

1

Chapter 27 Preview

How does current flow? We'll develop a model of conduction:

- Connecting a wire to a battery causes a nonuniform surface charge distribution.
- The surface charges create an electric field inside the wire.
- The electric field pushes the sea of electrons through the metal.
- Electrons are the charge carriers in metals, but it is customary to treat current as the motion of *positive* charges.

Current is *I*. Current density J = I/A is the amount of current per square meter.

earson Education, Inc.

Slide 27

Reading Question 27.1

What quantity is represented by the symbol J?

Slide 27-

A. Resistivity

2017 Pearson Education, Inc.

- B. Conductivity
- C. Current density
- D. Complex impedance
- E. Johnston's constant

Reading Question 27.1

What quantity is represented by the symbol J?

A. Resistivity

17 Pearson Education, Inc.

- B. Conductivity
- C. Current density
- D. Complex impedance
- E. Johnston's constant

Reading Question 27.2

The electron drift speed in a typical current-carrying wire is

Slide 27-1

Slide 27-11

Slide 27-1

- A. Extremely slow ($\approx 10^{-4}$ m/s).
- B. Moderate (≈ 1 m/s).
- C. Very fast ($\approx 10^4$ m/s).
- D. Could be any of A, B, or C.
- E. No numerical values were provided.

2017 Pearson Education, Inc.

2017 Pearson Education, Inc.

Reading Question 27.2

The electron drift speed in a typical current-carrying wire is

A. Extremely slow ($\approx 10^{-4}$ m/s).

- B. Moderate ($\approx 1 \text{ m/s}$).
- C. Very fast ($\approx 10^4$ m/s).
- D. Could be any of A, B, or C.
- E. No numerical values were provided.

Reading Question 27.3

All other things being equal, current will be larger in a wire that has a larger value of

- A. Conductivity.
- B. Resistivity.
- C. The coefficient of current.
- D. Net charge.
- E. Potential.

17 Pearson Education, Inc.

Reading Question 27.3

All other things being equal, current will be larger in a wire that has a larger value of

A. Conductivity.

- B. Resistivity.
- C. The coefficient of current.
- D. Net charge.
- E. Potential.

2017 Pearson Education, Inc.

Slide 27-14

Slide 27-1

Reading Question 27.4

The equation $I = \Delta V/R$ is called

- A. Ampère's law.
- B. Ohm's law.
- C. Faraday's law.
- D. Weber's law.

017 Pearson Education, Inc.

Chapter 27 Content, Examples, and QuickCheck Questions

Slide 27-17

Electric Current

2017 Pearson Education, Inc.

- How does a capacitor get discharged?
- Figure (a) shows a charged capacitor in equilibrium.
- Figure (b) shows a wire discharging the capacitor.
- As the capacitor is discharging, there is a *current* in the wire.

Electric Current

• When a current is flowing, the conductors are *not* in electrostatic equilibrium.

Charge Carriers

- The outer electrons of metal atoms are only weakly bound to the nuclei.
- In a metal, the outer electrons become detached from their parent nuclei to form a fluid-like sea of electrons that can move through the solid.
- Electrons are the charge carriers in metals.

© 2017 Pearson Education, Inc

Slide 27-20

QuickCheck 27.1

A wire carries a current. If both the wire diameter and the electron drift speed are doubled, the electron current increases by a factor of

A. 2.

- B. 4.
- C. 6.
- D. 8.

2017 Pearson Education, Inc.

E. Some other value.

Slide 27-23

QuickCheck 27.1

A wire carries a current. If both the wire diameter and the electron drift speed are doubled, the electron current increases by a factor of

A. 2.

B. 4.

2017 Pearson Education, Inc.

C. 6.

D. 8. $i_e \propto A v_d$

E. Some other value.

The Electron Density

 In most metals, each atom 	TABLE 27.1Conduction-electrondensity in metals		
contributes one valence electron to the sea of	Metal	Electron density (m ⁻³)	
electrons.	Aluminum	$6.0 imes 10^{28}$	
 Thus the number of conduction electrons n_e is the same as the number of atoms per cubic meter. 	Copper	$8.5 imes10^{28}$	
	Iron	$8.5 imes10^{28}$	
	Gold	$5.9 imes 10^{28}$	
	Silver	5.8×10^{28}	
© 2017 Pearson Education, Inc.		Slide 27-25	

