
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

IN THIS CHAPTER, you will learn how to \qquad calculate and use the electric field.
orovreasene Eacateron we \qquad

Chapter 23 Preview

Where do electric fields come from?

Electric fields are created by charges. \qquad
Electric fields add. The field due to several point charges is the sum of the fields due to each charge.
Electric fields are vectors. Summing electric fields is vector addition.

- Two equal but opposite charges form an electric dipole.
- Electric fields can be represented

\qquad
\qquad
\qquad
by electric field vectors or electric
field lines.
« LOOKING BACK Section 22.5 The electric field of a point charge \qquad
\qquad

Chapter 23 Preview

What if the charge is continuous? For macroscopic charged objects, like rods or disks, we can think of the charge as having a continuous distribution.

- A charged object is characterized by its charge density-the charge per length, area, or volume.
- We'll divide objects into small point charge-like pieces ΔQ.
- The summation of their electric

\qquad fields will become an integral.
- We'll calculate the electric fields of charged rods, loops, disks, and planes.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Reading Question 23.1

What device provides a practical way to produce a uniform electric field? \qquad
\qquad
A. A long thin resistor
B. A Faraday cage \qquad
C. A parallel-plate capacitor
D. A toroidal inductor
E. An electric field uniformizer
© 2017 Pearson Edacation, linc.

Reading Question 23.1

What device provides a practical way to produce a uniform electric field? \qquad
A. A long thin resistor
B. A Faraday cage \qquad
C. A parallel-plate capacitor
D. A toroidal inductor
E. An electric field uniformizer

Q2017 Pearson Education, 1rc

Reading Question 23.2

For charged particles, what is the quantity q / m called?
A. Linear charge density
B. Charge-to-mass ratio
C. Charged mass density \qquad
D. Massive electric dipole
E. Quadrupole moment \qquad
\qquad

Q2017 Pearson Edacation, Ino

Reading Question 23.2

For charged particles, what is the quantity q / m called?
A. Linear charge density
B. Charge-to-mass ratio
C. Charged mass density \qquad
D. Massive electric dipole
E. Quadrupole moment \qquad
\qquad
© 2017 Pearson Education, 1re.

Reading Question 23.3

Which of these charge distributions did not have its electric field determined in Chapter 23?
A. A line of charge
B. A parallel-plate capacitor
C. A ring of charge
D. A plane of charge
E. They were all determined.
© 2017 Peaston Education, Inc
Slide 23-13

Reading Question 23.3

Which of these charge distributions did not have its electric field determined in Chapter 23?
A. A line of charge
B. A parallel-plate capacitor
C. A ring of charge
D. A plane of charge
E. They were all determined.
© 2017 Pearson Eucacaion, lic.

Reading Question 23.4

The worked examples of charged-particle motion are relevant to
A. A transistor.
B. A cathode ray tube.
C. Magnetic resonance imaging.
D. Cosmic rays. \qquad
E. Lasers.

Reading Question 23.4

The worked examples of charged-particle motion are relevant to
A. A transistor.
B. A cathode ray tube.
C. Magnetic resonance imaging.
D. Cosmic rays.
E. Lasers.

Q2017 Pearson Educaion, Ire

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Four Key Electric Fields: Slide 1 of 2

MODEL 23.1

Four key electric fields
A point charge:

- Small charged objects \qquad
\qquad
An infinitely long line of charge:
\qquad
$\vec{E}=\left(\frac{1}{4 \pi \epsilon_{0}} \frac{2|\lambda|}{r},\left\{\begin{array}{l}\text { away if }+ \\ \text { toward if }-\end{array}\right)\right.$

Q 2017 Pearson Eucuation, 1 Inc

The Electric Field		
The electric field was defined as $\vec{E}=\vec{F}_{\text {on } q} / q$ where $\vec{F}_{\text {on } q}$ is the electric force on test charge q.	TABLE 23.1 Typical electric field strengths	
	Field location	$\begin{aligned} & \text { Field strength } \\ & \text { (N/C) } \end{aligned}$
	Inside a currentcarrying wire	$10^{-3}-10^{-1}$
	Near the earth's surface	$10^{2}-10^{4}$
The SI units of	Near objects charged by rubbing	$10^{3}-10^{6}$
electric field are therefore	Electric breakdown in air, causing a spark	3×10^{6}
Newtons per Coulomb (N/C).	Inside an atom	10^{11}

