
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

IN THIS CHAPTER, you will learn to use the electric potential and electric potential energy. \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chapter 25 Preview

How is potential represented? Electric potential is a fairly abstract idea, so it will be important to visualize how the electric potential varies in space. One way of doing so is with equipotential surfaces. These are mathematical surfaces, not physical surfaces, with the same value of the potential V at every point.

Chapter 25 Preview	
How is electric potential used? A charged particle q in an electric potential V has electric potential energy $U=q V$. - Charged particles accelerate as they move through a potential difference. - Mechanical energy is conserved: $K_{\mathrm{f}}+q V_{\mathrm{f}}=K_{\mathrm{i}}+q V_{\mathrm{i}}$ «LOOKING BACK Section 10.4 Energy conservation	
	Slide 25.7

Chapter 25 Preview
Why is energy important in electricity?
Energy allows things to happen. You want your lights to light, your
computer to compute, and your music to play. All these require
energy-electric energy. This is the first of two chapters that
explore electric energy and its connection to electric forces and
fields. You'll then be prepared to understand electric circuits-
which are all about how energy is transformed and transferred
from sources, such as batteries, to devices that utilize and
dissipate the energy.

Reading Question 25.1

The electric potential energy of a system of two point charges is proportional to \qquad
A. The distance between the two charges. \qquad
B. The square of the distance between the two charges.
C. The inverse of the distance between the two charges.
D. The inverse of the square of the distance between the two charges. \qquad

Reading Question 25.1

The electric potential energy of a system of two point charges is proportional to \qquad
A. The distance between the two charges. \qquad
B. The square of the distance between the two charges.
C. The inverse of the distance between the two charges.
D. The inverse of the square of the distance between the two charges.

Reading Question 25.2

What are the units of potential difference?
A. Amperes
B. Potentiometers
C. Farads
D. Volts \qquad
E. Henrys
©2017 Pearson Edxation, Ino
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reading Question 25.2

What are the units of potential difference?

A. Amperes
B. Potentiometers
C. Farads
D. Volts
E. Henrys
© 2017 Pearson Education Inc.
Slide 25-13
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reading Question 25.3

New units of the electric field were introduced in this chapter. They are
A. V / C
B. N / C
C. V / m
D. $\mathrm{J} / \mathrm{m}^{2}$
E. Ω / m
©2017 Pearson Education, Inc.
Slide 25-14

Reading Question 25.3

New units of the electric field were introduced in this chapter. They are
A. V / C
\qquad
B. N / C
C. V / m
D. $\mathrm{J} / \mathrm{m}^{2}$ \qquad
E. Ω / m

2017 Pearson Edxation, Ino.

Reading Question 25.4

Which of the following statements about equipotential surfaces is true?
A. Tangent lines to equipotential surfaces are always parallel to the electric field vectors.
B. Equipotential surfaces are surfaces that have the same value of potential energy at every point.
C. Equipotential surfaces are surfaces that have the same value of potential at every point.
D. Equipotential surfaces are always parallel planes.
E. Equipotential surfaces are real physical surfaces that exist in space.
© 2017 Peasson Edcation, Inc.
Slide 25-16

Reading Question 25.4

Which of the following statements about equipotential surfaces is true?
A. Tangent lines to equipotential surfaces are always parallel to the electric field vectors.
B. Equipotential surfaces are surfaces that have the same value of potential energy at every point.
C. Equipotential surfaces are surfaces that have the same value of potential at every point.
D. Equipotential surfaces are always parallel planes.
E. Equipotential surfaces are real physical surfaces that exist in space.
©2017 Pearson Education, lio.
Slide 25-17

Reading Question 25.5

The electric potential inside a capacitor
A. Is constant.
B. Increases linearly from the negative to the positive plate.
C. Decreases linearly from the negative to the positive plate.
D. Decreases inversely with distance from the negative plate.
E. Decreases inversely with the square of the distance from the negative plate.

