

IN THIS CHAPTER, you will learn about and analyze AC circuits.

Chapter 32 Preview

What is an AC circuit?

The circuits of Chapter 28, with a steady current in one direction, are called DC circuits—direct current. A circuit with an oscillating emf is called an AC circuit, for alternating current. The wires that transport electricity across the country—the grid use alternating current.

0 $-\mathcal{E}_0$

Slide 32-

Slide 32-

« LOOKING BACK Chapter 28 Circuits

0 2017 Pearson Education, Inc.

Chapter 32 Preview

How do circuit elements act in an AC circuit? Resistors in an AC circuit act as they do in a DC circuit. But you'll learn that capacitors and inductors are more useful in AC circuits than in DC circuits.

- The voltage across and the current through a capacitor or inductor are 90° out of phase. One is peaking when the other is zero, and vice versa.
- The peak voltage V and peak current I have an Ohm's-law-like relationship V = IX, where X, which depends on frequency, is called the reactance.
- Unlike resistors, capacitors and inductors do not dissipate energy.
- **« LOOKING BACK** Section 26.5 Capacitors **« LOOKING BACK** Section 30.8 Inductors
- Education, Inc.

The current and voltage are 90° out of phase with each other. v and ivoltage 0 $\frac{1}{2}T$ T tCurrent

Slide 3

<section-header><section-header><section-header><section-header><text><text><text>

Chapter 32 Preview

What is an RLC circuit?

A circuit with a resistor, inductor, and capacitor in series is called an *RLC* circuit. An *RLC* circuit has a resonance—a large current over a narrow range of frequencies—that allows it to be tuned to a specific frequency. As a result, *RLC* circuits are very important in communications.

rson Education, Inc.

Chapter 32 Preview

Why are AC circuits important?

AC circuits are the backbone of our technological society. Generators automatically produce an oscillating emf, AC power is easily transported over large distances, and transformers allow engineers to shift the AC voltage up or down. The circuits of radio, television, and cell phones are also AC circuits because they work with oscillating voltages and currents—at much higher frequencies than the grid, but the physical principles are the same.

Slide 32

Slide 32-

Slide 32

2017 Pearson Education, Inc.

Chapter 32 Reading Questions

Reading Question 32.1

In Chapter 32, "AC" stands for

A. Air cooling.

rson Education, Inc.

- B. Air conditioning.
- C. All current.

on Education, Inc.

- D. Alternating current.
- E. Analog current.

Reading Question 32.1 In Chapter 32, "AC" stands for A. Air cooling. B. Air conditioning. C. All current. D. Alternating current. E. Analog current.

Reading Question 32.2

The analysis of AC circuits uses a rotating vector called a

- A. Rotor.
- B. Wiggler.
- C. Phasor.
- D. Motor.
- E. Variator.

2017 Pearson Education, Inc.

Slide 32-11

Slide 32-1

Reading Question 32.2

The analysis of AC circuits uses a rotating vector called a

- A. Rotor.
- B. Wiggler.
- C. Phasor.
- D. Motor.
- E. Variator.

7 Pearson Education, Inc.

Reading Question 32.3

In a capacitor, the peak current and peak voltage are related by the

- A. Capacitive resistance.
- B. Capacitive reactance.
- C. Capacitive impedance.
- D. Capacitive inductance.

17 Pearson Education, Inc.

2017 Pearson Education, Inc.

Reading Question 32.3

In a capacitor, the peak current and peak voltage are related by the

- A. Capacitive resistance.
- B. Capacitive reactance.
- C. Capacitive impedance.
- D. Capacitive inductance.

Slide 32-1

Slide 32-1

Reading Question 32.4

In a series *RLC* circuit, what quantity is maximum at resonance?

- A. The voltage
- B. The current
- C. The impedance
- D. The phase

2017 Pearson Education, Inc.

Reading Question 32.4

In a series *RLC* circuit, what quantity is maximum at resonance?

A. The voltage

B. The current

- C. The impedance
- D. The phase

7 Pearson Education, Inc.

Reading Question 32.5

In the United States a typical electrical outlet has a "line voltage" of $120\ V.$ This is actually the

- A. Average voltage.
- B. Maximum voltage.
- C. Maximum voltage minus the minimum voltage.
- D. Minimum voltage.
- E. rms voltage.

