top half of the lens?

$\qquad$
$\qquad$
$\qquad$
A. An inverted but blurry image $\qquad$
B. An image that is dimmer but otherwise unchanged $\qquad$
C. Only the top half of the image
D. Only the bottom half of the image
E. No image at all
$\qquad$

2017 Pearson Edacaion, Inc.

## QuickCheck 34.9

A lens produces a sharply focused, inverted image on a screen. What will you see on the screen if a piece of dark paper is lowered to cover the top half of the lens?


## A. An inverted but blurry image <br> B. An image that is dimmer but otherwise unchanged

$\qquad$
$\qquad$
C. Only the top half of the image
D. Only the bottom half of the image
E. No image at all

## QuickCheck 34.10

A lens produces a sharply focused, inverted image on a screen. What will you see on the screen if the lens is covered by a dark mask having only a small hole in the center?
A. An inverted but blurry image

$\qquad$
$\qquad$
$\qquad$
$\qquad$
B. An image that is dimmer but otherwise unchanged
C. Only the middle piece of the image
D. A circular diffraction pattern
E. No image at all

## QuickCheck 34.10

A lens produces a sharply focused, inverted image on a screen. What will you see on the screen if the lens is covered by a dark mask having only a small hole in the center?
A. An inverted but blurry image

$\qquad$
$\qquad$
$\qquad$
$\qquad$
B. An image that is dimmer but otherwise unchanged
C. Only the middle piece of the image
D. A circular diffraction pattern
E. No image at all
-2017 Paarson Edacation, Ino.

## Image Formation



## Tactics: Ray Tracing for a Converging Lens

## TACTICS BOX 34.2

## Ray tracing for a converging lens

© Draw an optical axis. Use graph paper or a ruler! Establish an appropriate scale.
(2) Center the lens on the axis. Mark and label the focal points at distance $f$ on either side.
(3) Represent the object with an upright arrow at distance $s$. It's usually best to place the base of the arrow on the axis and to draw the arrow about half the radius of the lens.

## Tactics: Ray Tracing for a Converging Lens

## TACTICS BOX 34.2

$\qquad$

## Ray tracing for a converging lens

4 Draw the three "special rays" from the tip of the arrow. Use a straightedge. a. A ray parallel to the axis refracts through the far focal point.
b. A ray that enters the lens along a line through the near focal point emerges parallel to the axis.
c. A ray through the center of the lens does not bend.
© Extend the rays until they converge. This is the image point. Draw the rest of the image in the image plane. If the base of the object is on the axis, then the base of the image will also be on the axis.
© Measure the image distance $s^{\prime}$. Also, if needed, measure the image height relative to the object height.

## QuickCheck 34.11

A lens creates an image as shown. In this situation, the object distance $s$ is

$\qquad$
$\qquad$
A. Larger than the focal length $f$. $\qquad$
B. Equal to the focal length $f$.
C. Smaller than focal length $f$.
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## QuickCheck 34.12

A lens creates an image as shown. In this situation, the image distance $s$ ' is

$\qquad$
$\qquad$
A. Larger than the focal length $f$. $\qquad$
B. Equal to the focal length $f$.
C. Smaller than focal length $f$.

## QuickCheck 34.12

A lens creates an image as shown. In this situation, the image distance $s^{\prime}$ is

$\qquad$
$\qquad$
A. Larger than the focal length $f$.
B. Equal to the focal length $f$.
C. Smaller than focal length $f$.

## Lateral Magnification

- The image can be either larger or smaller than the object, depending on the location and focal length of the lens.
- The lateral magnification $m$ is defined as

$$
m=-\frac{s^{\prime}}{s}
$$

- A positive value of $m$ indicates that the image is $\qquad$ upright relative to the object.
- A negative value of $m$ indicates that the image is inverted relative to the object.
- The absolute value of $m$ gives the size ratio of the image and object: $h^{\prime} / h=|m|$
©2017 Pearson Edxation, Inc.

$\qquad$

$\qquad$
$\qquad$
$\qquad$


## Example 34.8 Magnifying a Flower

EXAMPLE 34.8 Magnifying a flower
VISUALIZE FIGURE 34.35 shows the ray-tracing diagram. The
three special rays diverge from the lens, but we can use a straight-
$\qquad$
$\qquad$
$\qquad$
$\qquad$ edge to extend the rays backward to the point from which they diverge. This point, the image point, is seen to be 12 cm to the left
of the lens. $\qquad$


2017 Peasson Edxasion, lnc.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Example 34.8 Magnifying a Flower

EXAMPLE 34.8 Magnifying a flower
VISUALIZE Because this is a virtual image, the image distance is a
negative $s^{\prime}=-12 \mathrm{~cm}$. Thus the magnification is
$\qquad$

$$
m=-\frac{s^{\prime}}{s}=-\frac{-12 \mathrm{~cm}}{4.0 \mathrm{~cm}}=3.0
$$

$\qquad$
The image is three times as large as the object and, because $m$ is positive, upright.