Reading Question 25.5

The electric potential inside a capacitor
A. Is constant.
B. Increases linearly from the negative to the positive plate.
C. Decreases linearly from the negative to the positive plate.
D. Decreases inversely with distance from the negative plate.
E. Decreases inversely with the square of the distance from the negative plate.
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Energy

- The kinetic energy of a system, K, is the sum of the kinetic energies $K_{i}=1 / 2 m_{i} v_{i}^{2}$ of all the particles in the system. \qquad
- The potential energy of a system, U, is the interaction energy of the system.
- The change in potential energy, ΔU, is -1 times the work done by the interaction forces:

$$
\Delta U=-W_{\text {interaction }}(\mathrm{i} \rightarrow \mathrm{f})
$$

- If all of the forces involved are conservative forces (such as gravity or the electric force) then the total energy $K+U$ is conserved; it does not change with time.
2017 Pearson Edxation, Ino

A Gravitational Analogy

- Every conservative force is associated with a potential energy.
- In the case of gravity, the work done is
$W_{\text {grav }}=m g y_{\mathrm{i}}-m g y_{\mathrm{f}}$
- The change in gravitational potential energy is $\Delta U_{\text {grav }}=-W_{\text {grav }}$ where

The net force on the particle is down. It gains kinetic energy (i.e., speeds up) as it loses potential energy.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
U_{\mathrm{grav}}=U_{0}+m g y
$$

Slide 25-23

QuickCheck 25.1

Two rocks have equal mass. Which has more gravitational potential energy?

\qquad
\qquad
\qquad
A. Rock A
B. Rock B
C. They have the same potential energy.
D. Both have zero potential energy.

QuickCheck 25.1

Two rocks have equal mass. Which has more gravitational potential energy?

A. Rock A
\qquad
B. Rock B
C. They have the same potential energy.
D. Both have zero potential energy.

A Uniform Electric Field

- A positive charge q inside a capacitor speeds up as it "falls" toward the negative plate.
- There is a constant force $F=q E$ in the direction of the displacement.
- The work done is

$$
W_{\text {elec }}=q E s_{\mathrm{i}}-q E s_{\mathrm{f}}
$$

- The change in electric potential energy is
 where

The particle is "falling" in the direction of \vec{E}

$$
U_{\text {elec }}=U_{0}+q E s
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QuickCheck 25.2

Two positive charges are equal. Which has more electric potential energy?
A. Charge A
B. Charge B

\qquad
\qquad
C. They have the same potential energy.
D. Both have zero potential energy.

Electric Potential Energy in a Uniform Field

- A positive charge inside a capacitor speeds up and gains kinetic energy as it "falls" toward the negative plate. - The charge is losing potential energy as it gains kinetic energy.	The electric field does work on the particle.
$U_{\text {clec }}=U_{0}+q E s$	0 The particle is "falling" in the direction of \vec{E}.
	Slide 25

Electric Potential Energy in a Uniform Field

- For a positive charge, U decreases and K increases as the charge moves toward the negative plate.
" A positive charge moving opposite the field direction is
\qquad going "uphill," slowing as it transforms kinetic energy into electric potential energy. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Electric Potential Energy in a Uniform Field

- A negative charged particle has negative potential energy.
- U increases (becomes less negative) as the negative charge moves toward the negative plate.
" A negative charge moving in the field direction is going "uphill," transforming $K \rightarrow U$ as it slows.

©2017 Pearson Edvacaton, Inc.

Electric Potential Energy in a Uniform Field

- The figure shows the energy
diagram for a positively charged particle in a uniform electric field.
- The potential energy increases linearly with distance, but the total mechanical energy $E_{\text {mech }}$ is fixed.

©2017 Pearson Edxation, Ino. Slide $25-32$

QuickCheck 25.3

Two negative charges are equal. Which has more electric potential energy?
A. Charge A
B. Charge B
C. They have the same potential energy.
D. Both have zero potential energy.

QuickCheck 25.3

Two negative charges are equal. Which has more electric potential energy?

A. Charge A
B. Charge B
C. They have the same potential energy.
D. Both have zero potential energy.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Potential Energy of Two Point Charges

- Consider two point charges, q_{1} and q_{2}, separated by a distance r. The electric potential energy is

$$
U_{\text {elec }}=\frac{K q_{1} q_{2}}{r}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r} \quad \text { (two point charges) }
$$

\qquad

- This is explicitly the energy of the system, not the energy of just q_{1} or q_{2}.
- Note that the potential energy of two charged particles approaches zero as $r \rightarrow \infty$.

Slide 25-38

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Potential Energy of Two Point Charges

- Two opposite charges are shot apart from one another with equal and opposite momenta.
- Their total energy is $E_{\text {mech }}<0$.
- They gradually slow down until the distance separating them is $r_{\text {max }}$.

