PHYSICS ©

FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E

Chapter 24 Lecture

RANDALL D. KNIGHT

IN THIS CHAPTER, you will learn about and apply
Gauss’s law.
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hapter 24 Preview

What is Gauss’s law?

Gauss's law is a general statement about
the nature of electric fields. It is more
fundamental than Coulomb's law and is the . l
first of what we will later call Maxwell’s
equations, the governing equations of
electricity and magnetism.

Gauss's law says that the electric flux
through a closed surface is proportional
to the amount of charge @;, enclosed
within the surface. This seemingly abstract
statement will be the basis of a powerful
strategy for finding the electric fields

of charge distributions that have a high
degree of symmetry.

< LOOKING BACK Section 22.5 The electric
field of a point charge Section 23.2 Electric
field lines
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Chapter 24 Preview

What good is symmetry?

For charge distributions with a high degree
of symmetry, the symmetry of the electric
field must match the symmetry of the
charge distribution. Important symmetries
are planar symmetry, cylindrical symmetry,
and spherical symmetry. The concept of
symmetry plays an important role in math
and science.

Cylindrical
symmetry
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Chapter 24 Preview

What is electric flux?

The amount of electric field passing
through a surface is called the electric flux.
Electric flux is analogous to the amount of
air or water flowing through a loop. You
will learn to calculate the flux through open
and closed surfaces.

<C LOOKING BACK Section 9.3 Vector dot
products
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Chapter 24 Preview

How is Gauss’s law used?

Gauss’s law is easier to use than Gaussian
surface\

superposition for finding the electric

field both inside and outside of charged
spheres, cylinders, and planes. To use
Gauss’s law, you calculate the electric flux
through a Gaussian surface surrounding
the charge. This will turn out to be much
easier than it sounds!
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Chapter 24 Preview

What can we learn about conductors?
Gauss's law can be used to establish several
properties of conductors in electrostatic
equilibrium. In particular:

w Any excess charge is all on the surface.

= The interior electric field is zero.

u The external field is perpendicular to the
surface.
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Chapter 24 Reading Questions
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Reading Question 24.1

The amount of electric field passing through a
surface is called

Electric flux.
Gauss’s Law.
Electricity.

Charge surface density.

moow»

None of the above.
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Reading Question 24.1

The amount of electric field passing through a
surface is called

W A. Electric flux.

Gauss’s Law.
Electricity.

Charge surface density.

moow

None of the above.
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Reading Question 24.2

Gauss’s law is useful for calculating electric
fields that are

Symmetric.
Uniform.
Due to point charges.

Oowe>

Due to continuous charges.
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Reading Question 24.2

Gauss’s law is useful for calculating electric
fields that are

W' A. Symmetric.
B. Uniform.
Due to point charges.
D. Due to continuous charges.

o
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Reading Question 24.3

Gauss’s law applies to

Lines.

Flat surfaces.
Spheres only.
Closed surfaces.

oo w>
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Reading Question 24.3

Gauss’s law applies to

A. Lines.

B. Flat surfaces.

C. Spheres only.

/' D. Closed surfaces.
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Reading Question 24.4

The electric field inside a conductor in electrostatic
equilibrium is

Uniform.
Zero.
Radial.
Symmetric.

oo w>
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Reading Question 24.4

The electric field inside a conductor in electrostatic
equilibrium is

A. Uniform.
'B. Zero.

C. Radial.

D. Symmetric.
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Chapter 24 Content, Examples, and
QuickCheck Questions
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Electric Field of a Charged Cylinder

= Suppose we knew only two things about electric fields:

1. The field points away from positive charges, toward
negative charges.

2. An electric field exerts a force on a charged particle.

= From this information alone, what can we deduce about
the electric field of an infinitely long charged cylinder?

S R R O A O O R O

Infinitely long
charged cylinder

= All we know is that this charge is positive, and that it
has cylindrical symmetry.
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Cylindrical Symmetry

= An infinitely long charged cylinder &8 i
is symmetric with respect to

» Translation parallel to the Translation
cylinder axis. S pdn
+ Rotation by an angle about

the cylinder axis. m oo
oy

 Reflections in any plane
containing or perpendicular
to the cylinder axis. ——— ey
containing
= The symmetry of the electric the s
field must match the symmetry e
of the charge distribution. b ) S pemeni
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Electric Field of a Charged Cylinder

= Could the field look like the figure below? (Imagine this
picture rotated about the axis.)

= The next slide shows what the field would look like
reflected in a plane perpendicular to the axis (left to right).
Is this a possible electric field of an infinitely
long charged cylinder? Suppose the charge and
the field are reflected in a plane perpendicular

to the axis. Reflection plane .__ !

/E

Tt

Ny 2

©2017 Pearson Education, Inc. Slide 24-20

N
\.

e e e

-+

T

+
m
+

Z
N

e
%

1
1
1
1
T+
1
1
1
1

Electric Field of a Charged Cylinder

= This reflection, which does not make any change in the
charge distribution itself, does change the electric field.
= Therefore, the electric field of a cylindrically symmetric
charge distribution cannot have a component parallel
to the cylinder axis.
The charge distribution is not changed by the
reflection, but the field is. This field doesn’t
maich the symmetry of the cylinder, so the
cy[indur\ field can’t look like this.