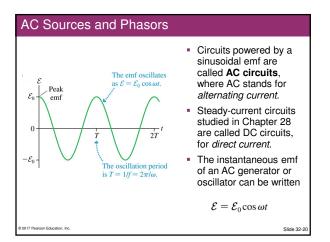
017 Pearson Education, Inc.

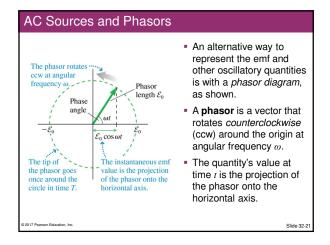
Slide 32-17

Slide 32-1

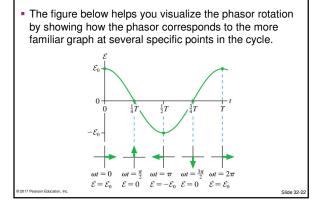
Reading Question 32.5

In the United States a typical electrical outlet has a "line voltage" of $120\ V.$ This is actually the

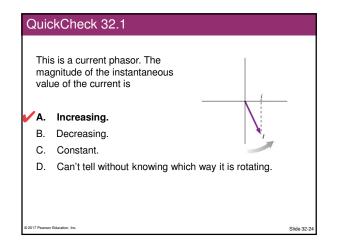

- A. Average voltage.
- B. Maximum voltage.
- C. Maximum voltage minus the minimum voltage.
- D. Minimum voltage.
- E. rms voltage.


on Education, Inc.

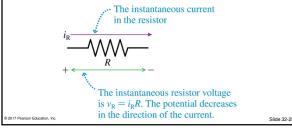
Chapter 32 Content, Examples, and QuickCheck Questions

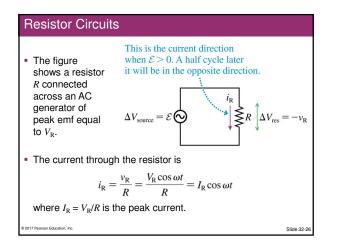

on Education, Inc

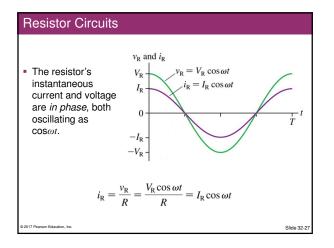
Slide 32-1



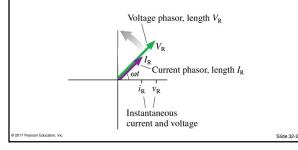
AC Sources and Phasors

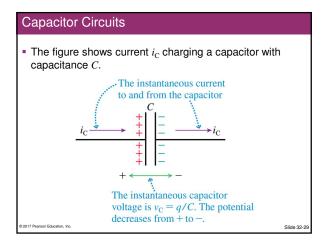



QuickCheck 32.1 This is a current phasor. The magnitude of the instantaneous value of the current is A. Increasing. B. Decreasing. C. Constant. D. Can't tell without knowing which way it is rotating.

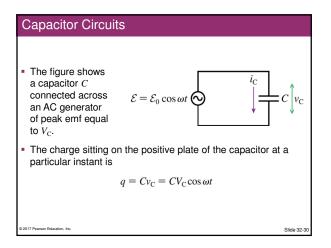

Resistor Circuits

- In Chapter 28 we used the symbols *I* and *V* for DC current and voltage.
- Now, because the current and voltage are oscillating, we will use lowercase *i* to represent the instantaneous current and v for the instantaneous voltage.





Resistor Circuits

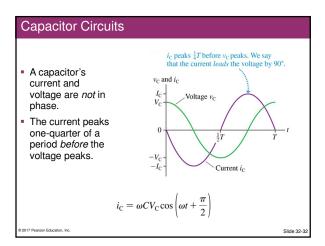

- Below is the phasor diagram for the resistor circuit.
- V_R and I_R point in the same direction, indicating that resistor voltage and current oscillate in phase.