©2017 Pearson Edxation. Inc.
Slide 34-103
Thin Lenses: Ray Tracing

- Three situations form the
basis for ray tracing
through a thin diverging
lens.
- Situation 1:
A ray initially parallel to
the optic axis will appear
to diverge from the near
focal point after passing
through the lens.
Thin Lenses: Ray Tracing
Three situations form
the basis for ray
tracing through a thin
diverging lens.
Situation $2:$

| A ray directed along a |
| :--- |
| line toward the far |
| focal point becomes |
| parallel to the optic |
| axis after passing |
| through the lens. |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Thin Lenses: Ray Tracing

- Three situations form the basis for ray tracing through a thin diverging lens.
- Situation 3: A ray through the center of a thin lens is neither bent nor displaced but travels in


Any ray directed at the center of the lens passes through in a straight line. a straight line.

$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Tactics: Ray Tracing for a Diverging Lens
TACTICS BOX 34.3

## Ray tracing for a diverging lens

## (-) Follow steps 1 through 3 of Tactics Box 34.2

4 Draw the three "special rays" from the tip of the arrow. Use a straightedge. a. A ray parallel to the axis diverges along a line through the near focal point. b. A ray along a line toward the far focal point emerges parallel to the axis. c. A ray through the center of the lens does not bend.
5 Trace the diverging rays backward. The point from which they are diverging is the image point, which is always a virtual image.
© Measure the image distance $s^{\prime}$. This will be a negative number.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Example 34.9 Demagnifying a Flower |  |
| :--- | :--- |
|  | EXAMPLE 34.9 <br> A diverging lens with a focal length of 50 cm is placed 100 cm <br> from a flower. Where is the image? What is its magnification? <br> MODEL The flower is in the object plane. Use ray tracing to locate <br> the image. |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Example 34.9 Demagnifying a Flower

EXAMPLE 34.9 Demagnifying a flower
visualize A virtual image is formed at $s^{\prime}=-33 \mathrm{~cm}$ with magnification

$$
m=-\frac{s^{\prime}}{s}=-\frac{-33 \mathrm{~cm}}{100 \mathrm{~cm}}=0.33
$$

The image, which can be seen by looking through the lens, is onethird the size of the object and upright.


Slide 34-112



Example 34.11 A Goldfish in a Bowl

EXAMPLE 34.11 A goldfish in a bowl
VISUALIZE FIGURE 34.40 shows the rays refracting away from the
normal as they move from the water into the air. We expect to find a virtual image at a distance less than 10 cm .


Slide 34-116

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Example 34.11 A Goldfish in a Bowl

## EXAMPLE 34.11 A goldfish in a bowl

ASSESS The image is virtual, located to the left of the boundary.
A person looking into the bowl will see a fish that appears to be 8.3 cm from the edge of the bowl.


Slide $34-118$


## The Thin Lens Equation

- The object distance $s$ is related to the image distance $s^{\prime}$ by $\qquad$

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f} \quad \text { (thin-lens equation) }
$$

where $f$ is the focal length of the lens, which can be found from

$$
\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \quad \text { (lens maker's equation) }
$$

where $R_{1}$ is the radius of curvature of the first surface, and $R_{2}$ is the radius of curvature of the second surface, and the material surrounding the lens has $n=1$.

2017 Pearson Edxabion, Ino.

QuickCheck 34.14

A lens creates an image as shown. In this situation,
A. $s<f$
B. $f<s<2 f$
C. $s>2 f$
D. There's not enough information to compare $s$ to $f$.

Q2017 Pearson Edxation, Ino.
Slide 34-121

## QuickCheck 34.14

A lens creates an image as shown. In this situation,
A. $s<f$
B. $f<s<2 f$
C. $s>2 f$
D. There's not enough information to compare $s$ to $f$.

The image is real, which requires $s>f$.
The image is taller than the object, and
$s^{\prime}>s$ requires $s<2 f$.
©2017 Pearson Education, Inc.

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Example 34.12 Focal Length of a Meniscus Lens

EXAMPLE 34.12 Focal length of a meniscus lens
What is the focal length of the glass meniscus lens shown in $\qquad$ FIGURE 34.42 ? Is this a converging or diverging lens?