NONONTN
i # Ll
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Electric Field of a Charged Cylinder

= Could the field look like the figure below? (Here we're
looking down the axis of the cylinder.)

= The next slide shows what the field would look like
reflected in a plane containing the axis (left to right).

End view ! __-Reflection plane

of cylinder ,

- The charge distribution
is not changed by
—> reflecting it in a plane
E containing the axis.
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Electric Field of a Charged Cylinder

= This reflection, which does not make any change in the
charge distribution itself, does change the electric field.

= Therefore, the electric field of a cylindrically symmetric
charge distribution cannot have a component tangent
to the circular cross section.

.~ This field is changed.
T # It doesn’t match
\ the symmetry of
the cylinder, so the

/ field can’t look
P l\ like this.
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Electric Field of a Charged Cylinder

= Based on symmetry arguments alone, an infinitely long
charged cylinder must have a radial electric field, as
shown below.

= This is the one electric field shape that matches the
symmetry of the charge distribution.

Side view = End view

o
+
4
4
4
"
H
A
4
4
4
"
"
L
A
L
&)

[T

©2017 Pearson Education, Inc. Slide 24-24

1/23/2019




Planar Symmetry

= There are three fundamental Flamar gy
symmetries; the first is planar
symmetry.

Basic
symmetry:

= Planar symmetry involves
symmetry with respect to:

« Translation parallel to the Sl
plane.

+ Rotation about any line . EXETEITEXEEEEED
perpendicular to the plane. «mek:

example:

+ Reflection in the plane.

Infinite parallel-plate eapacitor

©2017 Pearson Education, Inc. Slide 24-25

Cylindrical Symmetry

= There are three fundamental Cylindrical symmetry
symmetries; the second is
cylindrical symmetry.

= Cylindrical symmetry involves
symmetry with respect to

7

. Infini

- Translation parallel to Tiner
the axis.

10 :
from the axis.

* Rotation about the axis.
+ Reflection in any plane

containing or perpendicular
to the axis. Coaxial cylinders
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Spherical Symmetry

= There are three fundamental Spherical symmetry
symmetries; the third is
spherical symmetry.

= Spherical symmetry involves
symmetry with respect to

The field is radial
toward or away

» Rotation about any axis that
passes through the center
point.

* Reflection in any plane
containing the center point.

Concentric spheres

from the center
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The Concept of Flux

= Consider a box surrounding a region of space.

= We can't see into the box, but we know there is an
outward-pointing electric field passing through every
surface.

Since electric fields

point away from The field is coming E
positive charges, out of each face of
we can conclude the box. There must
that the box must hc {}l p;.\ill\c charge ! i
. o in the box. -~ -
contain net positive /',, N
electric charge. #[.+ =727 ™ Opaque
l box
©2017 Pearson Edeaton Side 2428

The Concept of Flux

= Consider a box surrounding a region of space.

= We can't see into the box, but we know there is an
inward-pointing electric field passing through every
surface.

Since electric fields The field is going E

point toward negative into each face of the
box. There must be

charges, we can a negative charge in u d
conclude that the the box. ! J
box must contain net a2
negative electric charge. “E
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The Concept of Flux

= Consider a box surrounding a region of space.

= We can’t see into the box, but we know that the electric
field points into the box on the left, and an equal electric
field points out of the box on the right.

Since this external

electric field is not A field passing
ltered by the contents 012" the b0
a y implies there’s _—____—>
of the box, the box no net charge ! E
must contain zero in the box. — [ -
. | -
net electric charge. g &
_ B —
- Sigo2430
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Gaussian Surfaces

(a) . A Gaussian surface
=" is a closed surface
around a charge.
= A closed surface through
which an electric field
passes is called a
Gaussian surface.
= This is an imaginary,
(b) A two-dimensional th t I rraCe
g 1 S et e mathematical surface,
o a spherical Gaussian H
\,4 4 SirSace L eddler o not a physical surface.
/ [ F\
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Gaussian Surfaces

= A Gaussian surface is most useful when it matches the
shape and symmetry of the field.

Figure (a) below shows a cylindrical Gaussian surface.

Figure (b) simplifies the drawing by showing two-dimensional
end and side views.

= The electric field is everywhere perpendicular to the side wall
and no field passes through the top and bottom surfaces.

(a) (b) -
E
— —— — -] \ > /
- e = = - [ \
E <«—u4 E E Side E +— Top —
- — /( >\
E
Cylindrical Gaussian Two-dimensional cross sections
surface of a Gaussian surface
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Gaussian Surfaces

= Not every surface is A Gaussian surface
useful for learning that doesn’t match ",
the symmetry of the F
about Charge' electric field isn’t
= Consider the very useful.
spherical surface in
the figure.

= This is a Gaussian surface, and the protruding electric
field tells us there’s a positive charge inside.

= |t might be a point charge located on the left side, but we
can’t really say.

= A Gaussian surface that doesn’t match the symmetry of
the charge distribution isn’t terribly useful.
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The Basic Definition of Flux

= Imagine holding a rectangular wire loop of area A in
front of a fan.

= The volume of air flowing through the loop each second
depends on the angle between the loop and the
direction of flow.