Capacitor Circuits

The current is the rate at which charge flows through the wires, $i_{\rm C} = dq/dt$, thus

$$i_{\rm C} = \frac{dq}{dt} = \frac{d}{dt}(CV_{\rm C}\cos\omega t) = -\omega CV_{\rm C}\sin\omega t$$

Slide 32-3

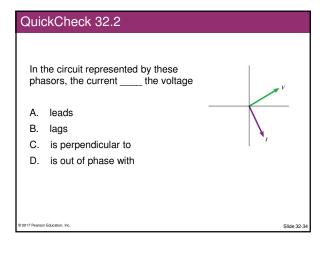

 We can most easily see the relationship between the capacitor voltage and current if we use the trigonometric identity

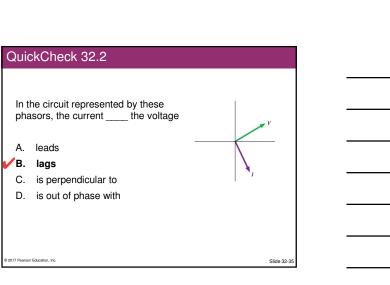
$$-\sin(x) = \cos(x + \pi/2)$$

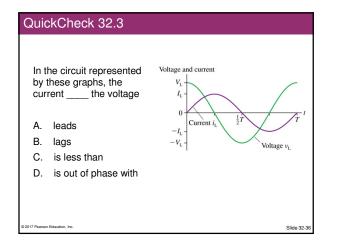
to write

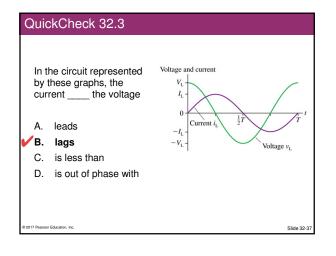
$$i_{\rm C} = \omega C V_{\rm C} \cos\left(\omega t + \frac{\pi}{2}\right)$$

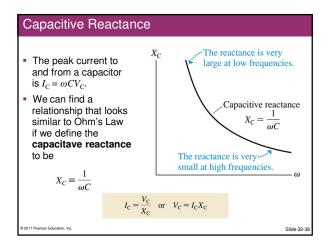
2017 Pearson Education, Inc

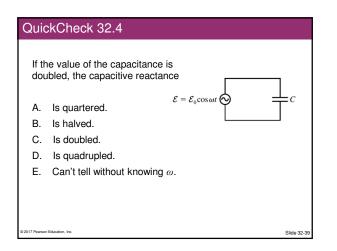

Capacitor Circuits

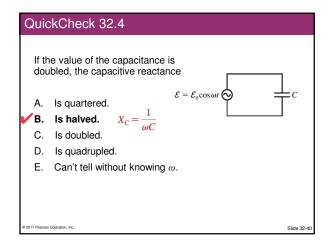

on Education. Inc

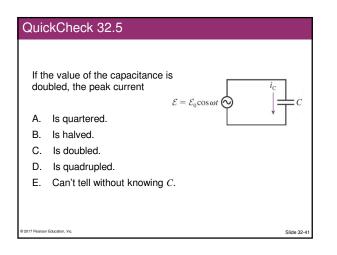

- Below is the phasor diagram for the capacitor circuit.
- The AC current of a capacitor *leads* the capacitor voltage by $\pi/2$ rad, or 90°. I_{c} The current phasor leads the voltage phasor by 90°. $\omega t + \frac{\pi}{2}$ Voltage phasor V_{c} Voltage phasor V_{c} These are the instantaneous

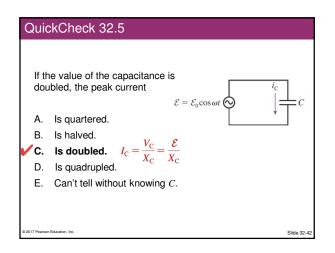

current and voltage.