- Suppose the source of an electric field is a group of point charges q_{1}, q_{2}, \ldots \qquad
- The net electric field $\vec{E}_{\text {net }}$ is the vector sum of the electric fields due to each charge.
- In other words, electric fields obey the principle of superposition. \qquad

$$
\vec{E}_{\text {net }}=\frac{\vec{F}_{\text {onq }}}{q}=\frac{\vec{F}_{\text {1on } q}}{q}+\frac{\vec{F}_{\text {2on } q}}{q}+\cdots=\vec{E}_{1}+\vec{E}_{2}+\cdots=\sum_{i} \vec{E}_{i}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Problem-Solving Strategy: The Electric Field of Multiple Point Charges \qquad
\qquad

PROBLEM-SOLVING STRATEGY 23.1

The electric field of multiple point charges \qquad
MODEL Model charged objects as point charges.
visualize For the pictorial representation:

- Establish a coordinate system and show the locations of the charges. \qquad
- Identify the point P at which you want to calculate the electric field.
- Draw the electric field of each charge at P.
- Use symmetry to determine if any components of $\vec{E}_{\text {net }}$ are zero. \qquad
\qquad
© 2017 Pearson Education, race.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QuickCheck 23.3

When $r \gg d$, the electric field strength at the dot is
A. $\frac{Q}{4 \pi \epsilon_{0} r^{2}}$

B. $\frac{2 Q}{4 \pi \epsilon_{0} r^{2}}$
$Q \oplus$
C. $\frac{4 Q}{4 \pi \epsilon_{0} r^{2}}$
D. $\frac{4 Q}{4 \pi \epsilon_{0}\left(r^{2}+d^{2}\right)}$
E. $\frac{4 Q}{4 \pi \epsilon_{0} r}$
-2017 Pearson Euvacaion, rac.
Slide $23-29$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QuickCheck 23.3

When $r \gg d$, the electric field strength at the dot is
A. $\frac{Q}{4 \pi \epsilon_{0} r^{2}}$

\qquad
B. $\frac{2 Q}{4 \pi \epsilon_{0} r^{2}}$
$+Q \oplus$
C. $\frac{4 Q}{4 \pi \epsilon_{0} r^{2}}$ Looks like a point charge $4 Q$ at the origin.
D. $\frac{4 Q}{4 \pi \epsilon_{0}\left(r^{2}+d^{2}\right)}$
E. $\frac{4 Q}{4 \pi \epsilon_{0} r}$

2017 Pearson Educaion, Irc.

The Dipole Electric Field at Two Points

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Electric Field of a Dipole

- The electric field at a point on the axis of a dipole is

$$
\vec{E}_{\text {dipole }} \approx \frac{1}{4 \pi \epsilon_{0}} \frac{2 \vec{p}}{r^{3}} \quad \text { (on the axis of an electric dipole) }
$$

where r is the distance measured from the center of the dipole.

- The electric field in the plane that bisects and is perpendicular to the dipole is

$$
\vec{E}_{\text {dipole }} \approx-\frac{1}{4 \pi \epsilon_{0}} \frac{\vec{p}}{r^{3}} \quad \text { (bisecting plane) }
$$

- This field is opposite to the dipole direction, and it is only half the strength of the on-axis field at the same distance.
\qquad

Example 23.2 The Electric Field of a Water Molecule

```
EXAMPLE 23.2 The electric field of a water molecule
The water molecule H,O has a permanent dipole moment
T)
HooEL The size of a molecule is }~0.1\textrm{nm}\mathrm{ . Thus }r>s\mathrm{ s, and we Assess By referring fo Table 23.1 you can see that the fichs strengg
```


\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Electric Field of a Dipole

- This figure represents the electric field of a dipole using electric field lines.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QuickCheck 23.5

An electron is in the plane that bisects a dipole. What is the direction of the electric force on the electron?

E. The force is zero.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QuickCheck 23.5

An electron is in the plane that bisects a dipole. What is the direction of the electric force on the electron?