= The flow is maximum
through a loop that is
perpendicular to the
airflow.

The air flowing through the
loop is maximum when 6 = 0°.
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The Basic Definition of Flux

A

n
Unit vector A

= Imagine holding Da——— loop\ )

a rectangular wire
loop of area A in
front of a fan.

= No air goes through
the same loop if
it lies parallel to
the flow.

No air flows through
the loop when 6 = 90°.
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The Basic Definition of Flux

The loop is
= Imagine holding lillcd‘by‘ angle 6.
a rectangular wire :
loop of area A in
front of a fan.

n

The volume of air
flowing through the
loop each second
depends on the angle
0 between the loop
normal and the
velocity of the air:

v, = v cos# is the component of the
air velocity perpendicular to the loop.

volume of air per second (m%s) = v, A = vAcosf
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The Electric Flux

= The electric flux ®, measures the amount of electric
field passing through a surface of area A whose
normal to the surface is tilted at angle 6 from the field.

$,. = E A= FEAcosf

E, = E cos#f is the component

of the electric field that passes

through the surface.
)

Normal to
surface

=

Surface

*“- 0 is the angle -
of area A

between 7 and E.
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QuickCheck 24.1

The electric flux through the shaded surface is

0
200 N m/C = -
400 N m?%C

Flux isn’t defined
for an open 100 N/C 2m
surface.

2m

oo w>»
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QuickCheck 24.1

The electric flux through the shaded surface is

A 0
B. 200N m/C —
' C. 400N m?C

D. Fluxisn’t defined
for an open 100N/
surface.

2m
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1/23/2019

13



QuickCheck 24.2

The electric flux through the shaded surface is

0

200 N m/C

400 N m?/C

Some other value. oo

oo w>
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QuickCheck 24.2

The electric flux through the shaded surface is

VA, 0

B. 200N m/C

C. 400N m?/C

D. Some other value.

©2017 Pearson Education, Inc.
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QuickCheck 24.3

The electric flux through the shaded surface is

0

400c0s20° N m¥C
400c0s70° N m%C
400 N m%/C

Some other value.

100NC

moow»
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QuickCheck 24.3

The electric flux through the shaded surface is

A0

B. 400c0s20°N m?/C
v C. 400cos70°N m*C

D. 400 N m?/C

E. Some other value.

100NC
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The Area Vector

* Let's define an area vector A = An to be a vector in
the direction of n, perpendicular to the surface, with a
magnitude A equal to the area of the surface.

= Vector A has units of m2.

= . —
Area vector A is A
perpendicular to .
the surface. The ... i
magnitude of A is
the surface area A.

Area A Area A
©2017 Pearson Education, Inc. Slide 24-44

The Electric Flux

= An electric field passes through a surface of area A.
= The electric flux can be defined as the dot-product:

&, = E-A (electric flux of a constant electric field)

The electric flux
through the surface
is b, =E-A.
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Example 24.1 The Electric Flux Inside a

Parallel-Plate Capacitor

EXAMPLE 24.1 ‘ The electric flux inside a parallel-
plate capacitor

Two 100 cm’ parallel electrodes are spaced 2.0 cm apart. One is
charged to +5.0 nC, the other to —5.0 nC. A 1.0 cm X 1.0 cm sur-
face between the electrodes is tilted to where its normal makes a
45° angle with the electric field. What is the electric flux through
this surface?

MODEL Assume the surface is located near the center of the ca-

pacitor where the electric field is uniform. The electric flux doesn’t
depend on the shape of the surface.

©2017 Pearson Education, Inc.
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Example 24.1 The Electric Flux Inside a

Parallel-Plate Capacitor

EXAMPLE 24.1 ‘ The electric flux inside a parallel-
plate capacitor

visuaLIZE The surface is square, rather than circular, but other-
wise the situation looks like Figure 24.13b.

The electric flux
through the surface
; - >
is . =E-A.

Slide 24-47

Example 24.1 The Electric Flux Inside a

Parallel-Plate Capacitor

EXAMPLE 24.1 | The electric flux inside a parallel-
plate capacitor
SOLVE In Chapter 23, we found the electric field inside a parallel-
plate capacitor to be
Fe [ 5.0x107°C
T €A (885X 10 CYNm?)(1.0 X 102 m?)
=5.65% 10°N/C

A 1.0.em X 1,0 em surface has A = 1.0 X 10~ m?, The electric flux
through this surface is
&, = E-A = EAcosf
= (5.65 % 10°N/C)(1.0 X 107* m?) cos 45°
=40Nm*C
Assess The units of electric flux are the product of electric field
and area units: Nm?/C.

©2017 Pearson Education, Inc
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The Electric Flux of a Nonuniform Electric Field

Consider a surface in a nonuniform electric field.
Divide the surface into many small pieces of area JA.
The electric flux through each small piece is

1/23/2019

- -
8, = £, (54), @b,
. Piece j
= The electric flux . f

through the whole @A), y
surface is the B

surface integral: AP

P, = E-dd Piece i The total area A z':m be divided
into many small pieces of area 5A.