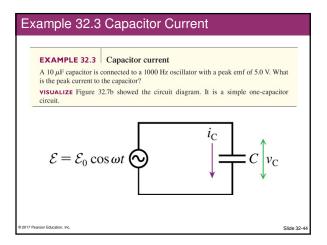










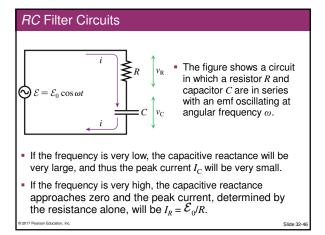


Example 32.2 Capacitive Reactance

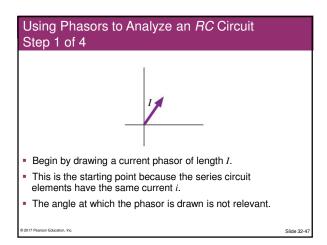
EXAMPLE 3.2 Capacitive reactance Matic the capacitive reactance of a 0.10 μ F capacitor at 100 Hz (an audio frequency): **SOLVE** At 100 Hz, $\mu_{C}(at 100 Hz) = \frac{1}{\omega C} = \frac{1}{2\pi (100 Hz)(10 \times 10^{-7} F)} = 16,000 \Omega$ Matic reacting the frequency by a factor of 10⁶, giving: $\mu_{C}(at 100 Hz) = 0.016 \Omega$ **SESSS** A capacitor with a substantial reactance at audio frequencies has virtually no reactance at FM-radio frequencies.

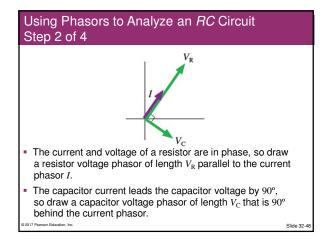
Example 32.3 Capacitor Current

17 Pearson Education, Inc.

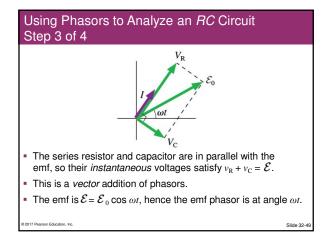

SOLVE The capacitive reactance at $\omega = 2\pi f = 6280$ rad/s is

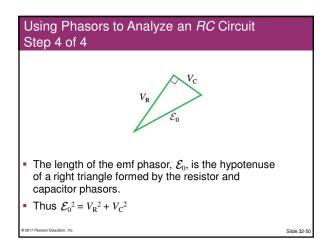

$$X_{\rm C} = \frac{1}{\omega C} = \frac{1}{(6280 \text{ rad/s})(10 \times 10^{-6} \text{ F})} = 16 \ \Omega$$

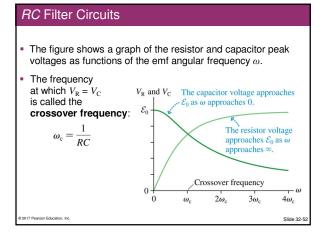

The peak voltage across the capacitor is $V_{\rm C} = \mathcal{E}_0 = 5.0$ V; hence the peak current is


$$I_{\rm C} = \frac{V_{\rm C}}{X_{\rm C}} = \frac{5.0 \text{ V}}{16 \Omega} = 0.31 \text{ A}$$

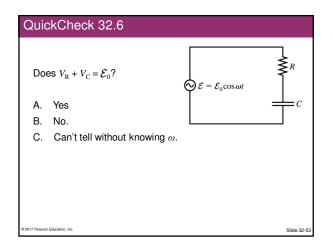
ASSESS Using reactance is just like using Ohm's law, but don't forget it applies to only the *peak* current and voltage, not the instantaneous values.





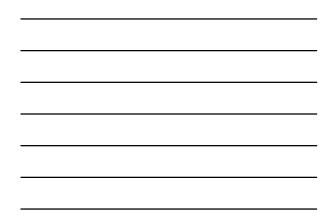

RC Filter Circuits

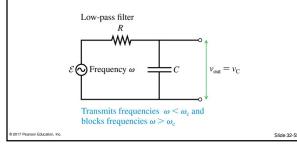
- The relationship $\mathcal{E}_0^2 = V_R^2 + V_C^2$ is based on the peak values.
- The peak voltages are related to the peak current by $V_{\rm R}$ = IR and $V_{\rm C}$ = IX_{\rm C}, so


$$\mathcal{E}_0^2 = V_{\rm R}^2 + V_{\rm C}^2 = (IR)^2 + (IX_{\rm C})^2 = (R^2 + X_{\rm C}^2)I^2$$
$$= (R^2 + 1/\omega^2 C^2)I^2$$