E. The force is zero.
\qquad

Continuous Charge Distributions

- The surface charge density of a two-dimensional distribution of charge across a surface of area is defined as

$$
\eta=\frac{Q}{A}
$$

- Surface charge density, with units $\mathrm{C} / \mathrm{m}^{2}$, is the amount

Q 2017 Pearson Education, nec.
Slide 23-46

QuickCheck 23.7

A flat circular ring is made from a very thin sheet of metal. Charge Q is uniformly distributed over the ring. Assuming $w \ll R$, the surface charge density η is
A. $Q / 2 \pi R w$
B. $Q / 4 \pi R w$
C. $Q / \pi R^{2}$
D. $Q / 2 \pi R^{2}$

E. $Q / \pi R w$

Q2017 Pearson Educaion, hro
Slide $23-47$

QuickCheck 23.7

A flat circular ring is made from a very thin sheet of metal. Charge Q is uniformly distributed over the ring. Assuming $w \ll R$, the surface charge density η is
A. $Q / 2 \pi R w$
B. $Q / 4 \pi R w$

The ring has two sides, each of area
C. $Q / \pi R^{2}$ $2 \pi R w$.
D. $Q / 2 \pi R^{2}$
E. $Q / \pi R w$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Problem-Solving Strategy: The Electric Field of a Continuous Distribution of Charge

Problem-solving strategy 23.2 (a)

The electric field of a continuous distribution of charge
MODEL Model the charge distribution as a simple shape.
visuallze For the pictorial representation:
Draw a picture, establish a coordinate system, and idenify the point P at
which you want to calculate the electric field.
$=$ Divide the total charge Q into small pieces of charge ΔQ, using shapes for which you already know how to determine \vec{E}. This is often, but not always, a division into point charges.

- Draw the electric field vector at P for one or t wo small pieces of charge. This will help you idenify distances and angles that need to be calculated.

Problem-Solving Strategy: The Electric Field of a Continuous Distribution of Charge

PROBLEM-SOLVING STRATEGY 23.2 (1)

The electric field of a continuous distribution of charge
sotve The mathematical representation is $\vec{E}_{\mathrm{Est}}=\sum \vec{E}_{\text {e }}$

- Write an algebraic expression for each of the three components of \vec{E} (unless
you are sure one or more is zero) at point P. Let the (x, y, z) coordinates of the
point remain variables.
Replace the small charge ΔQ with an equivalent expression involving a charge
density and a coordinate, such as $d x$. This is the critical step in making the
transition from a sum to an integral because you need a coordinate to serve
as the integration variable
.
Let the sum become an integral. The integration limits for this variable must
"cover" the entire charged object.
Assess Check that your result is consistent with any limits for which you know what the field should be

Exercise 16

O2017 Peasone Eadacaion, hac
Slide $23-50$

The Electric Field of a Line of Charge

- Example 23.3 in the text uses integration to find the electric field strength at a radial distance r in the plane that bisects a rod of length L with total charge Q
$E_{\mathrm{rod}}=\frac{1}{4 \pi \epsilon_{0}} \frac{|Q|}{r \sqrt{r^{2}+(L / 2)^{2}}}$
The linear charge
density is $\lambda=Q / L$.

2017 Pearson Eucuation, roc Slide $23-51$
\qquad

QuickCheck 23.8

At the dot, the y-component of the electric field due to the shaded region of charge is
A. $\frac{(Q / L) d x}{4 \pi \epsilon_{0}\left(x^{2}+y^{2}\right)} \times \frac{y}{x}$
B. $\frac{(Q / L) d x}{4 \pi \epsilon_{0}\left(x^{2}+y^{2}\right)} \times \frac{x}{y}$

C. $\frac{(Q / L) d x}{4 \pi \epsilon_{0}\left(x^{2}+y^{2}\right)} \times \frac{x}{\sqrt{x^{2}+y^{2}}}$
D. $\frac{(Q / L) d x}{4 \pi \epsilon_{0}\left(x^{2}+y^{2}\right)} \times \frac{y}{\sqrt{x^{2}+y^{2}}}$
E. $\frac{(Q / L) d x}{4 \pi \epsilon_{0} \sqrt{x^{2}+y^{2}}} \times \frac{y}{\sqrt{x^{2}+y^{2}}}$
-2017 Pearson Educaion, rac.
Slide 23-52