E may be different at each piece.
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The Flux Through a Curved Surface

Consider a curved surface in an electric field.
Divide the surface into many small pieces of area JA.
The electric flux through each small piece is

8d,; = E, (54),

The electric flux

through the whole
surface is the
surface integral: The flux through

(5A),

this little piece is
-+ = SP. = E. (&
@, = B4 8D, = E;+ (5A).
sufface Curved surface
of total area A
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Electric Fields Tangent to a Surface

= Consider an electric field that is everywhere tangent,
or parallel, to a curved surface.

» E-dAis zero at every point on the surface, becausef:
is perpendicular todA at every point.

= Thus @, =0.

Area A

E is everywhere tangent
to the surface. The flux
is zero.

©2017 Pearson Education, Inc. Slide 24-51
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Electric Fields Perpendicular to a Surface

= Consider an electric
field that is everywhere
perpendicular to the
surface and has the
same magnitude E at ek -
every point.

and has the same
magnitude at each point

In this case The flux is EA

O, = J E-dA = IEdA=E J dA = EA

surface surface surface
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Tactics: Evaluating Surface Integrals

Evaluating surface integrals

© If the electric field is everywhere tangent to a surface, the electric flux
through the surface is ®, = 0.

@ If the electric field is everywhere perpendicular to a surface and has the
same magnitude E at every point, the electric flux through the surface is
P, = EA.
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QuickCheck 24.4

Surfaces A and B have
the same shape and the
same area. Which has
the larger electric flux?

Surface A has more flux.
Surface B has more flux.
The fluxes are equal.

oo w>»

It's impossible to say without knowing
more about the electric field.

©2017 Pearson Education, Inc.

Slide 24-54

1/23/2019

18



QuickCheck 24.4

Surfaces A and B have
the same shape and the
same area. Which has
the larger electric flux?

v A. Surface A has more flux.
B. Surface B has more flux.

C. The fluxes are equal.

D. It'simpossible to say without knowing
more about the electric field.
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QuickCheck 24.5

Which surface, A or B, has

the larger electric flux?

Surface A has more flux.
Surface B has more flux.
The fluxes are equal.

oo w>»

It's impossible to say without knowing
more about the electric field.
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QuickCheck 24.5

Which surface, A or B, has

the larger electric flux?

A. Surface A has more flux.
B. Surface B has more flux.
/' C. The fluxes are equal.

D. It's impossible to say without knowing
more about the electric field.

©2017 Pearson Education, Inc. Slide 24-57
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The Electric Flux Through a Closed Surface

= The electric flux through a closed surface is
@~ -

= The electric flux is still the summation of the fluxes
through a vast number of tiny pieces, pieces that now
cover a closed surface.

= NOTE: For a closed surface, we use the convention
that the area vector dA is defined to always point
toward the outside.

©2017 Pearson Education, Inc.
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Tactics: Finding the Flux Through a Closed

Surface

Finding the flux through a closed surface

© Choose a Gaussian surface made up of pieces that are everywhere tangent to
the electric field or everywhere perpendicular to the electric field.
@ Use Tactics Box 24.1 to evaluate the surface integrals over these surfaces,
then add the results. -
Exercise 10

©2017 Pearson Education, Inc. Slide 24-59

QuickCheck 24.6

These are cross sections of 3D closed surfaces. The top and
bottom surfaces, which are flat, are in front of and behind the
screen. The electric field is everywhere parallel to the screen.
Which closed surface or surfaces have zero electric flux?

Surface A @
Surface B 10 N/C 10 NIC
Surface C lone 10N/C

Surfaces B and C

All three surfaces ™ ©
10 NIC 10 N/C 10N/C 10 N/IC

10N/C
10 N/C

Slide 24-60

moow>
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QuickCheck 24.6

These are cross sections of 3D closed surfaces. The top and
bottom surfaces, which are flat, are in front of and behind the
screen. The electric field is everywhere parallel to the screen.
Which closed surface or surfaces have zero electric flux?

W/ A. Surface A @

B. Surface B SNy LONIC,

C SurfaceC 10N/C 10 N/C

D. Surfaces Band C

E. Allthree surfaces ©

1oN/C 10 N/C 10 N/C 10 N/C
10N/C
10 N/C

©2017 Pearson Education, Inc. Slide 24-61
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Electric Flux of a Point Charge

= The flux integral thI’OUgh a Cross section of a Gaussian sphere of

radius . This is a mathematical surface,

spherical Gaussian surface not a physical surface.
centered on a single point iF

] E
charge is
&= Bl = A, o c,mge(k r-4
I \
= The surface area of a sphere )/ ><‘
iS Agphere = 4772, T
= Using Coulomb’s law for E, il
we find The electric field is e where
q 2 q perpendicular to the surface and has
q>c = m darrs = E_ the same magnitude at every point.
0 0
©2017 Pearson Educaton, nc Slide 24-62

Electric Flux of a Point C

= The electric flux through a
spherical surface centered
on a single positive point
charge is @, = g/¢,.

This depends on the
amount of charge, but not
on the radius of the
sphere.

For a point charge, electric
flux is independent of r.