- This is their maximum separation.

$$
U_{\text {elec }}=\frac{K q_{1} q_{2}}{x}
$$

© 2017 Pearson Edxation, Inc.
Slide 25-40
\qquad

QuickCheck 25.5

A positive and a negative charge are released from rest in vacuum. They move toward each other. As they do,

A. A positive potential energy becomes more positive.
B. A positive potential energy becomes less positive.
C. A negative potential energy becomes more negative.
D. A negative potential energy becomes less negative. \qquad
E. A positive potential energy becomes a negative potential energy. \qquad

$$
U_{\text {elce }}=\frac{K q_{1} q_{2}}{r} \text { Opposite signs, so } U \text { is Negative. } U \text { increases in magnitude as } r \text { decreases. }
$$

The Electric Force Is a Conservative Force

- Any path away from q_{1} can be approximated using circular arcs and radial lines.

- All the work is done along the radial line segments, which is equivalent to a straight line from ito f .
- Therefore the work done by the electric force depends only on initial and final position, not the path followed.

Example 25.2 Approaching a Charged Sphere

EXAMPLE 25.2 Approaching a charged sphere
A proton is fired from far away at a $1.0-\mathrm{mm}$-diameter glass sphere that has been charged to +100 nC . What initial speed must the that has been charged to +100 nC . What initial
MODEL Energy is conserved. The glass sphere can be modeled as a charged particle, so the potential energy is that of two point charges. The glass is so much more massive than the proton that it remains at rest as the proton moves. The proton starts "far away," which we interpret as sufficiently far to make $U_{\mathrm{i}} \approx 0$.

Q2017 Pearson Edacation, Inc.

Example 25.2 Approaching a Charged Sphere

EXAMPLE 25.2 Approaching a charged sphere
\qquad
VISUALIZE FIGURE 25.10 shows the before-and-after pictorial representation. To "just reach" the glass sphere means that the proton comes to rest, $v_{\mathrm{f}}=0$, as it reaches $r_{\mathrm{f}}=0.50 \mathrm{~mm}$, the radius of the sphere.

Example 25.2 Approaching a Charged Sphere	
EXAMPLE 25.2 Approaching a charged sphere solve Conservation of energy $K_{\mathrm{f}}+U_{\mathrm{f}}=K_{\mathrm{i}}+U_{\mathrm{i}}$ is $0+\frac{K q_{p} q_{\text {phere }}}{r}=\frac{1}{2} m v_{i}^{2}+0$ The proton charge is $q_{\mathrm{p}}=e$. With this, we can solve for the proton's initial speed: $v_{\mathrm{i}}=\sqrt{\frac{2 K e q_{\text {sphes }}}{m r_{\mathrm{f}}}}=1.86 \times 10^{7} \mathrm{~m} / \mathrm{s}$	
	Silde 25-46

Example 25.3 Escape Speed	
	EXAMPLE 25.3 An interaction between two elementary particles causes an electron and a positron (a positive electron) to be shot out back to back with equal speed. What minimum speed must acch have when they are 100 fm apart in order to escape each other? MODEL Energy is conserved. The particles end "far apart," which we interpret as sufficiently far to make $U_{\mathrm{f}} \approx 0$.

Example 25.3 Escape Speed
visualize figure 25.11 shows the before-and-after pictorial
representation. The minimum speed to escape is the speed that
allows the particles to reach $r_{\mathrm{f}}=\infty$ with $v_{\mathrm{f}}=0$.
\qquad
\qquad
\qquad

2017 Paasson Edacation, Ino
\qquad

Example 25.3 Escape Speed	
EXAMPLE 25.3Escape speed SOLVE $U_{\text {clec }}$ is the potential energy of the electron + positron system. Similarly, K is the total kinetic energy of the system. The electron and the positron, with equal masses and equal speeds, have equal kinetic energies. Conservation of energy $K_{\mathrm{f}}+U_{\mathrm{f}}=K_{\mathrm{i}}+U_{\mathrm{i}}$ is $0+0+0=\frac{1}{2} m v_{\mathrm{i}}^{2}+\frac{1}{2} m v_{\mathrm{i}}^{2}+\frac{K q_{c} q_{\mathrm{p}}}{r_{\mathrm{i}}}=m v_{\mathrm{i}}^{2}-\frac{K e^{2}}{r_{\mathrm{i}}}$ Using $r_{i}=100 \mathrm{fm}=1.0 \times 10^{-13} \mathrm{~m}$, we can calculate the minimum initial speed to be $v_{\mathrm{i}}=\sqrt{\frac{K e^{2}}{m r_{\mathrm{i}}}}=5.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$	
	Slide 25-49

The Potential Energy of Multiple Point Charges

- Consider more than two point charges. The potential energy is the sum of the potential energies due to all pairs of charges:

$$
U_{\text {elec }}=\sum_{i<j} \frac{K q_{i} q_{j}}{r_{i j}}
$$

where $r_{i j}$ is the distance between q_{i} and q_{j}.

