
3/25/2019

1

FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E
PHYSICS

RANDALL D. KNIGHT

Chapter 17 Lecture

© 2017 Pearson Education, Inc.

© 2017 Pearson Education, Inc.

Chapter 17 Superposition 

IN THIS CHAPTER, you will understand and use the 
ideas of superposition.
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When a wave pulse on a string reflects from 
a hard boundary, how is the reflected pulse 

related to the incident pulse?

A. Shape unchanged, amplitude unchanged

B. Shape inverted, amplitude unchanged

C. Shape unchanged, amplitude reduced

D. Shape inverted, amplitude reduced

E. Amplitude unchanged, speed reduced

Reading Question 17.1
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When a wave pulse on a string reflects from 
a hard boundary, how is the reflected pulse 

related to the incident pulse?

A. Shape unchanged, amplitude unchanged

B. Shape inverted, amplitude unchanged

C. Shape unchanged, amplitude reduced

D. Shape inverted, amplitude reduced

E. Amplitude unchanged, speed reduced

Reading Question 17.1

Slide 17-11

© 2017 Pearson Education, Inc.

There are some points on a standing 
wave that never move. What are these 

points called? 

A. Harmonics

B. Normal Modes

C. Nodes

D. Anti-nodes

E. Interference

Reading Question 17.2
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Two sound waves of nearly equal frequencies are 
played simultaneously. What is the name of the 

acoustic phenomena you hear if you listen to 
these two waves?

A. Beats

B. Diffraction

C. Harmonics

D. Chords

E. Interference

Reading Question 17.3
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The various possible standing waves on a 
string are called the

A. Antinodes.

B. Resonant nodes.

C. Normal modes.

D. Incident waves.

Reading Question 17.4
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The various possible standing waves on a 
string are called the

A. Antinodes.

B. Resonant nodes.

C. Normal modes.

D. Incident waves.

Reading Question 17.4
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The frequency of the third harmonic of a string is

A. One-third the frequency of the fundamental.

B. Equal to the frequency of the fundamental.

C. Three times the frequency of the fundamental.

D. Nine times the frequency of the fundamental.

Reading Question 17.5
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The frequency of the third harmonic of a string is
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Chapter 17 Content, Examples, and 

QuickCheck Questions
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� Two particles flying through the same point at the same 
time will collide and bounce apart, as in Figure (a).

� But waves, unlike particles, can pass directly through 
each other, as in Figure (b).

Particles versus Waves
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� If wave 1 displaces a particle in the medium by D1

and wave 2 simultaneously displaces it by D2, the net 
displacement of the particle is D1 + D2.

The Principle of Superposition
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� The figure shows the 
superposition of two waves 
on a string as they pass 
through each other.

� The principle of 
superposition comes into 
play wherever the waves 
overlap.

� The solid line is the sum at 

each point of the two 
displacements at that 
point.

The Principle of Superposition
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QuickCheck 17.1

Two wave pulses on a 
string approach each 
other at speeds of 
1 m/s. How does the 
string look at t = 3 s?
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QuickCheck 17.1

Two wave pulses on a 
string approach each 
other at speeds of 
1 m/s. How does the 
string look at t = 3 s?

C.
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QuickCheck 17.2

Two wave pulses on a 

string approach each 

other at speeds of 

1 m/s. How does the 

string look at t = 3 s?
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Two wave pulses on a 

string approach each 

other at speeds of 

1 m/s. How does the 

string look at t = 3 s?

QuickCheck 17.2
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� Shown is a time-lapse 
photograph of a standing 

wave on a vibrating string.

� It’s not obvious from the photograph, but this is 

actually a superposition of two waves.

� To understand this, consider two sinusoidal waves with 
the same frequency, wavelength, and amplitude
traveling in opposite directions.

Standing Waves

Slide 17-28
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Standing Waves

Antinode       Node
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� The figure has collapsed 
several graphs into a 
single graphical 
representation of a 
standing wave.

� A striking feature of a 
standing-wave pattern is 
the existence of nodes, 
points that never move!

� The nodes are spaced 
λ/2 apart.

� Halfway between the nodes are the antinodes where the 
particles in the medium oscillate with maximum displacement.

Standing Waves
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� In Chapter 16 you 
learned that the 
intensity of a wave is 
proportional to the 

square of the 
amplitude:

� Intensity is maximum 
at points of constructive 
interference and zero 
at points of destructive 

interference.

Standing Waves
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What is the wavelength 
of this standing wave?

QuickCheck 17.3

A. 0.25 m.

B. 0.5 m.

C. 1.0 m.

D. 2.0 m.

E. Standing waves don’t 
have a wavelength.

Slide 17-32
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QuickCheck 17.3

What is the wavelength 
of this standing wave?

A. 0.25 m.

B. 0.5 m.

C. 1.0 m.

D. 2.0 m.

E. Standing waves don’t 
have a wavelength.
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� This photograph 
shows the Tacoma 
Narrows suspension 
bridge just before it 

collapsed.

