
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

IN THIS CHAPTER, you will learn the fundamental
\qquad physical principles that govern electric circuits.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chapter 28 Preview

Why are circuits important?

We live in an electronic era, and electric circuits surround you: your household wiring, the ignition system in your car, your music and communication devices, and your tablets and computers. Electric circuits are one of the most important applications of physics, and in this chapter you will see how the seemingly abstract ideas of electric charge, field, and potential are the foundation for many of the things we take for granted in the 21st century.

Reading Question 28.1	
How many laws are named after Kirchhoff?	
A. 0	
B. 1	
C. 2	
D. 3	
E. 4	

Reading Question 28.1	
How many laws are named after Kirchhoff?	
A. 0	
B. 1	
C. 2	
D. 3	
E. 4	

Reading Question 28.2

What property of a real battery makes its potential difference slightly different than that of an ideal battery?
A. Short circuit
B. Chemical potential
C. Internal resistance
D. Effective capacitance
E. Inductive constant
© 2017 Pearson Eddaction, Ino.

Reading Question 28.2

What property of a real battery makes its \qquad potential difference slightly different than that of an ideal battery?
A. Short circuit
B. Chemical potential \qquad
C. Internal resistance
D. Effective capacitance \qquad
E. Inductive constant
\qquad
\qquad
\qquad
\qquad

Reading Question 28.3

In an $R C$ circuit, what is the name of the quantity represented by the symbol τ ?
A. Period
B. Torque
C. Terminal voltage
D. Time constant
E. Coefficient of thermal expansion
©2017 Pearson Edxation, Ino.

Reading Question 28.3

In an $R C$ circuit, what is the name of the quantity represented by the symbol τ ?
A. Period
B. Torque
C. Terminal voltage
D. Time constant
E. Coefficient of thermal expansion
©2017 Pearson Edxation, Ino

Reading Question 28.4

Which of the following are ohmic materials?
A. Batteries
B. Wires.
C. Resistors
D. Materials A and B
E. Materials B and C

Reading Question 28.4

Which of the following are ohmic materials?
A. Batteries
B. Wires
C. Resistors
D. Materials A and B
E. Materials B and C

Reading Question 28.5

The equivalent resistance for a group of parallel resistors is
A. Less than any resistor in the group.
B. Equal to the smallest resistance in the group.
C. Equal to the average resistance of the group.
D. Equal to the largest resistance in the group.
E. Larger than any resistor in the group.

Reading Question 28.5

The equivalent resistance for a group of parallel resistors is
A. Less than any resistor in the group.
B. Equal to the smallest resistance in the group.
C. Equal to the average resistance of the group.
D. Equal to the largest resistance in the group.
E. Larger than any resistor in the group.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chapter 28 Content, Examples, and QuickCheck Questions

\qquad
\qquad
\qquad
\qquad
Slide 28-20
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2017 Pearson Edcation, Ino \qquad

Circuit Diagrams

- A circuit diagram replaces pictures of the circuit
\qquad elements with symbols.
- The longer line at one end of the battery symbol
\qquad represents the positive terminal of the battery.
- The battery's emf is shown beside the battery.
- + and - symbols, even though somewhat redundant, are shown beside the terminals. \qquad

© 2017 Pearson Edxation, Inc.
Slide $28-23$

QuickCheck 28.1

Does the bulb light?
A. Yes
B. No
C. I'm not sure.

\qquad
\qquad
\qquad
\qquad
\qquad

2017 Pearson Edxation, Int. \qquad

QuickCheck 28.1

Does the bulb light?
A. Yes
B. No Not a complete circuit
C. I'm not sure.

Slide $28-25$

QuickCheck 28.2

The three bulbs are identical and the two batteries are identical. Compare the brightnesses of the bulbs.
A. $\mathrm{A}>\mathrm{B}>\mathrm{C}$
B. $\mathrm{A}>\mathrm{C}>\mathrm{B}$
C. $\mathrm{A}>\mathrm{B}=\mathrm{C}$
D. $\mathrm{A}<\mathrm{B}=\mathrm{C}$
E. $\mathrm{A}=\mathrm{B}=\mathrm{C}$
© 2017 Pearson Education, Ino.
Slide 28-26