- The summation contains the $i<j$ restriction to ensure that each pair of charges is counted only once.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 25.4 Launching an Electron

EXAMPLE 25.4 Launching an electron

Three electrons are spaced 1.0 mm apart along a vertical line. The outer two electrons are fixed in position.
a. Is the center electron at a point of stable or unstable equilibrium?
b. If the center electron is displaced horizontally by a small distance,
what will its speed be when it is very far away?
MODEL Energy is conserved. The outer two electrons don't move, so we don't need to include the potential energy of their interaction.
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 25.4 Launching an Electron

EXAMPLE 25.4 Launching an electron
SOLVE a. The center electron is in equilibrium exactly in the center \qquad
because the two electric forces on it balance. But if it moves a because the two electric forces on it balance. But if it moves
little to the right or left, no matter how little, then the horizontal components of the forces from both outer electrons will push the center electron farther away. This is an unstable equilibrium for horizontal displacements, like being on the top of a hill.

Example 25.4 Launching an Electron

EXAMPLE 25.4 Launching an electron
SOLVE b. A small displacement will cause the electron to move away \qquad If the displacement is only infinitesimal, the initial conditions are
$\left(r_{12}\right)_{\mathrm{i}}=\left(r_{23}\right)_{\mathrm{i}}=1.0 \mathrm{~mm}$ and $v_{\mathrm{i}}=0$. "Far away" is interpreted as
$r_{\mathrm{f}} \rightarrow \infty$, where $U_{\mathrm{f}} \approx 0$. There are now two terms in the potential \qquad energy, so conservation of energy $K_{\mathrm{f}}+U_{\mathrm{f}}=K_{\mathrm{i}}+U_{\mathrm{i}}$ gives
\qquad

$$
=\left[\frac{K e^{2}}{\left(r_{12}\right)_{i}}+\frac{K e^{2}}{\left(r_{23}\right)_{i}}\right]
$$

This is easily solved to give

$$
v_{\mathrm{f}}=\sqrt{\frac{2}{m}\left[\frac{K e^{2}}{\left(r_{12}\right)_{\mathrm{i}}}+\frac{K e^{2}}{\left(r_{23}\right)_{\mathrm{i}}}\right]}=1000 \mathrm{~m} / \mathrm{s}
$$

The Potential Energy of a Dipole

- The potential energy of a dipole is $\phi=0^{\circ}$ minimum at where the dipole is aligned with the electric field.
A frictionless dipole with mechanical energy $E_{\text {mect }}$ will oscillate back and forth between turning points on either side of $\phi=0^{\circ}$

$$
U_{\text {dipole }}=-p E \cos \phi=-\vec{p} \cdot \vec{E}
$$

2017 Pasason Edacaion lime
\qquad
\qquad
\qquad
\qquad
\qquad
The change in electric potential energy of the system
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 25.5 Rotating a Molecule

EXAMPLE 25.5 Rotating a molecule
The water molecule is a permanent electric dipole with dipole moment $6.2 \times 10^{-30} \mathrm{Cm}$. A water molecule is aligned in an electric field with field strength $1.0 \times 10^{7} \mathrm{~N} / \mathrm{C}$. How much energy is needed field with field strength 1.0×1
MODEL The molecule is at the point of minimum energy. It won't spontaneously rotate 90°. However, an external force that supplies energy, such as a collision with another molecule, can cause the water molecule to rotate.

The Electric Potential

- We define the electric potential V (or, for brevity, just the potential) as

$$
V \equiv \frac{U_{q+\text { sources }}}{q}
$$

- The unit of electric potential is the joule per coulomb, which is called the volt \mathbf{V} :

1 volt $=1 \mathrm{~V} \equiv 1 \mathrm{~J} / \mathrm{C}$

This battery is a source of electric potential. The electric potential difference between the + and - sides is 1.5 V .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Electric Potential

QuickCheck 25.6

A proton is released from rest at the dot.	- +50 V
Afterward, the proton	

A. Remains at the dot.
B. Moves upward with steady speed.
C. Moves upward with an increasing speed. \qquad
D. Moves downward with a steady speed.
E. Moves downward with an increasing speed. \qquad

2017 Pearson Edxaction, Ino.

QuickCheck 25.6
A proton is released from rest at the dot. Afterward, the proton
A. Remains at the dot.
B. Moves upward with steady speed.
C. Moves upward with an increasing speed.
D. Moves downward with a steady speed.
E. Moves downward with an increasing speed.
© 2017 Pearson Education, Inc.
Slide 25-64

QuickCheck 25.7

If a positive charge is released from rest, it moves in the direction of
A. A stronger electric field.
B. A weaker electric field.
C. Higher electric potential.
D. Lower electric potential.
E. Both B and D.