<section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text>

Discharging a Capacitor

- The wire is *already full* of electrons!
- We don't have to wait for electrons to move all the way through the wire from one plate to another.
- We just need to slightly rearrange the charges on the plates *and* in the wire.

on Education, Inc

Establishing the Electric Field in a Wire

- The nonuniform distribution of surface charges along a wire creates a net electric field *inside* the wire that points from the more positive end toward the more negative end of the wire.
- This is the internal electric field that pushes the electron current through the wire.

 $\vec{f}_{A} \text{ points away from A and } \vec{f}_{B} \text{ points}$ The four rings A through D
model the nonuniform charge distribution
to the right are and the points to be right.
The four rings A through D
model the nonuniform charge distribution
to the right are and the points to be right.
The four rings A through D
model the nonuniform charge distribution
to the right are and the points to be right.
The four rings A through D
model the nonuniform charge distribution
to the right are and the points to be right.
The four rings A through D
model the nonuniform charge distribution
to the right are and the points to be right.
The four rings A through D
model the nonuniform charge distribution
to the right are and the points to be right.
The four rings A through D
model the nonuniform charge distribution
to the right are and the points to be right.
The four rings A through D
model the nonuniform charge distribution
to the right are and the points to be right.
The four rings A through D
model the nonuniform charge distribution
to the right are and the points to be right.
The four rings A through D
model the nonuniform charge distribution
to the right are and the points to be right.
The four rings A through D
model the nonuniform charge distribution
to the right are and the points to the points

A Model of Conduction

- In the presence of an electric field, the electric force causes electrons to move along parabolic trajectories between collisions.
- Because of the curvature of the trajectories, there is a slow net motion in the "downhill" direction.

tion. Inc

Electron Current

017 Pearson Education, Inc.

son Education. Inc

• The electric field strength E in a wire of crosssection A causes an electron current:

- The electron density n_e and the mean time between collisions τ are properties of the metal.
- The electron current is directly proportional to the electric field strength.

Slide 27-38

Example 27.3 Collisions in a Copper Wire

EXAMPLE 27.3 Collisions in a copper wire

Example 27.1 found the electron current to be 2.7 × 10¹⁹ s⁻¹ for a 2.0-mm-diameter copper wire in which the electron drift speed is 1.0×10^{-4} m/s. If an internal electric field of 0.020 V/m is needed to sustain this current, a typical value, how many collisions per second, on average, do electrons in copper undergo? MODEL Use the model of conduction.

Current

 If Q is the total amount of charge that has moved past a point in a wire, we define the current I in the wire to be the rate of charge flow:

 $I = \frac{dQ}{dQ}$ current is the rate at which charge flows dt

- The SI unit for current is the coulomb per second, which is called the **ampere**.
- 1 ampere = 1 A = 1 C/s
- The conventional current I and the electron current $i_{\rm e}$ are related by $I = \frac{Q}{\Delta t} = \frac{eN_{\rm e}}{\Delta t} = ei_{\rm e}$

The Current Density in a Wire

• The current density *J* in a wire is the current per square meter of cross section:

 $J = \text{current density} \equiv \frac{I}{A} = n_{\text{e}}ev_{\text{d}}$

Slide 27-4

• The current density has units of A/m².

2017 Pearson Education, Inc.

XAMPLE 27.4	Finding the electron drift speed	
1.0 A current passes What are the current	through a 1.0-mm-diameter aluminum wire. density and the drift speed of the electrons	The electron drift speed is thus
the wire?	he drift speed from the current density. The	$v_d = \frac{1.3 \times 10^{-4}}{n_e e} = 1.3 \times 10^{-4} \text{ m/s} = 0.13 \text{ mm/s}$
urrent density is	ie anti speca nom the carten densky. The	where the conduction-electron density for aluminum was taken from Table 27.1.
$J = \frac{I}{A} = \frac{I}{\pi r^2}$	$= \frac{1.0 \text{ A}}{\pi (0.00050 \text{ m})^2} = 1.3 \times 10^6 \text{ A/m}^2$	ASSESS We earlier used 1.0×10^{-4} m/s as a typical electron drift speed. This example shows where that value comes from.
	n (coosto m)	speen rus example mons mere nan same comes rom.