Every field line passes through the smaller
and the larger sphere. The flux through the
two spheres is the same

©2017 Pearson Education, Inc. Slide 24-63
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Electric Flux of a Point C e

= The electric flux through
any arbitrary closed
surface surrounding a
point charge ¢ may be

The total flux through the
spherical pieces must be
the same as through a
single sphere:

@eziﬁg-c@:i
€p

©2017 Pearson Education, Inc.

broken up into spherical  Gaussian surfoce
and radial pieces. of arbitrary 5“"‘1“\,

The spherical pieces are
centered on the charge.

Point charge

The radial pieces are along lines
extending out from the charge.
There’s no flux through these.

Slide 24-64

Electric Flux of a Point C

= The electric flux through
any arbitrary closed surface
entirely outside a point
charge ¢ may also be
broken up into spherical
and radial pieces.

The total flux through

spherical pieces must
cancel each other.

The net electric flux is
zero through a closed
surface that does not
contain any net charge.

©2017 Pearson Education, Inc.

T
Two-dimensional

the concave and convex ... section

A is parallel to E, so

“A_the flux is positive
B 5

A is opposite to E, s
the flux is negative.

The fluxes through these surf
equal but opposite. The net flux is zero
Slide 24-65

are
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Electric Flux of Multiple Charges

Consider an arbitrary
Gaussian surface and a

The contribution to the total
flux for any charge ¢; inside
the surface is g;/e,.

The contribution for any
charge outside the surface
is zero.

Defining Q,, to be the sum
of all the charge inside the
surface, we find ®_ = Q,, /¢

©2017 Pearson Education, Inc.

group of charges q,, ¢», g, ...

The fluxes due to charges
outside the surface are all zero.

Z

N T\Vo-dllllt‘fllslcl!ﬂ|
%, cross section of a
\  Gaussian surface

\‘T\“ Total charge
/ inside is ,,.

®.

The fluxes due to charges
inside the surface add.

Slide 24-66
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Gauss’s Law

= For any closed surface enclosing total charge Q.
the net electric flux through the surface is

in?

d)c:?gé.d':Q_'“
€

= This result for the electric flux is known as Gauss’s
Law.
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QuickCheck 24.7

15
The electric field is constant
over each face of the box. 20
The box contains e
10— | - 15
/(: =29
- 15 ield strengths
A. Positive charge. e
B. Negative charge.
C. No net charge. 20
D. Not enough information to tell.
©2017 Pearson Education, Inc. Slide 24-68

QuickCheck 24.7

15

The electric field is constant
over each face of the box. 20
The box contains T T
10— : —> 15
e -
15 Field strengths
v’ A. Positive charge. Net flux is outward. e
B. Negative charge.

20

o

No net charge.
D. Not enough information to tell.

©2017 Pearson Education, Inc. Slide 24-69
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QuickCheck 24.8

Which spherical Gaussian surface
has the larger electric flux?

Surface A
Surface B
They have the same flux.

e )@

©oow>

Not enough information to tell.
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QuickCheck 24.8

Which spherical Gaussian surface
has the larger electric flux?

A. Surface A
'B. Surface B
C. They have the same flux.

e )@

D. Not enough information to tell.

Flux depends only on the
enclosed charge, not the radius.
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QuickCheck 24.9

Spherical Gaussian surfaces of

equal radius R surround two

spheres of equal charge Q. A
Which Gaussian surface has

the larger electric field?

Surface A

Surface B B
They have the same electric field.

Not enough information to tell.

oo w >
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QuickCheck 24.9

Spherical Gaussian surfaces of

equal radius R surround two

spheres of equal charge Q. A
Which Gaussian surface has

the larger electric field?

A. Surface A

B. Surface B B,
' C. They have the same electric field.

D. Not enough information to tell.

©2017 Pearson Education, Inc. Slide 24-73

Using Gauss’s Law

1. Gauss’s law applies only to a closed surface, called
a Gaussian surface.

2. A Gaussian surface is not a physical surface. It need
not coincide with the boundary of any physical object
(although it could if we wished). It is an imaginary,
mathematical surface in the space surrounding one
or more charges.

3. We can't find the electric field from Gauss’s law
alone. We need to apply Gauss’s law in situations
where, from symmetry and superposition, we already
can guess the shape of the field.
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Problem-Solving Strategy: Gauss’s Law

Gauss’s law

mMopeL Model the charge distribution as a distribution with symmetry.

visuaLize Draw a picture of the charge distribution.
Determine the symmetry of its electric field.
Choose and draw a Gaussian surface with the same symmetry.
You need not enclose all the charge within the Gaussian surface.
Be sure every part of the Gaussian surface is either tangent to or perpendicular
to the electric field.

soLve The mathematical representation is based on Gauss's law
e

€

®,=j€§-dﬁ=

Use Tactics Boxes 24.1 and 24.2 to evaluate the surface integral.

Assess Check that your result has correct units and significant figures, is reasonable,
and answers the question. )
Exercise 19
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QuickCheck 24.10

A spherical Gaussian surface
surrounds an electric dipole.
The net enclosed charge is
zero. Which is true?

A. The electric field is
zero everywhere on
the Gaussian surface.

B. The electric field is not
zero everywhere on the Gaussian surface.

C. Whether or not the field is zero on the surface
depends on where the dipole is inside the sphere.

1/23/2019
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QuickCheck 24.10

A spherical Gaussian surface -
surrounds an electric dipole.
The net enclosed charge is
zero. Which is true? e
LY

A. The electric field is
zero everywhere on ——
the Gaussian surface.

/' B. The electric field is not
zero everywhere on the Gaussian surface.