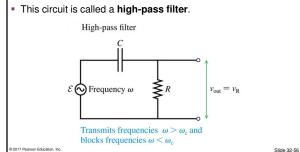
 This can be solved for the peak current, which in turn gives us the two peak voltages:

$$\begin{split} V_{\mathrm{R}} &= IR = \frac{\mathcal{E}_{0}R}{\sqrt{R^{2} + X_{\mathrm{C}}^{2}}} = \frac{\mathcal{E}_{0}R}{\sqrt{R^{2} + 1/\omega^{2}C^{2}}}\\ V_{\mathrm{C}} &= IX_{\mathrm{C}} = \frac{\mathcal{E}_{0}X_{\mathrm{C}}}{\sqrt{R^{2} + X_{\mathrm{C}}^{2}}} = \frac{\mathcal{E}_{0}/\omega C}{\sqrt{R^{2} + 1/\omega^{2}C^{2}}} \end{split}$$
 Side 32.51





RC Filter Circuits


- The figure below shows an RC circuit in which $\nu_{\rm C}$ is the output voltage.
- This circuit is called a **low-pass filter**.

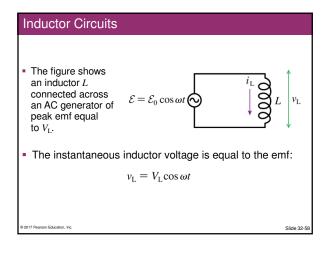
RC Filter Circuits

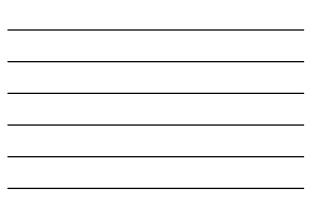
- The figure below shows an *RC* circuit in which v_R is the *output voltage*.

Inductor Circuits

- The figure shows the instantaneous current i_L through an inductor.
- If the current is *changing*, the instantaneous inductor voltage is
 The instantaneous current

$$v_{\rm L} = L \frac{di_{\rm L}}{dt}$$

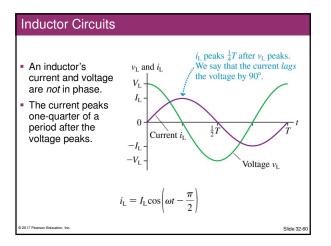

 The potential decreases in the direction of the current if the current is increasing, and increases if the current is decreasing.


rson Education, Inc.

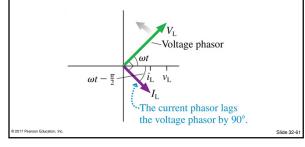
through the inductor

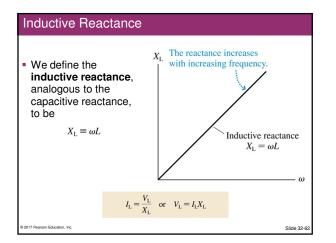
$$i_L \longrightarrow L$$

 $+ \longleftarrow -$


The instantaneous inductor voltage is $v_{\rm L} = L(di_{\rm L}/dt)$.

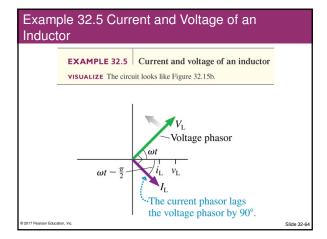
Inductor Circuits • Combining the two previous equations for v_L gives $di_L = \frac{v_L}{L} dt = \frac{V_L}{L} \cos \omega t dt$ • Integrating gives $i_L = \frac{V_L}{L} \int \cos \omega t dt = \frac{V_L}{\omega L} \sin \omega t = \frac{V_L}{\omega L} \cos \left(\omega t - \frac{\pi}{2} \right)$ $= I_L \cos \left(\omega t - \frac{\pi}{2} \right)$ where $I_L = V_L / \omega L$ is the peak or maximum inductor current.

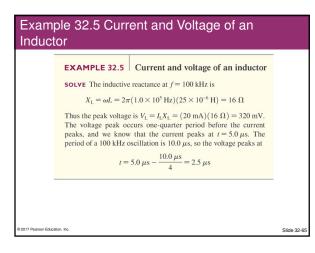

earson Education, Inc.