� Aerodynamic forces 
caused the amplitude 
of a particular standing 
wave of the bridge to 
increase dramatically.

� The red line shows the original line of the deck of the 
bridge.

Standing Waves
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� A sinusoidal wave traveling to the right along the 
x-axis with angular frequency ω = 2πf, wave number 
k = 2π/λ and amplitude a is

� An equivalent wave traveling to the left is

� We previously used the symbol A for the wave 
amplitude, but here we will use a lowercase a to 
represent the amplitude of each individual wave and 
reserve A for the amplitude of the net wave. 

The Mathematics of Standing Waves
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� According to the principle of superposition, the net 
displacement of the medium when both waves are 
present is the sum of DR and DL:

� We can simplify this by using a trigonometric identity, 
and arrive at 

� Where the amplitude function A(x) is defined as

� The amplitude reaches a maximum value of Amax = 2a

at points where sin kx = 1.

The Mathematics of Standing Waves
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� Shown is the graph of 
D(x,t) at several 
instants of time.

� The nodes occur at 
xm = mλ/2, where m is 

an integer.

The Mathematics of Standing Waves
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Example 17.1 Node Spacing on a String
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Example 17.1 Node Spacing on a String
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Example 17.1 Node Spacing on a String
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� A string with a large linear density is connected to one 
with a smaller linear density.

� The tension is the same in both strings, so the wave 
speed is slower on the left, faster on the right.

� When a wave 
encounters such a 
discontinuity, some 
of the wave’s energy 

is transmitted forward 
and some is reflected.

Waves on a String with a Discontinuity

Slide 17-41
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� Below, a wave encounters discontinuity at which the 
wave speed decreases.

� In this case, the reflected pulse is inverted.

� We say that the 
reflected wave 
has a phase change 

of π upon reflection.

Waves on a String with a Discontinuity
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� When a wave 
reflects from a 
boundary, the 
reflected wave is 

inverted, but has 
the same 
amplitude.

Waves on a String with a Boundary
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� The figure shows a 
string of length L tied 
at x = 0 and x = L.

� Reflections at the 

ends of the string 
cause waves of equal 

amplitude and 

wavelength to travel 
in opposite directions 
along the string.

� These are the 
conditions that cause 
a standing wave!

Creating Standing Waves
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� For a string of fixed length L, the boundary 
conditions can be satisfied only if the wavelength 
has one of the values:

� Because λf = v for a sinusoidal wave, the oscillation 
frequency corresponding to wavelength λm is

� The lowest allowed frequency is called the 
fundamental frequency: f1 = v/2L.

Standing Waves on a String

Slide 17-45
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� Shown are the first four 
possible standing waves on 
a string of fixed length L.

� These possible standing 

waves are called the modes 
of the string, or sometimes 
the normal modes.

� Each mode, numbered by 
the integer m, has a unique 

wavelength and frequency.

Standing Waves on a String

Slide 17-46
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� m is the number of antinodes on the standing wave.

� The fundamental mode, with m = 1, has λ1 = 2L.

� The frequencies of the normal modes form a series: 
f1, 2f1, 3f1, …

� The fundamental frequency f1 can be found as the 

difference between the frequencies of any two adjacent 
modes: f1 = ∆f = fm+1 – fm.

� Below is a time-exposure photograph of the m = 3

standing wave on a string.

Standing Waves on a String
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What is the mode number 
of this standing wave?

QuickCheck 17.4

A. 4

B. 5

C. 6

D. Can’t say without 
knowing what kind of 
wave it is.

Slide 17-48
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QuickCheck 17.4

What is the mode number 
of this standing wave?

A. 4

B. 5

C. 6

D. Can’t say without 
knowing what kind of 
wave it is.
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QuickCheck 17.5

A standing wave on a string vibrates as shown. 

Suppose the string tension is reduced to 1/4 its 

original value while the frequency and length are 

kept unchanged. Which standing wave pattern is 

produced?

Slide 17-50
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QuickCheck 17.5

A standing wave on a string vibrates as shown. 

Suppose the string tension is reduced to 1/4 its 

original value while the frequency and length are 

kept unchanged. Which standing wave pattern is 

produced?

The frequency is                  . 

Quartering the tension reduces v by one half. 

Thus m must double to keep the frequency constant.

fm = m
v

2L

Slide 17-51
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� Standing electromagnetic waves can be established 
between two parallel mirrors that reflect light back 
and forth.

� A typical laser cavity has a length L ≈ 30 cm, and 
visible light has a wavelength λ ≈ 600 nm.

� The standing light wave in a typical laser cavity has a 
mode number m that is 2L/λ ≈ 1,000,000!

Standing Electromagnetic Waves

Slide 17-52
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Example 17.3 The Standing Light Wave Inside 

a Laser
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Example 17.3 The Standing Light Wave Inside 

a Laser
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� A long, narrow column of air, such as the air in a tube or 
pipe, can support a longitudinal standing sound wave. 