QuickCheck 28.2

The three bulbs are identical and the two batteries are identical. Compare the brightnesses of the bulbs.
A. $\mathrm{A}>\mathrm{B}>\mathrm{C}$
B. $\mathrm{A}>\mathrm{C}>\mathrm{B}$
C. $\mathrm{A}>\mathrm{B}=\mathrm{C}$
D. $\mathrm{A}<\mathrm{B}=\mathrm{C}$
E. $\mathrm{A}=\mathrm{B}=\mathrm{C}$

This question is checking your initial intuition We'll return to it later.
2017 Pearson Edxasion, Ino.
\qquad

QuickCheck 28.3

The three bulbs are identical and the two batteries are \qquad identical. Compare the brightnesses of the bulbs.
A. $\mathrm{A}>\mathrm{B}>\mathrm{C}$
B. $\mathrm{A}>\mathrm{C}>\mathrm{B}$
C. $\mathrm{A}>\mathrm{B}=\mathrm{C}$

D. $\mathrm{A}<\mathrm{B}=\mathrm{C}$
E. $\mathrm{A}=\mathrm{B}=\mathrm{C}$

QuickCheck 28.3

The three bulbs are identical and the two batteries are identical. Compare the brightnesses of the bulbs.
A. $\mathrm{A}>\mathrm{B}>\mathrm{C}$
B. $\mathrm{A}>\mathrm{C}>\mathrm{B}$
C. $\mathrm{A}>\mathrm{B}=\mathrm{C}$

D. $\mathrm{A}<\mathrm{B}=\mathrm{C}$
E. $\mathrm{A}=\mathrm{B}=\mathrm{C}$

This question is checking your initial intuition. We'll return to it later

Kirchhoff's Junction Law

- For a junction, the law of conservation of current requires that:

$$
\sum I_{\mathrm{in}}=\sum I_{\mathrm{out}}
$$

where the Σ symbol means summation.

- This basic conservation Junction law: $I_{1}=I_{2}+I_{3}$ statement is called Kirchhoff's junction
law.
${ }^{17}$ Peasson Education. Ino.
\qquad

Kirchhoff's Loop Law

- For any path that starts and ends at the same point,
$\Delta V_{\text {loop }}=\sum(\Delta V)_{i}=0$
- The sum of all the potential differences encountered while moving around a loop or closed path is zero.

known as Kirchhoff's

This statement is loop law.

Tactics: Using Kirchhoff's Loop Law

Using Kirchhoff's loop law
(8) "Travel" around the loop. Start at any point in the circuit, then go all step 2. As you go through each circuit element, ΔV is interpreted to mean $\Delta V=V_{\text {doowstrum }}-V_{\text {upstram. }}$.

- For an ideal battery in the negative-to-positive direction:

$$
\Delta V_{\mathrm{bat}}=+\mathcal{E}
$$

- For an ideal battery in the positive-to-negative direction:

$$
\Delta V_{\text {bat }}=-\mathcal{E}
$$

- For a resistor: $\quad \Delta V_{r e s}=-\Delta V_{R}=-I R$
$\xrightarrow[+\mathrm{WH}^{-}]{\xrightarrow{+}}$
potential decreases

Q2017 Paarson Edacatoon, Ino.
\qquad
\qquad

QuickCheck 28.4

The current through the 3Ω resistor is
A. 9 A
B. 6 A
C. 5 A
D. 3 A
E. 1 A

20017 Paerson Education, Inc.

QuickCheck 28.4

The current through the 3Ω
resistor is
A. 9 A
B. 6 A
C. 5 A
D. 3 A

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
E. 1 A
The Basic Circuit
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Analyzing the Basic Circuit

©2017 Pearson Edxation, Inc:

QuickCheck 28.5

The potential difference across
the 10 resistor is \qquad
\qquad
A. 30 V
B. 20 V
C. 15 V
D. 10 V
E. 5 V

QuickCheck 28.6

What things about the resistors in this circuit are the same for all three?
A. Current I
B. Potential difference ΔV
C. Resistance R

D. A and B
E. B and C

Power Dissipation in a Resistor

Collisions transfer energy to the lattice.

$$
\text { The energy transformation is } K \rightarrow E_{\mathrm{th}} \text {. }
$$

- A current-carrying resistor dissipates power because the electric force does work on the charges.
© 2017 Pearson Education, Inc.
Slide 28-44

QuickCheck 28.8

Which has a larger resistance, a 60 W lightbulb or a 100 W lightbulb?
A. The 60 W bulb
B. The 100 W bulb
C. Their resistances are the same.
D. There's not enough information to tell.