C. Whether or not the field is zero on the surface
depends on where the dipole is inside the sphere.

The flux is zero, but that doesn’t require the field to be zero.
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QuickCheck 24.11

The electric flux is shown through
two Gaussian surfaces. In terms
of ¢, what are charges ¢, and ¢,?

A q1=2q:q,=¢q

B. ¢1=q:9,=2¢

C. a=2¢:9,=—q

D. q=2¢,9,="2q o
E. qi=a/259,=972 T
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QuickCheck 24.11

The electric flux is shown through
two Gaussian surfaces. In terms
of g, what are charges ¢, and ¢,?

A a1=2qq,=¢q
B. ¢1=4:9,=2q
V'C. ¢,=2¢:9,=—
D. ¢1=2¢:9,=-2¢ a
E. ¢1=92:9,=972 o
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Example 24.3 Outside a Sphere of Charge
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EXAMPLE 24.3 | Outside a sphere of charge

In Chapter 23 we asserted, without proof, that the electric field
outside a sphere of total charge Q is the same as the field of a point
charge Q at the center. Use Gauss’s law to prove this result.
MODEL The charge distribution within the sphere need not be uni-
form (i.e., the charge density might increase or decrease with r), but it
must have spherical symmetry in order for us to use Gauss’s law. We
will assume that it does.

Example 24.3 Outside a Sphere of Charge
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EXAMPLE 24.3 | Outside a sphere of charge

VISUALIZE FIGURE 24.23 shows a sphere of charge O and radius
R. We want to find E outside this sphere, for distances r > R. The
spherical symmetry of the charge distribution tells us that the electric
field must point radially outward from the sphere. Although Gauss’s
law is true for any surface surrounding the charged sphere, it is useful
only if we choose a Gaussian surface to match the spherical symmetry
of the charge distribution and the field. Thus a spherical surface of
radius r > R concentric with the charged sphere will be our Gaussian
surface. Because this surface surrounds the entire sphere of charge,
the enclosed charge is simply Q;, = Q.

1/23/2019
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Example 24.3 O

Gaussian
surface
\

" E is everywhere
perpendicular to
the surface.

Sphere of
total charge O
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Example 24.3 O

ide a Sphere of Charge

EXAMPLE 24.3 | Outside a sphere of charge

SOLVE Gauss’s law is

q):jﬂg.dzzgng

(3
€ €

To calculate the flux, notice that the electric field is everywhere
perpendicular to the spherical surface. And although we don’t know
the electric field magnitude E, spherical symmetry dictates that £
must have the same value at all points equally distant from the cen-
ter of the sphere.
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Example 24.3 Outside a Sphere of Charge

EXAMPLE 24.3 | Outside a sphere of charge

SOLVE Thus we have the simple result that the net flux through the
Gaussian surface is

D, = EAgpere = 4ur’E

where we used the fact that the surface area of a sphere is

Augpere = 4ar7°. With this result for the flux, Gauss’s law is
ang=L
€

Thus the electric field at distance r outside a sphere of charge is

1o

dmeg r?

Or in vector form, making use of the fact that E is radially outward,

= 1B 0%
Egusiae = =7
e, r*
where 7 is a radial unit vector.
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Example 24.3 Outside a Sphere of C

ge

EXAMPLE 24.3 ‘ Qutside a sphere of charge

AssEss The field is exactly that of a point charge Q, which is what
we wanted to show.

Gaussian
surfuce

Sphere of
total charge O
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Example 24.6 The Electric Field of a Plane of

Charge

EXAMPLE 24.6 | The electric field of a plane of charge

Use Gauss’s law to find the electric field of an infinite plane of
charge with surface charge density 7 (C/m?).

MODEL A uniformly charged flat electrode can be modeled as an
infinite plane of charge.
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Example 24.6 The Electric Field of a Plane of

Charge

EXAMPLE 24.6 | The electric field of a plane of charge

VISUALIZE FIGURE 24.27 on the next page shows a uniformly
charged plane with surface charge density 1. We will assume
that the plane extends infinitely far in all directions, although
we obviously have to show “edges” in our drawing. The planar
symmetry allows the electric field to point only straight toward
or away from the plane. With this in mind, choose as a Gaussian
surface a cylinder with length L and faces of area A centered on
the plane of charge. Although we’ve drawn them as circular, the
shape of the faces is not relevant.
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Example 24.6 The Electric Field of a Plane of
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Example 24.6 The Electric Field of a Plane of

Charge

EXAMPLE 24.6 | The electric field of a plane of charge

soOLVE The electric field is perpendicular to both faces of the
cylinder, so the total flux through both faces is @y, = 2EA. (The
fluxes add rather than cancel because the area vector A points
outward on each face.) There’s no flux through the wall of the
cylinder because the field vectors are tangent to the wall. Thus the
net flux is simply

O, = 2FA
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Example 24.6 The Electric Field of a Plane of

Charge

EXAMPLE 24.6 | The electric field of a plane of charge

SOLVE The charge inside the cylinder is the charge contained in
area A of the plane. This is

Qi =74
With these expressions for @, and &, Gauss’s law is
i _nA
d, =2FA= Q—: e
€& &

Thus the electric field of an infinite charged plane is

Epjine = 2,

This agrees with the result in Chapter 23.
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Example 24.6 The Electric Field of a Plane of

Charge

EXAMPLE 24.6 | The electric field of a plane of charge

Assess This is another example of a Gaussian surface enclosing
only some of the charge. Most of the plane’s charge is outside the
Gaussian surface and does not contribute to the flux, but it does
affect the shape of the field. We wouldn’t have planar symmetry,
with the electric field exactly perpendicular to the plane, without
all the rest of the charge on the plane.