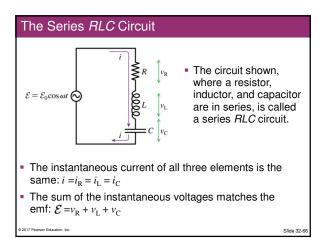


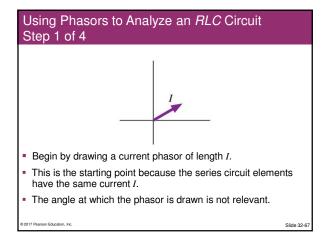
Inductor Circuits

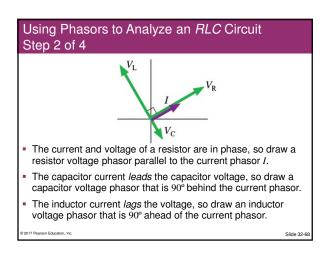
- Below is the phasor diagram for the inductor circuit.
- The AC current through an inductor *lags* the inductor voltage by $\pi/2$ rad, or 90°.

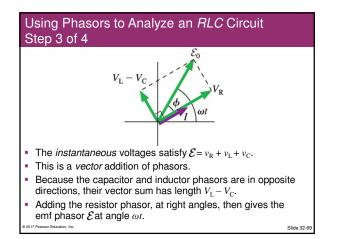


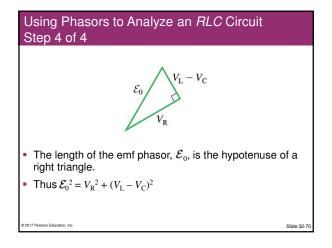



Example 32.5 Current and Voltage of an
InductorEXAMPLE 32.5Current and voltage of an inductorA 25 μ H inductor is used in a circuit that oscillates at 100 kHz.
The current through the inductor reaches a peak value of 20 mA
at $t = 5.0 \ \mu$ s. What is the peak inductor voltage, and when, closest
to $t = 5.0 \ \mu$ s. does it occur?MODEL The inductor current lags the voltage by 90°, or, equivalently, the voltage reaches its peak value one-quarter period before
the current.


on Education. Inc





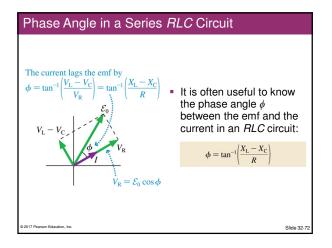


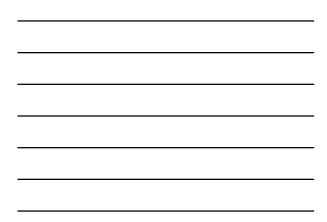
The Series RLC Circuit

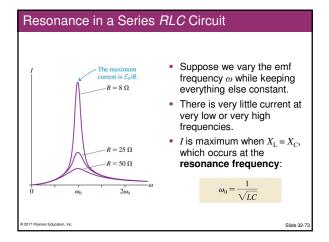
rson Education, Inc.

• If $V_{\rm L} < V_{\rm C}$, which we've assumed, then the instantaneous current *i* lags the emf by a phase angle ϕ :

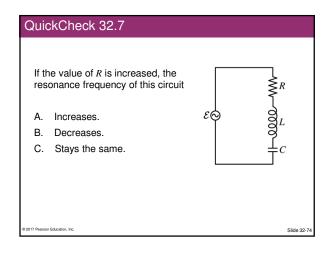
 $i = I\cos\left(\omega t - \phi\right)$

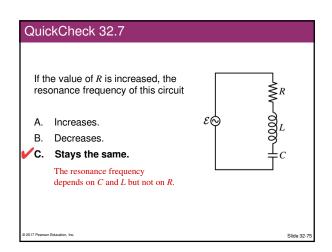

Based on the right-triangle, the square of the peak voltage is

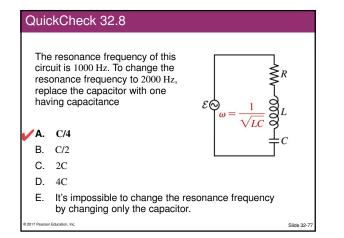

$$\mathcal{E}_0^2 = V_{\rm R}^2 + (V_{\rm L} - V_{\rm C})^2 = [R^2 + (X_{\rm L} - X_{\rm C})^2]I^2$$

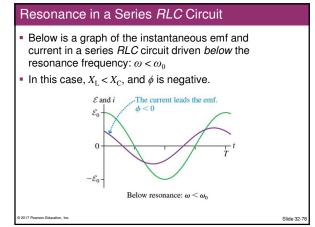

where we wrote each of the peak voltages in terms of the peak current *I* and a resistance or a reactance.