QuickCheck 28.8

Which has a larger resistance, a 60 W lightbulb or a 100 W lightbulb?
A. The 60 W bulb
B. The 100 W bulb $\quad P=\frac{(\Delta V)^{2}}{R}$ with both used at $\Delta V=120 \mathrm{~V}$
\qquad
\qquad
\qquad
C. Their resistances are the same.
D. There's not enough information to tell.
\qquad
\qquad
\qquad
\qquad

QuickCheck 28.9

Which bulb is brighter?
A. The 60 W bulb
B. The 100 W bulb
C. Their brightnesses are the same.

D. There's not enough information to tell.
$P=I^{2} R$ and both have the same current.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Most loudspeakers are de porer of sound
8Ω loudspeaker is conneted to have a resistance of 8Ω. If an sotve The loudspeaker is a resistive load. The maximum curremi 100 W , what is the maximum possible current to the loudspeak of MODEL The rating of an amplifice is the marimum power it Jchiver. Most of the time it delivers far less, but the maximuris mightbe reachech for brief, intense sounas like cy mbar crashes.

$$
I_{\text {man }}=\sqrt{\frac{P_{\text {ma }}}{R}}=\sqrt{\frac{100 \mathrm{~W}}{8 \Omega}}=3.5 \mathrm{~A}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Kilowatt Hours

- The product of watts and seconds is joules, the SI unit of energy.
- However, most electric companies prefers to use the kilowatt hour, to measure the energy you use each month.
- Examples:
- A 4000 W electric water heater uses

\qquad
\qquad
\qquad 40 kWh of energy in 10 hours.
- A 1500 W hair dryer uses 0.25 kWh of energy in 10 minutes.
- The average cost of electricity in the United States is $\approx 10 \notin \operatorname{per} \mathrm{kWh}(\$ 0.10 / \mathrm{kWh})$.
© 2017 Pearson Education, Inc.
Slide $28-53$

Lightbulb Puzzle \#2

- The figure shows three identical lightbulbs in two different circuits.
- The voltage drop across A is the same as the total voltage drop across both B and C.
- More current will pass through Bulb A, and it will be brighter than
 either B or C.

Series Resistors

- The figure below shows two resisters connected in series between points a and b.
- The total potential difference between points a and b is the sum of the individual potential differences across R_{1} and R_{2} :

$$
\Delta V_{\mathrm{ab}}=\Delta V_{1}+\Delta V_{2}=I R_{1}+I R_{2}=I\left(R_{1}+R_{2}\right)
$$

2017 Pearson Eduation, Ino.

Series Resistors

Suppose we replace R_{1} and R_{2} with a single resistor with the same current I and the same potential difference ΔV_{ab}.
\qquad

- Ohm's law gives resistance between points a and b:

$$
R_{\mathrm{ab}}=\frac{\Delta V_{\mathrm{ab}}}{I}=\frac{I\left(R_{1}+R_{2}\right)}{I}=R_{1}+R_{2}
$$

©2017 Pearson Edcation, Ino.

Series Resistors

- Resistors that are aligned end to end, with no junctions between them, are called series resistors or, sometimes, resistors "in series."
- The current I is the same through all resistors placed in series.
- If we have N resistors in series, their equivalent resistance is

$$
R_{\mathrm{eq}}=R_{1}+R_{2}+\cdots+R_{N} \quad \text { (series resistors) }
$$

- The behavior of the circuit will be unchanged if the N series resistors are replaced by the single resistor $R_{\text {eq }}$.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Real Batteries

- A single resistor connected to a real battery is in series with the battery's internal resistance, giving
\qquad $R_{\text {eq }}=R+r$.

Although physically separated, the internal \qquad
resistance r is electrically in series with R.
\qquad

This means the two circuits are equivalent.

Example 28.5 Lighting Up a Flashlight	
	EXAMPLE 28.5 A 6Ω flashlight bulb is phewered by a 3 V battery with an internal resistance of 1Ω. What are the power dissipation of the bulb and the terminal voltage of the battery? MODEL Assume ideal connecting wires but not an ideal battery.