QuickCheck 23.8

At the dot, the y-component of the electric field due to the shaded region of charge is
A. $\frac{(Q / L) d x}{4 \pi \epsilon_{0}\left(x^{2}+y^{2}\right)} \times \frac{y}{x}$
B. $\frac{(Q / L) d x}{4 \pi \epsilon_{0}\left(x^{2}+y^{2}\right)} \times \frac{x}{y}$

C. $\frac{(Q / L) d x}{4 \pi \epsilon_{0}\left(x^{2}+y^{2}\right)} \times \frac{x}{\sqrt{x^{2}+y^{2}}}$
D. $\frac{(Q / L) d x}{4 \pi \epsilon_{0}\left(x^{2}+y^{2}\right)} \times \frac{y}{\sqrt{x^{2}+y^{2}}}$
E. $\frac{(Q / L) d x}{4 \pi \epsilon_{0} \sqrt{x^{2}+y^{2}}} \times \frac{y}{\sqrt{x^{2}+y^{2}}}$
-2017 Pearson Eucuation, 1ro.

An Infinite Line of Charge

The field points straight away
from the line at all points
. and its strength
ecreases with distance
$\left.\longleftarrow \longleftarrow \longleftarrow \longleftrightarrow\right|_{+} ^{+} \longrightarrow \stackrel{+}{\longrightarrow} \longrightarrow$
$\longleftarrow \longleftarrow \longleftarrow++_{+}^{+} \longrightarrow \longrightarrow \longrightarrow$
$\leftarrow \longleftarrow \longleftarrow+$
$\leftarrow \longleftarrow \longrightarrow \longrightarrow \longrightarrow$
$\longrightarrow+$
$\longleftarrow \longleftarrow \longleftarrow+_{+}^{+} \longrightarrow \longrightarrow \longrightarrow \longrightarrow$
$\longleftarrow \longleftarrow \longleftarrow+\longrightarrow \longrightarrow \longrightarrow$
$\longleftarrow \longleftarrow \longleftarrow{ }^{\leftarrow} \mathrm{L}_{+}^{+}+\square \longrightarrow \longrightarrow$
$\longleftarrow \longleftarrow \underset{\text { Infinite line of charge }}{\leftarrow} \longrightarrow \longrightarrow$

- The electric field of a thin, uniformly charged rod may be witten
$E_{\mathrm{rod}}=\frac{1}{4 \pi \epsilon_{0}} \frac{2|\lambda|}{r} \frac{1}{\sqrt{1+4 r^{2} / L^{2}}}$
- If we now let $L \rightarrow \infty$, the last term becomes simply 1 and we're left with

$$
\vec{E}_{\text {line }}=\left(\frac{1}{4 \pi \epsilon_{0}} \frac{2|\lambda|}{r},\left\{\begin{array}{l}
\text { away from line if charge }+ \\
\text { toward line if charge }-
\end{array}\right)\right.
$$

17 Pearson Education, 1re.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A Ring of Charge

- Consider the on-axis
 electric field of a positively charged ring of radius R.
- Define the z-axis to be the axis of the ring.
- The electric field on the z-axis points away from the center of the ring, increasing in strength until reaching a maximum when $|z| \approx R$, then decreasing

$$
\left(E_{\text {ring }}\right)_{z}=\frac{1}{4 \pi \epsilon_{0}} \frac{z Q}{\left(z^{2}+R^{2}\right)^{3 / 2}}
$$

Example 23.5 The Electric Field of a Charged Disk

EXAMPLE 23.5 The electric field of a charged disk
A $10-\mathrm{cm}$-diameter plastic disk is charged uniformly with an extra
10^{11} electrons. What is the electric field 1.0 mm above the surface
at a point near the center?
MODEL Model the plastic disk as a uniformly charged disk. We are
seeking the on-axis electric field. Because the charge is negative,
the field will point toward the disk.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 23.5 The Electric Field of a Charged
Disk
EXAMPLE 23.5 The electric field of a charged disk
solve The total charge on the plastic square is $Q=N(-e)=$
$-1.60 \times 10^{-8} \mathrm{C}$. The surface charge density is

$$
\eta=\frac{Q}{A}=\frac{Q}{\pi R^{2}}=\frac{-1.60 \times 10^{-8} \mathrm{C}}{\pi(0.050 \mathrm{~m})^{2}}=-2.04 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}
$$