QuickCheck 25.7

If a positive charge is released from rest, it moves in the direction of
A. A stronger electric field.
B. A weaker electric field.
C. Higher electric potential.
D. Lower electric potential.
E. Both B and D.

Problem-Solving Strategy: Conservation of Energy in Charge Interactions

PROBLEM-SOLVING STRATEGY 25.1

Conservation of energy in charge interactions

MODEL Define the system. If possible, model it as an isolated system for which mechanical energy is conserved.
visualize Draw a before-and-after pictorial representation. Define symbols, list known values, and identify what you're trying to find.

Problem-Solving Strategy: Conservation of

 Energy in Charge Interactions
PROBLEM-SOLVING STRATEGY 25.1

Conservation of energy in charge interactions

SOLve The mathematical representation is based on the law of conservation of mechanical energy:

$$
K_{\mathrm{f}}+q V_{\mathrm{f}}=K_{\mathrm{i}}+q V_{\mathrm{i}}
$$

- Is the electric potential given in the problem statement? If not, you'll need to use a known potential, such as that of a point charge, or calculate the potential using the procedure given later, in Problem-Solving Strategy 25.2.
K_{i} and K_{f} are the sums of the kinetic energies of all moving particles.
- Some problems may need additional conservation laws, such as conservation of charge or conservation of momentum.
ASSESS Check that your result has correct units and significant figures, is reasonable, and answers the question.

Example 25.6 Moving Through a Potential Difference

EXAMPLE 25.6 Moving through a potential difference

A proton with a speed of $2.0 \times 10^{5} \mathrm{~m} / \mathrm{s}$ enters a region of space in which there is an electric potential. What is the proton's speed after it moves through a potential difference of 100 V ? What will be the final speed if the proton is replaced by an electron?
MODEL The system is the charge plus the unseen source charges creating the potential. This is an isolated system, so mechanical energy is conserved.

Example 25.6 Moving Through a Potential Difference

EXAMPLE 25.6 Moving through a potential difference

VISUALIZE FIGURE 25.17 is a before-and-after pictorial representation of a charged particle moving through a potential difference. A positive charge slows down as it moves into a region of higher potential $(K \rightarrow U)$. A negative charge speeds up $(U \rightarrow K)$.

Potential difference
$\Delta V=V_{\mathrm{f}}-V_{\mathrm{i}}$
Q2017 Paason Edacation, Ino.

Example 25.6 Moving Through a Potential Difference

\qquad
\qquad
\qquad
solve The potential energy of charge q is $U=q V$. Conservation
of energy, now expressed in terms of the electric potential V, is
$K_{\mathrm{f}}+q V_{\mathrm{f}}=K_{\mathrm{i}}+q V_{\mathrm{i}}$, or

$$
K_{\mathrm{f}}=K_{\mathrm{i}}-q \Delta V
$$

where $\Delta V=V_{\mathrm{f}}-V_{\mathrm{i}}$ is the potential difference through which the \qquad particle moves. In terms of the speeds, energy conservation is

$$
\frac{1}{2} m v_{f}^{2}=\frac{1}{2} m v_{\mathrm{i}}^{2}-q \Delta V
$$

\qquad
We can solve this for the final speed:

$$
v_{\mathrm{f}}=\sqrt{v_{\mathrm{i}}^{2}-\frac{2 q}{m} \Delta V}
$$

Example 25.6 Moving Through a Potential Difference

EXAMPLE 25.6 Moving through a potential difference
\qquad
sOLVE For a proton, with $q=e$, the final speed is
$\left(v_{\mathrm{f}}\right)_{\mathrm{p}}=\sqrt{\left(2.0 \times 10^{5} \mathrm{~m} / \mathrm{s}\right)^{2}-\frac{2\left(1.60 \times 10^{-19} \mathrm{C}\right)(100 \mathrm{~V})}{1.67 \times 10^{-27} \mathrm{~kg}}}$
$=1.4 \times 10^{5} \mathrm{~m} / \mathrm{s}$ \qquad