1/23/2019
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QuickCheck 24.12

A cylindrical Gaussian surface
surrounds an infinite line of charge.
The flux @, through the two flat
ends of the cylinder is

A 0

B. 2X2arE /
C. 2Xmr’E

D. 2XrLE

E. It will require an integration to find out.
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QuickCheck 24.12

A cylindrical Gaussian surface
surrounds an infinite line of charge.
The flux @, through the two flat
ends of the cylinder is

vV'A. 0
. 2X2arE L

B
C. 2Xmr’E
D. 2XrLE
E. It will require an integration to find out.
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QuickCheck 24.13

The flux @, through the wall
of the cylinder is

A. 0

B. 2arLE
C. #r’LE
D. rLE

E

©2017 Pearson Education, Inc.

A cylindrical Gaussian surface
surrounds an infinite line of charge.

)~

It will require an integration to find out.

Slide 24-94
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QuickCheck 24.13

The flux @, through the wall
of the cylinder is

A. 0
/B. 2mwLE

C. #r’LE

D. rLE

©2017 Pearson Education, Inc.

A cylindrical Gaussian surface
surrounds an infinite line of charge.

E. It will require an integration to find out.

3
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Conductors in Electrostatic Equilibrium

The figure shows a
Gaussian surface just
inside a conductor’s
surface.

The electric field must be
zero at all points within the
conductor, or else the
electric field would cause
the charge carriers to
move and it wouldn’t be in
equilibrium.

= By Gauss’s Law, 0, =0

©2017 Pearson Education, Inc.

The electric field inside is zero.

The flux through the Gaussian surface
is zero. Hence all the excess charge
must be on the surface.

Slide 24-96
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Conductors in Electrostatic Equilibrium

Surface charge
and the conductor would
not be in electrostatic
equilibrium.
©2017 Pearson Education, Inc. Slide 24-97

The external electric

field right at the surface
of a conductor must be The electric field at the
perpendicular to that surface is pcrp%‘mliallm'
surface. to the surface.

If it were to have a
tangential component,

it would exert a force on
the surface charges and
cause a surface current,

Electric Field at the Surface of a Conductor
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A Gaussian surface extending
through the surface of a
conductor has a flux only Thie elesitc el 15 perpendiculi
through the outer face.

to the surface.

The net flux is
(De = AESurface = Qin/g()'

Here Q,, = #A, so the electric
field at the surface of a
conductor is

Gaussian
surface

“ Surface charge

4 =
density 7

F + + + + + +

-

n .
Eoiface = o perpendicular to surface
0

where 7 is the surface charge density of the conductor.

QuickCheck 24.14
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A point charge g is located distance r
from the center of a neutral metal
sphere. The electric field at the
center of the sphere is

<@

Neutral
metal

q

A.  dmeyr?
q

B. dme R?

_a

C. dmey(R—r?
D

0

E. Itdepends on what the metal is.

1/23/2019
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QuickCheck 24.14

A point charge g is located distance r
from the center of a neutral metal
sphere. The electric field at the
center of the sphere is

@
q
q Neutral
A, Admeyr 2 metal
q
B. dmeyR?
9

C. dmey(R—r)

v'D. 0

E. Itdepends on what the metal is.
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Conductors in Electrostatic Equilibrium

= The figure shows a charged 4 holiow completely
conductor with a hole inside.  enclosed by the conductor

Since the electric field is zero
inside the conductor, we must
conclude that Q,, = 0 for the
interior surface.

Furthermore, since there’s
no electric field inside the :
conductor and no charge The flux through the Gaussian surface is
inside the hole, the electric zero. There’s no net ch inside, hence
field in the hole’ must be zero no charge on this interior surface.
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Faraday Cages

= The use of a conducting box, or Faraday cage, to
exclude electric fields from a region of space is called
screening.
(a)  Parallel-plate capacitor (b) The conducting box has been polarized
g and has induced surface charges.
E o
1 —F
+ + i IL,
; 1%:
+ +—e~\l_; +/—v——7
= |
- [£=0]
+ = e } ey
' B =
I%:
= =}
We want to c,\::hldc the The electric field i.\‘pcrmndiculm‘
electric field from this region to all conducting surfaces
©2017 Pearson Educaton, Slide 24-102
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Conductors in Electrostatic Equilibrium

= The figure shows a

Charge q inside a hole The flux through the Gaussian surface is zero,
A hence there’s no net charge inside this surface.
within a neutral conductor.  There must be charze —q on the inside
surface to balance point charge g.

= Net charge —¢ moves to
the inner surface and net
charge +q is left behind
on the exterior surface.