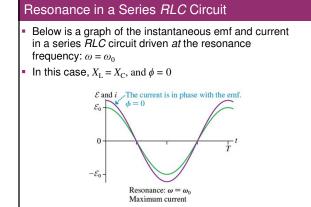
- Consequently, the peak current in the RLC circuit is


$$I = \frac{\mathcal{E}_0}{\sqrt{R^2 + (X_{\rm L} - X_{\rm C})^2}} = \frac{\mathcal{E}_0}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}$$

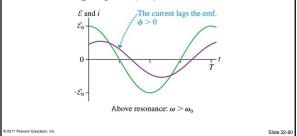




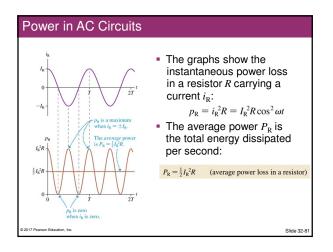




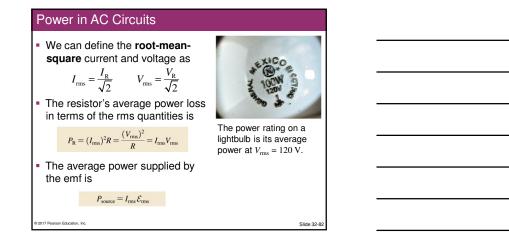
QuickCheck 32.8 The resonance frequency of this circuit is 1000 Hz. To change the W ODDL resonance frequency to 2000 Hz, replace the capacitor with one having capacitance εØ A. C/4 CВ. C/2 C. 2C D. 4C E. It's impossible to change the resonance frequency by changing only the capacitor. on Education, Inc Slide 32-76

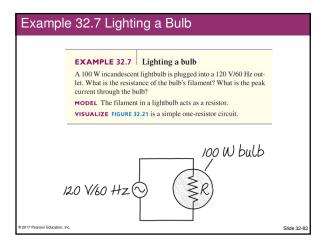


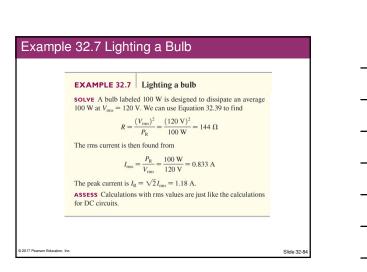
Resonance in a Series RLC Circuit

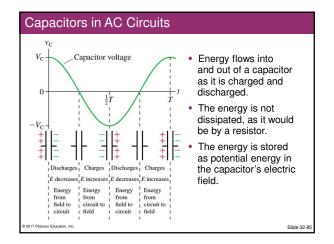

Below is a graph of the instantaneous emf and current in a series *RLC* circuit driven *above* the resonance frequency: $\omega > \omega_0$

Slide 32-7


• In this case, $X_{\rm L} > X_{\rm C}$, and ϕ is positive.

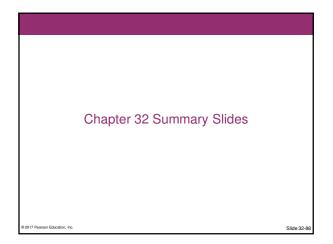






Capacitors in AC Circuits - The instantaneous power flowing into a capacitor is $p_{\rm C} = v_{\rm C} i_{\rm C} = (V_{\rm C} \cos \omega t)(-\omega C V_{\rm C} \sin \omega t) =$ $\omega C V_{\rm C}^2 \sin 2\omega t$ Discharges Charges Dischar Char E decreas E increases E decrea Eincrea Energy from field to Energy from circuit to Energy from field to erage $-P_{-}$ power is zero. Capacitor power Slide 32-8 on Education, In