## Example 34.12 Focal Length of a Meniscus Lens

EXAMPLE 34.12 Focal length of a meniscus lens
SOLVE If the object is on the left, then the first surface has $R_{1}=-40 \mathrm{~cm}$ (concave toward the object) and the second surface has $R_{2}=-20 \mathrm{~cm}$ (also concave toward the object). The index of refraction of glass is $n=1.50$, so the lens maker's equation is
$\qquad$

$$
\begin{aligned}
\frac{1}{f} & =(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)=(1.50-1)\left(\frac{1}{-40 \mathrm{~cm}}-\frac{1}{-20 \mathrm{~cm}}\right) \\
& =0.0125 \mathrm{~cm}^{-1}
\end{aligned}
$$

Inverting this expression gives $f=80 \mathrm{~cm}$. This is a converging lens, as seen both from the positive value of $f$ and from the fact that the lens is thicker in the center. $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Example 34.14 A Magnifying Lens

EXAMPLE 34.14 A magnifying lens
visualize figure 34.44 shows the lens and a ray-tracing dia gram. We do not need to know the actual shape of the lens, so the figure shows a generic converging lens.

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


A Real Image Formed by a Concave Mirror


2017 Paarson Edacaion, lno


$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f} \quad \text { (mirror equation) }
$$

$\qquad$

## EXAMPLE 34.14 A magnifying lens

solve A virtual image is upright, so $m=+4.0$. The magnifica-

$$
s^{\prime}=-4.0 s=-(4.0)(2.0 \mathrm{~cm})=-8.0 \mathrm{~cm}
$$

We can use $s$ and $s^{\prime}$ in the thin-lens equation to find the focal length:

$$
\begin{aligned}
& \frac{1}{f}=\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{2.0 \mathrm{~cm}}+\frac{1}{-8.0 \mathrm{~cm}}=0.375 \mathrm{~cm}^{-1} \\
& f=2.7 \mathrm{~cm}
\end{aligned}
$$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Tactics: Ray Tracing for a Spherical Mirror

## TACTICS BOX 34.4

## Ray tracing for a spherical mirror

(1) Draw an optical axis. Use graph paper or a ruler! Establish a scale.
(2) Center the mirror on the axis. Mark and label the focal point at distance $f$ from the mirror's surface.
3 Represent the object with an upright arrow at distance $s$. It's usually best to place the base of the arrow on the axis and to draw the arrow about half the radius of the mirror.

## Tactics: Ray Tracing for a Spherical Mirror

## TACTICS BOX 34.4

## Ray tracing for a spherical mirror

© Draw the three "special rays" from the tip of the arrow. All reflections occur at the mirror plane.
a. A ray parallel to the axis reflects through (concave) or away from (convex) the focal point.
b. An incoming ray passing through (concave) or heading toward (convex) the focal point reflects parallel to the axis.
. A ray that strikes the center of the mirror reflects at an equal angle on the opposite side of the optical axis
0 Extend the rays forward or backward until they converge. This is the mage point. Draw the rest of the image in the image plane. If the base of the object is on the axis, then the base of the image will also be on the axis.
© Measure the image distance $s^{\prime}$. Also, if needed, measure the image height relative to the object height.

| The Mirror Equation |  |  |  |
| :---: | :---: | :---: | :---: |
| - For a spherical mirror with negligible thickness, the object and image distances are related by: $\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f} \quad \text { (mirror equation) }$ <br> where the focal length $f$ is related TABLE 34.4 Sign convention for spherical to the mirror's mirrors |  |  |  |
|  |  |  |  |
|  |  |  |  |
| radius of curvature by:$f=\frac{R}{2}$ | Positive |  | Negative |
|  | $R, f$ | Concave toward the object | Convex toward the object |
|  |  | Real image, same side as object | Virtual image, opposite side from object |
|  |  |  | Slide 34 |

QuickCheck 34.15
You see an upright, magnified image of your face when you look into magnifying "cosmetic mirror."
The image is located
A. In front of the mirror's surface.
B. On the mirror's surface.
C. Behind the mirror's surface.
D. Only in your mind because it's a virtual image.

## QuickCheck 34.15

You see an upright, magnified image of your face when you look into magnifying "cosmetic mirror."
The image is located
A. In front of the mirror's surface.
B. On the mirror's surface.
C. Behind the mirror's surface.
D. Only in your mind because it's a virtual image.

## Example 34.16 Analyzing a Concave Mirror

EXAMPLE 34.16 Analyzing a concave mirror A $3.0-\mathrm{cm}$-high object is located 20 cm from a concave mirror. The mirror's radius of curvature is 80 cm . Determine the position, orientation, and height of the image.
MODEL Treat the mirror as a thin mirror.


$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$

General Principles

Refraction
Snell's law of refraction:
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
Index of refraction is $n=c / v$.
The ray is closer to the normal on the side
The ray is closer to the normal on the
with the larger index of refraction.
If $n_{2}<n_{1}$, total internal reflection (TIR) occurs when the angle
If $n_{2}<n_{1}$, total internal reflection
of incidence $\theta_{1} \geq \theta_{c}=\sin ^{-1}\left(n_{2} / n_{1}\right)$.

2017 Pearson Edxation, Ino
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