_— Neutral
conductor

charge ¢

The outer surface must have charge +g
50 that the conductor remains neutral

©2017 Pearson Education, Inc.
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QuickCheck 24.15

Charge +3 nC is in a hollow cavity
Neutral @® +3nC
metal

inside a large chunk of metal that
is electrically neutral. The total
charge on the exterior surface

of the metal is

A. 0nC

B. +3nC

C. -3nC

D. Can'’t say without knowing the shape

and location of the hollow cavity.
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QuickCheck 24.15

Charge +3 nC is in a hollow cavity
inside a large chunk of metal that
is electrically neutral. The total
charge on the exterior surface

of the metal is

A. 0nC
V'B. +3nC
C. -3nC

D. Can'’t say without knowing the shape
and location of the hollow cavity.
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Tactics: Finding the Electric Field of a Conductor

in Electrostatic Equilibrium

Finding the electric field of a d rin electr
equilibrium

@ The electric field is zero at all points within the volume of the conductor.

@ Any excess charge resides entirely on the exterior surface.

© The external electric field at the surface of a charged conductor is perpen-
dicular to the surface and of magnitude n/e,, where 7 is the surface charge
density at that point.

© The electric field is zero inside any hole within a conductor unless there is a
charge in the hole.

Exercises 20-24
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Example 24.7 The Electric Field at the Surface

of a Charged Metal Sphere

EXAMPLE 24.7 ‘ The electric field at the surface of
a charged metal sphere

A 2.0-cm-diameter brass sphere has been given a charge of 2.0 nC.
What is the electric field strength at the surface?

MODEL Brass is a conductor. The excess charge resides on the
surface,

VISUALIZE The charge distribution has spherical symmetry. The
electric field points radially outward from the surface.
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Example 24.7 The Electric Field at the Surface

of a Charged Metal Sphere

EXAMPLE 24.7 ‘ The electric field at the surface of
a charged metal sphere

SOLVE We can solve this problem in two ways. One uses the fact

that a sphere, because of its complete symmetry, is the one shape

for which any excess charge will spread out to a uniform surface

charge density. Thus

20X 10°C X
=4 - qiziw:].ﬁgxlﬂﬁcfm'
Aghee  47R® 47(0.010 m)*

From Equation 24.20, we know the electric field at the surface
strength

1.59 X 10 C/m’
Euroe == — 220 g 107 NiC
€ 885x10"CYNm
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Example 24.7 The Electric Field at the Surface

of a Charged Metal Sphere

EXAMPLE 24.7 ‘ The electric field at the surface of
a charged metal sphere

soLvE Aliernatively, we could have used the result, obtained earlier in

the chapter, that the electric field strength outside a sphere of charge @

is Egyge = Ouf(dmegr®). But Q,, = ¢ and, at the surface, r = R.

Thus
| g 22y 20X 10°°C
Eotace = ==(0.0X1° Nm¥/C?) —=
s = o2 = N 0010 m)?
= 18X 10°N/C

As we can see, both methods lead to the same result.
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Chapter 24 Summary Slides
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General Principles

Gauss’s Law
For any closed surface enclosing net charge ,,, the net electric flux through the surface is

e %. e

€
The electric flux @, is the same for any closed surface enclosing charge Q..
To solve electric field problems with Gauss's law:

MODEL Model the charge distribution as one with symmetry.  SOLVE Apply Gauss’s law and

VISUALIZE Draw a picture of the charge distribution. Tactics Boxes 24.1 and 24.2 to
Draw a Gaussian surface with the same symmelry as the evaluate the surface integral
electric field, every part of which is either tangent to or AssSESS [s the result reasonable?

perpendicular to the electric field
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General Principles

©2017 Pearson Education, Inc.

Symmetry
The symmetry of the electric field must
match the symmetry of the
charge distribution.

In practice, ®, is computable only if
the symmetry of the Gaussian surface
matches the symmetry of the charge
distribution.
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Important Concept

©2017 Pearson Education, Inc.

Charge creates the electric field that is
responsible for the electric flux.

+®

O, is the sum of
charges. This charge
10 the flux.

“harges outside the surface
contribute to the clecric field, but
they don’t contribute to the flux.
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Important Concept
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Flux is the amount of electric field
passing through a surface of area A:

@, =
where 4 is the area vector.

For closed surfaces:
A net flux in or out indicates that
the surface encloses a net charge.

Field lines through but with no et
flux mean that the surface encloses
no net charge.
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Important Concept

Surface integrals calculate the flux by summing the fluxes
through many small pieces of the surface:

&, =S E-84
_.Jz-dz

Two important situations:
If the electric field is everywhere
tangent to the surface, then

®. =0
If the electric field is everywhere = /f/
perpendicular to the surface and has
the same strength E at all points, then

@, =EA
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Applications

Cond (e i

= The electric field is zero at all points within the conductor.

= Any excess charge resides entirely on the exlerior surface.

= The external electric ficld is perpendicular to the surface and of magnitude n/e,, where 7 is the surface charge
density.

= The electric field is zero inside any hole within a conductor unless there is a charge in the hole.

©2017 Pearson Education, Inc. Slide 24-116

1/23/2019

39