A Short Circuit

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 28.6 A Short-Circuited Battery

EXAMPLE 28.6 A short-circuited battery
What is the short-circuit current of a 12 V car battery with an
supplied by the battery? What happens to the power
SOLVE The short-circuit

$$
I_{\text {sont }}=\frac{\varepsilon}{r}=\frac{12 \mathrm{v}}{0.02 \Omega}=600 \mathrm{~A}
$$

Power is generated by chemical reactions in the battery and
dissipated by the load resistance. But with a shor-circuited battery.
the load resistance is inside the battery! The "shorted" battery has
to dissipate power $P=I^{2} r=7200 \mathrm{~W}$ internally.
ASSESS This value is realistic. Car batteries are designed to
drive the starter motor, which has a very small resistance and
can draw a current of a few hundred amps. That is why the bat-
tery cables are so thick. A shorted car battery can produce an
tery cables are so thick. A shorted car battery can produce an
enormous amount of current. The normal response of a shorted
car battery is to explode; it simply cannot dissipate this much
power. Shorting a flashlight battery can make it rather hot, but
your life is not in danger. Although the voltage of a car battery
your life is not in danger. Although the voltage of a car battery
is relatively small, a car battery can be dangerous and should bc
treated with great respect.
treated with great respect.
©2017 Pearson Educatoon, Ino.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Series Resistors

- Suppose we replace R_{1} and R_{2} with a single resistor with the same current I and the same potential difference ΔV_{cd}
- Ohm's law gives resistance between points c and d:

$$
R_{\mathrm{cd}}=\frac{\Delta V_{\mathrm{cd}}}{I}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)^{-1}
$$

\qquad
\qquad

2017 Pearson Edacation, Inc:

Parallel Resistors

- Resistors connected at both ends are called parallel
\qquad resistors or, sometimes, resistors "in parallel."
- The left ends of all the resistors connected in parallel are held at the same potential V_{1}, and the right ends are all held at the same potential V_{2}.
- The potential differences ΔV are the same across all resistors placed in parallel.
- If we have N resistors in parallel, their equivalent resistance is

$$
R_{\mathrm{eq}}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{N}}\right)^{-1} \quad \text { (parallel resistors) }
$$

- The behavior of the circuit will be unchanged if the N parallel resistors are replaced by the single resistor R_{eq}.

$$
\begin{array}{|l|l}
\hline \text { Q2017 Pearson Education, lno. } & \text { Slide 28-74 } \\
\hline
\end{array}
$$

QuickCheck 28.11

The battery current I is
A. 3 A
B. 2 A
C. 1 A
D. $2 / 3 \mathrm{~A}$

E. $1 / 2 \mathrm{~A}$ \qquad
\qquad

2017 Pearson Edxation, Ino.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QuickCheck 28.12

When the switch closes, the battery current
A. Increases.
B. Stays the same.
C. Decreases.

Equivalent resistance decreases.
Potential difference is unchanged.

2017 Pearson Edxation, lnc.

QuickCheck 28.13

The three bulbs are identical and the two batteries are identical. Compare the brightnesses of the \qquad bulbs.
A. $\mathrm{A}>\mathrm{B}>\mathrm{C}$
B. $\mathrm{A}>\mathrm{C}>\mathrm{B}$
C. $\mathrm{A}>\mathrm{B}=\mathrm{C}$
D. $\mathrm{A}<\mathrm{B}=\mathrm{C}$
E. $\mathrm{A}=\mathrm{B}=\mathrm{C}$

Slide 28-82

QuickCheck 28.13

The three bulbs are identical and the two batteries are identical. Compare the brightnesses of the \qquad bulbs.
A. $\mathrm{A}>\mathrm{B}>\mathrm{C}$
B. $\mathrm{A}>\mathrm{C}>\mathrm{B}$
C. $\mathrm{A}>\mathrm{B}=\mathrm{C}$
D. $\mathrm{A}<\mathrm{B}=\mathrm{C}$
E. $\mathrm{A}=\mathrm{B}=\mathrm{C}$

Slide $28-83$

QuickCheck 28.14

The three bulbs are identical and the two batteries are identical. Compare the brightnesses of the \qquad bulbs.
A. $\mathrm{A}>\mathrm{B}>\mathrm{C}$
B. $\mathrm{A}>\mathrm{C}>\mathrm{B}$
C. $\mathrm{A}>\mathrm{B}=\mathrm{C}$
D. $\mathrm{A}<\mathrm{B}=\mathrm{C}$
E. $\mathrm{A}=\mathrm{B}=\mathrm{C}$

\qquad
\qquad
\qquad
\qquad

2017 Pearson Edxation, lno.

QuickCheck 28.14

The three bulbs are identical and the two batteries are identical. Compare the brightnesses of the \qquad bulbs.
A. $\mathrm{A}>\mathrm{B}>\mathrm{C}$
B. $\mathrm{A}>\mathrm{C}>\mathrm{B}$
C. $\mathrm{A}>\mathrm{B}=\mathrm{C}$
D. $\mathrm{A}<\mathrm{B}=\mathrm{C}$
E. $\mathbf{A}=\mathbf{B}=\mathbf{C}$

QuickCheck 28.15

The lightbulbs are identical. Initially both bulbs are glowing. What happens when the switch is closed?
\qquad
\qquad
A. Nothing
B. A stays the same; B gets dimmer.
C. A gets brighter; B stays the same.
D. Both get dimmer.