The electric field at $z=0.0010 \mathrm{~m}$, given by Equation 23.25 , is

$$
E_{z}=\frac{\eta}{2 \epsilon_{0}}\left[1-\frac{1}{\sqrt{1+R^{2} / z^{2}}}\right]=-1.1 \times 10^{5} \mathrm{~N} / \mathrm{C}
$$

The minus sign indicates that the field points toward, rather than
away from, the disk. As a vector,

$$
\vec{E}=\left(1.1 \times 10^{5} \mathrm{~N} / \mathrm{C}, \text { toward the disk }\right)
$$

ASSESS The total charge, -16 nC , is typical of the amount of
charge produced on a small plastic object by rubbing or friction.
Thus $10^{5} \mathrm{~N} / \mathrm{C}$ is a typical electric field strength near an object that
has been charged by rubbing.
Q2017 Pearson Education, Inc.

A Plane of Charge

- The electric field of a plane of charge is found from the on-axis field of a charged disk by letting the radius $R \rightarrow \infty$.
- The electric field of an infinite plane of charge with surface charge density η is

$$
E_{\text {plane }}=\frac{\eta}{2 \epsilon_{0}}=\text { constant }
$$

- For a positively charged plane, with $\eta>0$, the electric field points away from the plane on both sides of the plane.
- For a negatively charged plane, with $\eta<0$, the electric field points toward the plane on both sides of the plane.
- 2017 Pearson Eucacaion, Imo

Slide $23-59$

QuickCheck 23.9
Two protons, A and B, are next to an infinite plane of positive charge. Proton B is twice as far from the plane as proton A . Which proton has the larger acceleration?

\qquad
\qquad
\qquad
A. Proton A
B. Proton B
C. Both have the same acceleration.

Q2017 Pearson Educaion, lre
Slide $23-62$

A Sphere of Charge

- A sphere of charge Q and radius R, be it a uniformly charged sphere or just a spherical shell, has an electric field outside the sphere that is exactly the same as that of a point charge Q located at the center of the sphere:

$$
\vec{E}_{\text {sphere }}=\frac{Q}{4 \pi \epsilon_{0} r^{2}} \hat{r} \quad \text { for } r \geq R
$$

\qquad
\qquad
\qquad
\qquad

The Parallel-Plate Capacitor

- The figure shows two electrodes, one with charge $+Q$ and the other with $-Q$ placed face-toface a distance d apart.
- This arrangement of two electrodes, charged equally but oppositely, is called a parallel-plate capacitor.
- Capacitors play important
 roles in many electric circuits.

The Parallel-Plate Capacitor

- The electric field of a capacitor is

$$
\vec{E}_{\text {capacitior }}= \begin{cases}\left(\frac{Q}{\epsilon_{0} A}, \text { from positive to negative }\right) & \text { inside } \\ \overrightarrow{0} & \text { outside }\end{cases}
$$

where A is the surface area of each electrode.

- Outside the capacitor plates, where E_{+}and E_{-}have equal magnitudes but opposite directions, the electric field is zero.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QuickCheck 23.10

Three points inside a parallel-plate capacitor are marked. Which is true?
A. $E_{1}>E_{2}>E_{3}$
B. $E_{1}<E_{2}<E_{3}$
C. $E_{1}=E_{2}=E_{3}$
D. $E_{1}=E_{3}>E_{2}$

© 2017 Pearson Educaion, hro

QuickCheck 23.10

Three points inside a parallel-plate capacitor are marked. Which is true?
A. $E_{1}>E_{2}>E_{3}$
B. $E_{1}<E_{2}<E_{3}$
C. $E_{1}=E_{2}=E_{3}$
D. $E_{1}=E_{3}>E_{2}$

The Ideal Capacitor

- The figure shows the electric field of an ideal parallel-plate capacitor constructed from two infinite charged planes.
- The ideal capacitor is a good approximation as long as the electrode separation d is much smaller than the electrodes' size.