An electron, though, with $q=-e$ and a different mass, reaches speed $\left(v_{\mathrm{f}}\right)_{\mathrm{c}}=5.9 \times 10^{6} \mathrm{~m} / \mathrm{s}$. \qquad
\qquad
\qquad

Example 25.6 Moving Through a Potential Difference

	EXAMPLE 25.6 Moving through a potential difference ASSESS The proton slowed down and the electron sped up, as we expected. Note that the electric potential already existed in space due to other charges that are not explicitly seen in the problem. The electron and proton have nothing to do with creating the potential. Instead, they respond to the potential by having potential energy $U=q V$.			
	Before:		After:	

The Electric Field Inside a Parallel-Plate Capacitor

- This is a review of Chapter 23.

$$
\begin{aligned}
\vec{E} & =\left(\frac{\eta}{\epsilon_{0}}, \text { from positive toward negative }\right) \\
& =(500 \mathrm{~N} / \mathrm{C}, \text { from right to left })
\end{aligned}
$$

O2017 Peasone Eadateon noc.
Slide $25-74$
where s is the distance from the negative electrode.

- The potential difference ΔV_{C}, or "voltage" between the two capacitor plates is

$$
\Delta V_{\mathrm{C}}=V_{+}-V_{-}=E d
$$

\qquad
\qquad
\qquad

Units of Electric Field

- If we know a capacitor's voltage ΔV and the distance between the plates d, then the electric field strength within the capacitor is

$$
E=\frac{\Delta V_{\mathrm{C}}}{d}
$$

- This implies that the units of electric field are volts per meter, or V/m.
- Previously, we have been using electric field units of newtons per coulomb.
- In fact, as you can show as a homework problem, these units are equivalent to each other:

$$
1 \mathrm{~N} / \mathrm{C}=1 \mathrm{~V} / \mathrm{m}
$$

©2017 Pearson Edxation, Inc.

The Electric Potential Inside a Parallel-Plate Capacitor

The Electric Potential Inside a Parallel-Plate Capacitor

QuickCheck 25.8

Two protons, one after the other, are launched from point 1 with the same speed. They follow the two trajectories shown. The protons' speeds at
 points 2 and 3 are related by
A. $v_{2}>v_{3}$
B. $v_{2}=v_{3}$
C. $v_{2}<v_{3}$
D. Not enough information to compare their speeds.
© 2017 Pearson Education, Inc.
Slide 25-79

The Parallel-Plate Capacitor

- The figure shows the contour lines of the electric potential and the electric field vectors inside a

The Zero Point of Electric Potential

- Where you choose $V=0$ is arbitrary. The three contour maps below represent the same physical situation.

The Electric Potential of a Point Charge

- The electric potential due to a point charge q is

$$
V=\frac{U_{q^{\prime}+q}}{q^{\prime}}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r} \quad \text { (electric potential of a point charge) }
$$

- The potential extends through all of space, showing the influence of charge q, but it weakens with distance as $1 / r$.
- This expression for V assumes that we have chosen $V=0$ to be at $r=\infty$.

QuickCheck 25.9

What is the ratio $V_{\mathrm{B}} / V_{\mathrm{A}}$ of the electric potentials at the two points?
A. 9
B. 3
C. $1 / 3$
D. $1 / 9$
E. Undefined without knowing the charge
©2017 Pearson Educatoon, Ino.
Slide $25-85$

QuickCheck 25.9

What is the ratio $V_{\mathrm{B}} / V_{\mathrm{A}}$ of the electric potentials at the two points?
A. 9
B. 3
C. $1 / 3$ Potential of a point charge decreases
D. $1 / 9$
E. Undefined without knowing the charge
©2017 Pearson Edxacation, Inc
Slide $25-86$

The Electric Potential of a Point Charge

\qquad

QuickCheck 25.10

An electron follows the

trajectory shown from ito f.
At point f,
A. $\quad v_{f}>v_{i}$
B. $v_{f}=v_{i}$
C. $v_{f}<v_{i}$

D. Not enough information to compare the speeds at these points.

Increasing PE (becoming less negative) so decreasing KE
©2017 Pearson Edxation, Inc.
Slide 25-91

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 25.8 A Proton and a Charged Sphere