11 fix symbol (4x) System_1300, 2/3/2016

Conservation of Current

- The figure shows two lightbulbs in the wire connecting two charged capacitor plates.
- As the capacitor discharges, the current through both bulbs is exactly the same!
- The rate of electrons *leaving* a lightbulb (or any other device) is exactly the same as the rate of electrons *entering* the lightbulb.

on Education, Inc.

Charge Conservation and Current • Due to conservation of charge, the current must be the same at all points in a current-carrying wire. The current in a wire is the same at all points. If = constant

Conductivity and Resistivity

The conductivity of a material is

2017 Pearson Education, Inc.

$$\sigma = \text{conductivity} = \frac{n_{\rm e}e^2\tau}{m}$$

- Conductivity, like density, characterizes a material as a whole.
- The current density *J* is related to the electric field *E* by $J = \sigma E$
- The resistivity tells us how reluctantly the electrons move in response to an electric field:

 $\rho = \text{resistivity} = \frac{1}{\sigma} = \frac{m}{n_e e^2 \tau}$

QuickCheck 27.7
Both segments of the wire are made of the same metal. Current
$$I_1$$
 flows into segment 1 from the left.
How does current I_1 in segment 1 compare to current I_2 in segment 2?
A. $I_1 > I_2$
B. $I_1 = I_2$
C. $I_1 < I_2$
D. There's not enough information to compare them.

QuickCheck 27.9

Both segments of the wire are made of the same metal. Current I_1 flows into segment 1 from the left. How does the electric field E_1 in segment 1 compare to the electric field E_2 in segment 2? A. $E_1 > E_2$

- C. $E_1 < E_2$
- D. Both are zero because metal is a conductor.
- E. There's not enough information to compare them.

2

Slide 27-6

2017 Pearson Education, Inc.

TABLE 27.2 Resistivity and conductivity of conducting materials		
Material	Resistivity (Ωm)	Conductivity $(\Omega^{-1}m^{-1})$
Aluminum	$2.8 imes 10^{-8}$	3.5×10^{7}
Copper	$1.7 imes 10^{-8}$	6.0×10^{7}
Gold	$2.4 imes 10^{-8}$	$4.1 imes 10^7$
Iron	$9.7 imes 10^{-8}$	1.0×10^7
Silver	$1.6 imes 10^{-8}$	6.2×10^{7}
Tungsten	$5.6 imes 10^{-8}$	1.8×10^7
Nichrome*	$1.5 imes 10^{-6}$	6.7×10^{5}
Carbon	3.5×10^{-5}	2.9×10^4

<section-header><section-header><section-header><section-header><section-header><text><text><text><text><text>

Superconductivity

- In 1911, the Dutch physicist Kamerlingh Onnes discovered that certain materials suddenly and dramatically lose all resistance to current when cooled below a certain temperature.
- This complete loss of resistance at low temperatures is called superconductivity.

© 2017 Pearson Education, Inc.

Superconductors have unusual magnetic properties. Here a small permanent magnet levitates above a disk of the high temperature superconductor $YBa_2Cu_3O_7$ that has been cooled to liquid-nitrogen temperature.

Resistance and Ohm's Law

The figure shows a section of a conductor in which an electric field \vec{E} is creating The potential difference creates an electric field inside the conductor current I by pushing the and causes charges to flow through it. charge carriers. V_{-} ΔV V_{-} The field strength is $E = \frac{\Delta V}{\Lambda} = \frac{\Delta V}{\Lambda}$ Δs L Ē Ι The current density is $J = I/A = E/\rho$ L Equipotential surfaces So the current is related to ΔV by are perpendicular to the electric field. $I = \frac{A}{\rho L} \Delta V$ on Education, Inc. Slide 27-6

Slide 27-68

Resistance and Ohm's Law

- The current through a conductor is proportional to the potential difference between its ends.
- We define the **resistance** *R* of a long, thin conductor of length L and cross-sectional area A to be aI

$$R = \frac{\rho L}{A}$$

- The SI unit of resistance is the ohm.
- 1 ohm = 1 Ω = 1 V/A

2017 Pearson Education, Inc

The current through a conductor is determined by the potential difference ΔV along its length:

> $I = \frac{\Delta V}{R}$ (Ohm's law)

23

Batteries and Current

- A battery is a source of potential difference ΔV_{bat}.
- The battery creates a potential difference between the ends of the wire.
- The potential difference in the wire creates an electric field in the wire.
- The electric field pushes a current *I* through the wire.
- The current in the wire is $I = \Delta V_{\rm wire}/R$

2017 Pearson Education, Inc.

017 Pearson Education, Inc.

Ohm's Law Ohmic materials Ohmic materials Ohmic materials Constant—or very nearly so—during use. The materials to which Ohm's law applies are called *ohmic*. The current through an ohmic material is directly proportional to the potential difference; doubling the potential difference doubles the current. Metal and other conductors are ohmic devices.

Nonohmic Materials

- Some materials and devices are *nonohmic*, meaning that the current through the device is *not* directly proportional to the potential difference.
- Diodes, batteries, and capacitors are all nonohmic devices.

Battery-Wire-Resistor-Wire Circuit

- The figure shows a resistor connected to a battery with currentcarrying wires.
- Current must be conserved; hence the current *I* through the resistor is the same as the current in each wire.
- The next two slides show how the electric potential varies through the circuit.
 D017 Parson Educator. Inc.

Example 27.7 A Battery and a Resistor

rson Education, Inc.

EXAMPLE 27.7 A battery and a resistor What resistor would have a 15 mA current if connected across the terminals of a 9.0 V battery? MODEL Assume the resistor is connected to the battery with ideal wires.

SOLVE Connecting the resistor to the battery with ideal wires makes $\Delta V_{\rm resist} = \Delta V_{\rm bat} = 9.0$ V. From Ohm's law, the resistance giving a 15 mA current is

 $R = \frac{\Delta V_{\text{resist}}}{I} = \frac{9.0 \text{ V}}{0.015 \text{ A}} = 600 \text{ }\Omega$

ASSESS Currents of a few mA and resistances of a few hundred ohms are quite typical of real circuits.

General Principles	
Conservation of Charge The current is the same at any two points in a wire. At a junction, $\sum I_m \equiv \sum I_{out}$ This is Kirchhoff's junction law .	
W 2017 Pearson Education, Inc.	Slide 27-82

General Prir	nciples	
	Electron current $i_e = rate of electron flow$ $N_e = i_e \Delta t$ Conventional current $I = rate of charge flow = ei_e$ $Q = I \Delta t$ Current density J = I/A	
© 2017 Pearson Education, Inc.		Slide 27-83

Importan	t Concepts	
	Sea of electrons Conduction electrons move freely around the positive ions that form the atomic britice	
	Conduction An electric field causes a slow drift at speed v ₄ to be superimposed on the rapid but random thermal motions of the electrons. Collisions of electrons with the ions transfer energy to the atoms.	
	This makes the wire warm and lightbulbs glow. More collisions mean a higher resistivity ρ and a lower conductivity σ .	
© 2017 Pearson Education, Inc.		Slide 27-84

Important Concepts

17 Pearson Education, Inc.

```
The drift speed is v_a = \frac{e\tau}{m} E, where \tau is the mean time between collisions.
The electron current is related to the drift speed by
i_e = n_e A v_a where n_e is the electron density.
```

```
Important Concepts

An electric field E in a conductor causes a current density

J = n_e v_a = \sigma E, where the conductivity is

\sigma = \frac{n_e^2 \pi}{m}

The resistivity is \rho = 1/\sigma.
```

Applications	
Resistors A potential differ of a wire creates The electric field of decreasing pot The size of the c I where $R = \frac{\rho L}{A}$ is This is Ohm's la	ence ΔV_{wine} between the ends an electric field inside the wire: $E_{wine} = \frac{\Delta V_{wine}}{L}$ causes a current in the direction ential. urrent is $= \frac{\Delta V_{wine}}{R}$ s the wire's resistance.
@ 2017 Pearson Education, Inc.	Slide 27-87