E. A gets brighter; B goes out

Slide 28-86

QuickCheck 28.15

The lightbulbs are identical. Initially both bulbs are glowing. What happens when the switch is closed?
A. Nothing
B. A stays the same; B gets dimmer.
C. A gets brighter; B stays the same.
D. Both get dimmer.
E. A gets brighter; B goes out.

2017 Pearson Edacatoon, inc.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QuickCheck 28.16

What does the voltmeter read?
A. 6 V
B. 3 V
C. 2 V
D. Some other value

E. Nothing because this will fry the meter.
© 2017 Pearson Edxation, Inc.
Slide 28-89

QuickCheck 28.16

What does the voltmeter read?
A. 6 V
B. 3 V
C. 2 V
D. Some other value

E. Nothing because this will fry the meter.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Problem-Solving Strategy: Resistor Circuits

PROBLEM-SOLVING STRATEGY 28.1

\qquad

Resistor circuits

solve Base your mathematical analysis on Kirchhoff's laws and on the rules for series and parallel resistors.

- Step by step, reduce the circuit to the smallest possible number of equivalent resistor
Write Kirchhoff's loop law for each independent loop in the circuit.
- Determine the current through and the potential difference across the equivalen esistors.
- Rebuild the circuit, using the facts that the current is the same through all resistors in series and the potential difference is the same for all parallel resistors.
ASSEsS Use two important checks as you rebuild the circuit.
- Verify that the sum of the potential differences across series resistors matche ΔV for the equivalent resistor.
- Verify that the sum of the currents through parallel resistors matches I for the quivalent resistor.

Getting Grounded

- The earth itself is a conductor.
- If we connect one point of a circuit to the earth by an ideal wire, we can agree to call potential of this point to be that of the earth: $V_{\text {earth }}=0 \mathrm{~V}$
- The wire connecting the circuit to the earth is not part of a complete circuit, so there is no current in this wire!
- A circuit connected to the earth in this way is said to be grounded, and the wire is called the ground wire. \qquad
- The circular prong of a three-prong plug is a connection to ground.
©2017 Pearson Edecation, linc.
Slide $28-95$

A Circuit That Is Grounded

- The figure shows a circuit with a 10 V battery and two resistors in series.
- The symbol beneath the circuit is the ground symbol.
- The potential at the ground is $V=0$.
- Grounding the circuit allows us to have specific values for potential at each point in the circuit, rather than just potential differences.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

EXAMPLE 28.11 A grounded circuit
EXAMPLE 28.11 A grounded circuit

l
l
*)
*)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
EXAMPLE 28.11 A grounded circuit
EXAMPLE 28.11 A grounded circuit
Sotve Similary, the potenial decreases by 6 6 through the 12\Omega wire, so V Ver=-6 V. Finally, the potenial increases by 10 V as the
Sotve Similary, the potenial decreases by 6 6 through the 12\Omega wire, so V Ver=-6 V. Finally, the potenial increases by 10 V as the
esistor: Becausce it starrs at 0V, the botom of the 12 \Omega resistor must charge fows through the batery, so V Vme = 4 V, in agreement, as i
esistor: Becausce it starrs at 0V, the botom of the 12 \Omega resistor must charge fows through the batery, so V Vme = 4 V, in agreement, as i
*e.at-6\textrm{V}\mathrm{ . The negative battery terminal is ar the same pocential should be, with the potential at the top of the 8 }\Omega\mathrm{ resistor.}
*e.at-6\textrm{V}\mathrm{ . The negative battery terminal is ar the same pocential should be, with the potential at the top of the 8 }\Omega\mathrm{ resistor.}
b botom of the 12\Omega resisor, because they are connected by a
b botom of the 12\Omega resisor, because they are connected by a