2017 Pearson Eucuation, Inc. Silide 2

A Real Capacitor

- Outside a real capacitor and near its edges, the electric field is affected by a complicated but weak fringe field.
- We will keep things simple by always assuming the plates are very close together and using $E=\eta / \epsilon_{0}$ for the magnitude of the field inside a parallel-plate capacitor.
2017 Pearson Eucation.

Example 23.6 The Electric Field Inside a Capacitor

EXAMPLE 23.6 The electric field inside a capacitor
Two $1.0 \mathrm{~cm} \times 2.0 \mathrm{~cm}$ rectangular electrodes are 1.0 mm apart
What charge must be placed on each electrode to create a uniform
electric field of strength $2.0 \times 10^{6} \mathrm{~N} / \mathrm{C}$? How many electrons must
be moved from one electrode to the other to accomplish this?
MODEL The electrodes can be modeled as an ideal parallel-plate
capacitor because the spacing between them is much smaller than
their lateral dimensions.

2017 Pearson Eucuation, 1ro

Example 23.6 The Electric Field Inside a Capacitor

```
EXAMPLE 23.6 The electric field inside a capacitor
```



```
    Solve The cectric ficd, strength inside the capacior is E=Q/\epsilon,0.
    Q=(8.85 \times1\mp@subsup{0}{}{-12}\mp@subsup{\textrm{C}}{}{2}/\mp@subsup{\textrm{Nm}}{}{2})(2.0\times1\mp@subsup{0}{}{-4}\mp@subsup{\textrm{m}}{}{2})(2.0\times1\mp@subsup{0}{}{\circ}\textrm{N}/\textrm{C}
        O=(8.85\times1\mp@subsup{0}{}{-12}\mp@subsup{\textrm{C}}{}{-4}\textrm{Nm}
```



```
*). In pratice, the plates are charged by using
    Note that the capacitor as a wholec has nonet charge.
    cectrons in 3.5 nC is
    Q}=\frac{3.5\times1\mp@subsup{0}{}{\circ}}{0
```



```
        100 clectros are moved from one electrodet to the othe
```

 their lateral dimensions.
 \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

EXAMPLE 23.6 The electric field inside a capacitor sotve The electric field strength inside the capacitor is $E=Q / \epsilon_{0} \mathcal{A}$. Thus the charge to produce a field of strength E is $\begin{aligned} Q & =\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}\right)\left(2.0 \times 10^{-4} \mathrm{~m}^{2}\right)\left(2.0 \times 10^{6} \mathrm{~N} / \mathrm{C}\right) \\ & =3.5 \times 10^{-9} \mathrm{C}=3.5 \mathrm{nC} \end{aligned}$ The positive plate must be charged to +3.5 nC and the negative plate to -3.5 nC . In practice, the plates are charged by using a battery to move electrons from one plate to the other. The number of electrons in 3.5 nC is $N=\frac{Q}{e}=\frac{3.5 \times 10^{-9} \mathrm{C}}{1.60 \times 10^{-19} \mathrm{C} / \text { electron }}=2.2 \times 10^{10} \text { electrons }$ Thus 2.2×10^{10} electrons are moved from one electrode to the other. Note that the capacitor as a whole has no net charge.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

	Uniform Electric Fields electric field that is the same-in strength and direction-at every point in a region of space. -
This is called a	
uniform electric field.	
-	

Motion of a Charged Particle in an Electric Field

- Consider a particle of charge q and mass m at a point where an electric field \vec{E} has been produced by other charges, the source charges.
- The electric field exerts a force $\vec{F}_{\text {on } q}=q \vec{E}$.

\qquad
,

Motion of a Charged Particle in an Electric Field

- The electric field exerts a force $\vec{F}_{\text {on } q}=q \vec{E}$ on a charged particle.
- If this is the only force acting on q, it causes the charged particle to accelerate with

$$
\vec{a}=\frac{\vec{F}_{\text {on } q}}{m}=\frac{q}{m} \vec{E}
$$

- In a uniform field, the acceleration is constant:

$$
a=\frac{q E}{m}=\mathrm{constant}
$$

©2017 Pearson Eucuation, Inc.