EXAMPLE 25.8 A proton and a charged sphere
SOLVE b. A sphere charged to $V_{0}=+1000 \mathrm{~V}$ is positively charged.
The proton will be repelled by this charge and move away from the
sphere. The conservation of energy equation $K_{\mathrm{f}}+e V_{\mathrm{f}}=K_{\mathrm{i}}+e V_{\mathrm{i}}$, with Equation 25.34 for the potential of a sphere, is

$$
\frac{1}{2} m v_{\mathrm{f}}^{2}+\frac{e R}{r_{\mathrm{f}}} V_{0}=\frac{1}{2} m v_{\mathrm{i}}^{2}+\frac{e R}{r_{\mathrm{i}}} V_{0}
$$

The proton starts from the surface of the sphere, $r_{\mathrm{i}}=R$, with $v_{\mathrm{i}}=0$. When the proton is 1.0 cm from the surface of the sphere, it has

$$
r_{\mathrm{f}}=1.0 \mathrm{~cm}+R=1.5 \mathrm{~cm} \text {. Using these, we can solve for } v_{\mathrm{f}} \text { : }
$$

$$
v_{\mathrm{f}}=\sqrt{\frac{2 e V_{0}}{m}\left(1-\frac{R}{r_{\mathrm{f}}}\right)}=3.6 \times 10^{5} \mathrm{~m} / \mathrm{s}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 25.8 A Proton and a Charged Sphere

EXAMPLE 25.8 A proton and a charged sphere

ASSESS This example illustrates how the ideas of electric potential and potential energy work together, yet they are not the same thing.
\qquad
\qquad

© 2017 Pearson Education, Inc.
Slide $25-95$

The Electric Potential of Many Charges

- The electric potential V at a point in space is the sum of the potentials due to each charge:

$$
V=\sum_{i} \frac{1}{4 \pi \epsilon_{0}} \frac{q_{i}}{r_{i}}
$$

where r_{i} is the distance from charge q_{i} to the point in space where the potential is being calculated.

- The electric potential, like the electric field, obeys the principle of superposition.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QuickCheck 25.11
At the midpoint between these
two equal but opposite charges,
A. $\vec{E}=\overrightarrow{0} ; V=0$
B. $\vec{E} \overrightarrow{=} ; V>0$
C. $\vec{E}=\overrightarrow{0} ; V<0$
D. \vec{E} point right; $V=0$
E. \vec{E} points left; $V=0$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QuickCheck 25.11
At the midpoint between these
two equal but opposite charges,
A. $\vec{E}=\overrightarrow{0} ; V=0$
B. $\vec{E}=\overrightarrow{0} ; V>0$
C. $\vec{E}=\overrightarrow{0} ; V<0$
D. $\overrightarrow{\boldsymbol{E}}$ points right; $V=\mathbf{0}$
E. \vec{E} points left; $V=0$

\qquad
\qquad
\qquad
\qquad
E. More than one of these.

Example 25.9 The Potential of Two Charges

EXAMPLE 25.9 The potential of two charges
ASSESS The potential is a scalar, so we found the net potential
by adding two numbers. We don't need any angles or components
to calculate the potential.

Problem-Solving Strategy: The Electric
Potential of a Continuous Distribution of Charge

PROBLEM-SOLVING STRATEGY 25.2

The electric potential of a continuous distribution of charge MODEL Model the charge distribution as a simple shape.
visualize For the pictorial representation:
= Draw a picture, establish a coordinate system, and identify the point P at which you want to calculate the electric potential.
Divide the total charge Q into small pieces of charge ΔQ, using shapes for which
you already know how to determine V. This division is often, but not always, into
point charges.

- Identify distances that need to be calculated.
©2017 Pearson Edxation, Inc.
Slide 25-106

Problem-Solving Strategy: The Electric

Potential of a Continuous Distribution of Charge

problem-solving strategy 25.2

The electric potential of a continuous distribution of charge
solve The mathematical representation is $V=\Sigma V_{i}$.
= Use superposition to form an algebraic expression for the potential at P. Let
the (x, y, z) coordinates of the point remain as variables.

- Replace the small charge ΔQ with an equivalent expression involving a charge
density and a coordinate, such as $d x$. This is the critical step in making the
transition from a sum to an integral because you need a coordinate to serve as the integration variable.
- All distances must be expressed in terms of the coordinates.
- Let the sum become an integral. The integration limits will depend on the coordinate system you have chosen.
Assess Check that your result is consistent with any limits for which you know what the potential should be.