2017 Pearson Edacatoon, Inc.
EXAMPLE 28.11 A grounded circuit ASSESS A negative voltage means only that the potential at that The potential difference across the 12Ω resistor in this example is
Assess A negative voltage means only that the potentiar ar that 6 V . decreasing from top to bottom, regardless of which point we
Point stess than the potential at some other point that we chose to 6 V , decreasing from top
call $V=0 \mathrm{~V}$. Only potential differences are physically meaning.
ful, and only potential differences enter into Ohm's law: $I=\Delta V$

Slide 28-101
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

RC Circuits

- Knowing that $I=-d Q / d t$, the loop law for a simple closed $R C$ circuit is

$$
\frac{d Q}{d t}+\frac{Q}{R C}=0
$$

- Rearranging and integrating:

$$
\begin{aligned}
\int_{Q_{0}}^{Q} \frac{d Q}{Q} & =-\frac{1}{R C} \int_{0}^{t} d t \\
Q & =Q_{0} e^{-l / \tau}
\end{aligned}
$$

where the time constant τ is
©2017 Pearson Education, Inc.
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QuickCheck 28.18

Which capacitor discharges more quickly after the switch is closed?
A. Capacitor A
B. Capacitor B

\qquad
C. They discharge at the same rate.
D. Can't say without knowing the initial amount of charge.

QuickCheck 28.18

Which capacitor discharges
Smaller time constant $\tau=R C$ more quickly after the switch is closed?
A. Capacitor A
B. Capacitor B

C. They discharge at the same rate.
D. Can't say without knowing the initial amount of charge.

RC Circuits

- The charge on the capacitor of an $R C$ circuit is

$$
Q=Q_{0} e^{-l / \tau}
$$

\qquad
where Q_{0} is the charge at $t=0$, and $\tau=R C$ is the time constant.

- The capacitor voltage is directly proportional to the charge, so

$$
\Delta V_{\mathrm{C}}=\Delta V_{0} e^{-t / \tau}
$$

where ΔV_{0} is the voltage at $t=0$.

- The current also can be found to decay exponentially:

$$
I=-\frac{d Q}{d t}=\frac{Q_{0}}{\tau} e^{-l_{\tau} \tau}=\frac{Q_{0}}{R C} e^{-l_{\tau} \tau}=\frac{\Delta V_{0}}{R} e^{-l / \tau}=I_{0} e^{-l / \tau}
$$

QuickCheck 28.19

The capacitor is initially unchanged. Immediately after the switch closes, the capacitor voltage is
A. 0 V
B. Somewhere between 0 V and 6 V
C. 6 V

D. Undefined
© 2017 Pearson Education, Ino.
Slide 28-110

QuickCheck 28.19

The capacitor is initially unchanged. Immediately after the switch closes, the capacitor voltage is
A. 0 V
B. Somewhere between 0 V and 6 V

C. 6 V
D. Undefined.

Charging a Capacitor

- Figure (a) shows a circuit that charges a capacitor.
- The capacitor charge and the circuit current at time t are

$$
Q=Q_{0}\left(1-e^{-t / \tau}\right)
$$

$I=I_{0} e^{-t / \tau}$ \qquad
where $I_{0}=\mathcal{E} / R$ and $\tau=R C$.

- This "upside-down decay" is shown in figure (b).

QuickCheck 28.20

The red curve shows how the capacitor charges after the switch is closed at $t=0$. Which curve shows the capacitor charging if the
 value of the resistor is reduced?

\qquad
Q2017 Pearson Edcation, Ino.
Slide 28-113

QuickCheck 28.20

```
The red curve shows how the capacitor charges after the switch is closed at \(t=0\). Which curve shows the capacitor charging if the value of the resistor is reduced?
Smaller time constant
Same ultimate amount of charge
```


QuickCheck 28.20
17 Pearson Eadcaton, In:

```
\(\qquad\)

\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
A potential difference \(\Delta V\) between the ends of a conductor with
A potential difference \(\Delta V\) betw
resistance \(R\) creates a current
\[
I=\frac{\Delta V}{R}
\]

Important Concepts \(\qquad\)
\(\qquad\)
\(\qquad\)


Equivalent resistance
Groups of resistors can often be reduced to one equivalent resistor
Series resistors
\[
-\operatorname{un}_{R_{1}}-\operatorname{un}_{R_{2}}-\operatorname{un}_{R_{3}}
\]
Parallel resistors

Slide 28-122
\(R_{\text {eq }}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots\right)^{-1}\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Applications

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)```