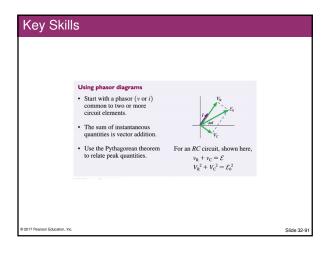
The Power Factor in RLC Circuits

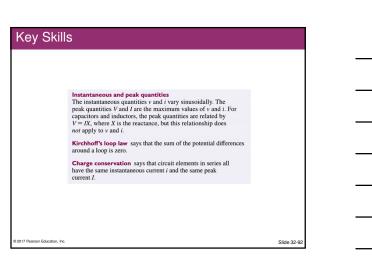

- In an *RLC* circuit, energy is supplied by the emf and dissipated by the resistor.
- The average power supplied by the emf is:

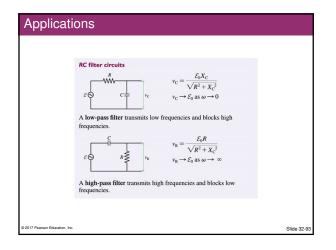
$P_{\text{source}} = \frac{1}{2} I \mathcal{E}_0 \cos \phi = I_{\text{rms}} \mathcal{E}_{\text{rms}} \cos \phi$

- The term cos φ, called the power factor, arises because the current and the emf are not in phase.
- Large industrial motors, such as the one shown, operate most efficiently, doing the maximum work per second, when the power factor is as close to 1 as possible.

on Education. Inc






Important (Concepts	
	AC circuits are driven by an $\mathcal{E} = \mathcal{E}_0 \cos \omega t$ that oscillates with angular for Phasors can be used to represent the oscillating emf, current, and voltage.	
© 2017 Pearson Education, Inc.		Slide 32-89

Basic circuit elements Element i and v Resistance/ reactance I and V Power Resistor In phase R is fixed $V = IR$ $I_{ma}V_{ms}$ Capacitor i leads v by 90° $X_C = 1/40C$ $V = IX_C$ 0 Inductor i lags v by 90° $X_L = \omega L$ $V = IX_L$ 0 For many purposes, especially calculating power, the root-mean-square (rms) $V = X_L$ $V = X_L$ $V = X_L$						
Element i and v Resistance/ reactance I and V Power Resistor In phase R is fixed V = IR $I_{mm}V_{mm}$ Capacitor i leads v by 90° $X_C = IUCV = V = V_C$ 0 Inductor i lags v by 90° $X_L = \omega L$ $V = IX_L$ 0 For many purposes, especially calculating power, the root-mean-square (rms) quantities $V = IX_L$ $V = IX_L$ $V = IX_L$						
Element i and v reactance I and V Power Resistor In phase R is fixed $V = IR$ $I_{ma}V_{max}$ Capacitor i leads v by 90° $X_{L} = 1/\omega C$ $V = IR_{L}$ 0 Inductor i lags v by 90° $X_{L} = \omega L$ $V = IX_{L}$ 0 For many purposes, especially calculating power, the root-mean-square (rms) quantities $V = IX_{L}$ $V = IX_{L}$ $V = IX_{L}$	Basic ci	cuit elements				
Capacitor $i \text{ leads } v \text{ by } 90^\circ$ $X_C = 1/\omega C$ $V = IX_C$ 0 Inductor $i \text{ lags } v \text{ by } 90^\circ$ $X_L = \omega L$ $V = IX_L$ 0 For many purposes, especially calculating power, the root-mean-square (rms) quantities	Elemen	i and v		I and V	Power	
Inductor $i \log_{0} v + y 90^{\circ} X_{L} = \omega L V = IX_{L} 0$ For many purposes, especially calculating power, the root-mean-square (rms) quantities	Resistor	In phase	R is fixed	V = IR	I _{rms} V _{rms}	
Inductor $i \log_{0} v + y 90^{\circ} X_{L} = \omega L V = IX_{L} 0$ For many purposes, especially calculating power, the root-mean-square (rms) quantities	Capacito	r i leads v by 90°	$X_{\rm C} = 1/\omega C$	$V = IX_{\rm C}$	0	
quantities	Inductor					
$V_{\rm rms} = V/\sqrt{2}$ $I_{\rm rms} = I/\sqrt{2}$ $\mathcal{E}_{\rm rms} = \mathcal{E}_0/\sqrt{2}$ are equivalent to the corresponding DC quantities.	quantitie	$V_{\rm rms} = V/\sqrt{2}$	$u_{\rm rms} = I/\sqrt{2}$ $\mathcal{E}_{\rm rms}$		uare (rms)	