Example 25.10 The Potential of a Ring of Charge

EXAMPLE 25.10 The potential of a ring of charge
A thin, uniformly charged ring of radius R has total charge Q. Find the potential at distance z on the axis of the ring.
MODEL Because the ring is thin, we'll assume the charge lies along a circle of radius R.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 25.10 The Potential of a Ring of Charge

EXAMPLE 25.10 The potential of a ring of charge \qquad
VISUALIZE FIGURE 25.30 on the next page illustrates the problemsolving strategy. We've chosen a coordinate system in which the ring lies in the $x y$-plane and point P is on the z-axis. We've then divided the ring into N small segments of charge ΔQ, each of which can be modeled as a point charge. The distance r_{i} between segment i and point P is

$$
r_{i}=\sqrt{R^{2}+z^{2}}
$$

Note that r_{i} is a constant distance, the same for every charge segment.

Example 25.10 The Potential of a Ring of Charge

Slide $25-110$

Example 25.10 The Potential of a Ring of Charge

EXAMPLE 25.10 The potential of a ring of charge
SOLVE The potential V at P is the sum of the potentials due to each segment of charge:

$$
V=\sum_{i=1}^{N} V_{i}=\sum_{i=1}^{N} \frac{1}{4 \pi \epsilon_{0}} \frac{\Delta Q}{r_{i}}=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{\sqrt{R^{2}+z^{2}}} \sum_{i=1}^{N} \Delta Q
$$

We were able to bring all terms involving z to the front because z is a constant as far as the summation is concerned. Surprisingly, we don't need to convert the sum to an integral to complete this calculation. The sum of all the ΔQ charge segments around the ring is simply the ring's total charge, $\Sigma(\Delta Q)=Q$; hence the electric potential on the axis of a charged ring is

$$
V_{\text {ring on axis }}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{\sqrt{R^{2}+z^{2}}}
$$

© 2017 Pearson Education, Inc.

Example 25.10 The Potential of a Ring of Charge

EXAMPLE 25.10 The potential of a ring of charge
ASSESS From far away, the ring appears as a point charge Q in the distance. Thus we expect the potential of the ring to be that of a point charge when $z \gg R$. You can see that $V_{\text {ring }} \approx Q / 4 \pi \epsilon_{0} z$ when $z \gg R$, which is, indeed, the potential of a point charge Q.
©2017 Pearson Educatoon, Ino.
Slide 25-112

\qquad
\qquad
\qquad

General Principles
Sources of Potential
The electric potential V, like the electric field, is created by source
charges. Two major tools for calculating the potential are:

- The potential of a point charge, $V=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r}$
- The principle of superposition

For multiple point charges
Use superposition: $V=V_{1}+V_{2}+V_{3}+$
For a continuous distribution of charge
MODEL Model as a simple charge distribution.
visualize Draw a pictorial representation.
Establish a coordinate system

- Identify where the potential will be calculated.
solve Set up a sum.
- Divide the charge into point-like ΔQ

Find the potential due to each ΔQ.
Use the charge density $(\lambda$ or η) to replace ΔQ with an integration
coordinate, then sum by integrating.
V is easier to calculate than \vec{E} because potential is a scalar
2017 Pearson Edxation, Ino

General Principles

Electric Potential Energy
If charge q is placed in an electric potential V, the system's electric
potential energy (interaction energy) is

Point charges and dipoles
The electric potential energy of two point charges is
$U_{q_{1}+q_{2}}=\frac{K q_{1} q_{2}}{r}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r}$
The potential energy of two opposite charges is negative
The potential energy in an electric field of an electric dipole with
dipole moment \vec{p} is

$$
U_{\text {dipale }}=-p E \cos \theta=-\vec{p} \cdot \vec{E}
$$

Solving conservation of energy problems
MODEL Model as an isolated system.
visualize Draw a before-and-after representation.
solve Mechanical energy is conserved.

- Mathematically $K_{\mathrm{f}}+q V_{\mathrm{f}}=K_{\mathrm{i}}+q V_{\mathrm{i}}$
- K is the sum of the kinetic energies of all particles.
- V is the potential due to the source charges.
©2017 Pearson Education, Inc
Slide 25-115

Applications

$$
\begin{aligned}
& \text { Sphere of charge Q } \\
& \text { Same as a point charge } \\
& \text { if } r \geq R \\
& \text { Parallel-plate capacitor } \\
& V=E s \text { s, where } s \text { is measured } \\
& \text { from the negative plate. The } \\
& \text { electric field inside is } \\
& \qquad E=\frac{\Delta V_{\mathrm{C}}}{d} \\
& \text { Units } \\
& \text { Electric potential: } 1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C} \\
& \text { Electric field: } 1 \mathrm{~V} / \mathrm{m}=1 \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

\qquad
-