Motion of a Charged Particle in an Electric Field

- "DNA fingerprints" are measured with the technique of gel electrophoresis.
- A solution of negatively charged DNA fragments migrate through the gel when placed in a uniform electric field.
- Because the gel exerts a drag force, the fragments move at a terminal speed inversely proportional to their size. Slide 23-77

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QuickCheck 23.13

Which dipole experiences no net force in the electric field?
A. Dipole A
B. Dipole B
C. Dipole C
D. Both dipoles A and C
E. All three dipoles

A.
B.
C. \qquad
\qquad
\qquad
© 2017 Pearson Education, rec. Slide 23-85

QuickCheck 23.14

Which dipole experiences no net torque in the electric field?
A. Dipole A
B. Dipole B
C. Dipole C
D. Both dipoles A and C
E. All three dipoles

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 23.9 The Angular Acceleration of a Dipole Dumbbell \qquad
EXAMPLE 23.9
\qquad
\qquad
\qquad
\qquad
\qquad

O2017 Pearson Eucuation, lme
Slide 23-91

Example 23.9 The Angular Acceleration of a Dipole Dumbbell \qquad

EXAMPLE 23.9 | The angular acceleration of a |
| :--- | :--- | dipole dumbbell

sOLVE The dipole moment is $p=q s=\left(1.0 \times 10^{-8} \mathrm{C}\right) \times$
$(0.020 \mathrm{~m})=2.0 \times 10^{-10} \mathrm{Cm}$. The torque exerted on the dipole
moment by the electric field is
$=p E \sin \theta=\left(2.0 \times 10^{-10} \mathrm{Cm}\right)\left(1.0 \times 10^{4} \mathrm{~N} / \mathrm{C}\right) \sin 30^{\circ}$
$=1.0 \times 10^{-6} \mathrm{Nm}$
You learned in Chapter 12 that a torque causes an angular acceleratio
$\alpha=\tau / /$, where l is the moment of inertia \qquad

Slide 23-92
\qquad
\qquad
\qquad
\qquad
\qquad

Example 23.9 The Angular Acceleration of a Dipole Dumbbell \qquad
EXAMPLE 23.9 ${ }^{\text {2 }}$ The angular acceleration of a dipole dumbbell

SOLve The dipole rotates about its center of mass, which is at the
center of the rod, so the moment of inertia is
$I=m_{1} r_{1}^{2}+m_{2} r_{2}^{2}=2 m\left(\frac{1}{2} s\right)^{2}=\frac{1}{2} m s^{2}=2.0 \times 10^{-7} \mathrm{~kg} \mathrm{~m}^{2}$
Thus the rod's angular acceleration is

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 23.9 The Angular Acceleration of a
Dipole Dumbbell

Dipoles in a Nonuniform Electric Field

- Suppose that a dipole is placed in a nonuniform electric field, such as the field of a positive point charge.
- The first response of the dipole is to rotate until it is aligned with the field.

- Once the dipole is aligned, the leftward attractive force on its negative end is slightly stronger than the rightward repulsive force on its positive end.
- This causes a net force to the left, toward the point charge.
-2017 Pearson Euvation, rac.

Dipoles in a Nonuniform Electric Field

- A dipole near a negative point charge is also \qquad attracted toward the point charge.
- The net force on a dipole is toward the direction of \qquad the strongest field.
- Because field strength increases as you get closer \qquad to any finite-sized charged object, we can conclude that a dipole will experience a net force toward any charged object. \qquad
\qquad

2017 Pearson Edacation, Inc. \qquad

\qquad
\qquad
\qquad

General Principles

	Sources of \vec{E} Electric fields are created by charges. Multiple point charges MODEL Model objects as point charges. VISUALIzE Establish a coordinate system and draw field vectors. Solve Use superposition: $\vec{E}=\vec{E}_{1}+\vec{E}_{2}+\vec{E}_{3}+\cdots$ Continuous distribution of charge MODEL Model objects as simple shapes. visualize - Establish a coordinate system. - Divide the charge into small segments ΔQ. - Draw a field vector for one or two pieces of charge. sotve - Find the field of each ΔQ. - Write \vec{E} as the sum of the fields of all ΔQ. Don't forget that it's a vector sum; sse components. - Use the charge density (λ or η) to replace ΔQ with an integration coordinate, then integrate.
${ }^{2} 2017$ Peasson Euacaion, 1re.	