� A closed end of a column of air must be a displacement 
node, thus the boundary conditions—nodes at the 

ends—are the same as for a standing wave on a string.  

� It is often useful to think of sound as a pressure wave 
rather than a displacement wave: The pressure 
oscillates around its equilibrium value. 

� The nodes and antinodes of the pressure wave are 

interchanged with those of the displacement wave.

Standing Sound Waves
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� Shown is the m = 2

standing sound wave 
in a closed-closed 
tube of air at t = 0.

Standing Sound Wave Time Sequence 

Slide 1 of 3
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� Shown is the m = 2

standing sound wave in 
a closed-closed tube of 
air a quarter-cycle after 
t = 0.

Standing Sound Wave Time Sequence 

Slide 2 of 3
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� Shown is the m = 2

standing sound wave in 
a closed-closed tube of 
air a half-cycle after 
t = 0.

Standing Sound Wave Time Sequence 

Slide 3 of 3
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� Shown are the 
displacement ∆x and 
pressure graphs for the 
m = 2 mode of standing 

sound waves in a 
closed-closed tube.

� The nodes and 
antinodes of the 
pressure wave are 
interchanged with those 

of the displacement 
wave.

Standing Sound Waves

Slide 17-59
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Example 17.4 Singing in the Shower
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� Shown are 
displacement and 
pressure graphs for the 
first three standing-

wave modes of a tube 
closed at both ends:

Standing Sound Waves
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� Shown are 
displacement and 
pressure graphs for the 
first three standing-

wave modes of a tube 
open at both ends:

Standing Sound Waves
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� Shown are 
displacement and 
pressure graphs for the 
first three standing-

wave modes of a tube 
open at one end but 
closed at the other:

Standing Sound Waves

Slide 17-63
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QuickCheck 17.6

An open-open tube of air has 
length L. Which is the 
displacement graph of the m = 3

standing wave in this tube?
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QuickCheck 17.6

An open-open tube of air has 
length L. Which is the 
displacement graph of the m = 3

standing wave in this tube?

Slide 17-65

© 2017 Pearson Education, Inc.

QuickCheck 17.7

An open-closed tube of air of length 

L has the closed end on the right. 

Which is the displacement graph of 

the m = 3 standing wave in this tube?

Slide 17-66
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QuickCheck 17.7

An open-closed tube of air of length 

L has the closed end on the right. 

Which is the displacement graph of 

the m = 3 standing wave in this tube?
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Example 17.5 Resonances of the Ear Canal
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Example 17.5 Resonances of the Ear Canal
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Example 17.5 Resonances of the Ear Canal
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� Instruments such as the harp, 

the piano, and the violin have 

strings fixed at the ends and 

tightened to create tension.

� A disturbance generated on the 

string by plucking, striking, or 

bowing it creates a standing 

wave on the string.

� The fundamental frequency is the musical note you 

hear when the string is sounded:

where Ts is the tension in the string and µ is its linear 

density.

Musical Instruments

Slide 17-71
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� With a wind instrument, blowing into the mouthpiece 

creates a standing sound wave inside a tube of air.

� The player changes the notes by using her fingers to 

cover holes or open valves, changing the length of the 

tube and thus its fundamental frequency:

� In both of these equations, v is the speed of sound in 

the air inside the tube.

� Overblowing wind instruments can sometimes produce 

higher harmonics such as f2 = 2f1 and f3 = 3f1.

for an open-open tube instrument, 

such as a flute

for an open-closed tube 

instrument, such as a clarinet

Musical Instruments

Slide 17-72
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At room temperature, the fundamental frequency of 

an open-open tube is 500 Hz. If taken outside on a 

cold winter day, the fundamental frequency will be

A. Less than 500 Hz.

B. 500 Hz.

C. More than 500 Hz.

QuickCheck 17.8
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an open-open tube is 500 Hz. If taken outside on a 

cold winter day, the fundamental frequency will be
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QuickCheck 17.8
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Example 17.6 Flutes and Clarinets
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Example 17.6 Flutes and Clarinets
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Example 17.6 Flutes and Clarinets
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� The pattern resulting from the superposition of two 
waves is often called interference. In this section we 
will look at the interference of two waves traveling in 
the same direction.

Interference in One Dimension

Slide 17-78
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� A sinusoidal wave 
traveling to the 
right along the 
x-axis has a 

displacement:

� The phase 
constant ϕ0 tells us 
what the source is 

doing at t = 0.

Interference in One Dimension

D = a sin(kx –ωt + ϕ0)
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� The two waves are in 
phase, meaning that

D1(x) = D2(x)

� The resulting amplitude is 

A = 2a for maximum 

constructive interference.

Constructive Interference

D = D1 + D2

� D1 = a sin(kx1 – ωt + ϕ10)

D2 = a sin(kx2 –ωt + ϕ20)
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Destructive Interference

� The two waves are out of 
phase, meaning that

D1(x) = −D2(x)

� The resulting amplitude is 
A = 0 for perfect 

destructive interference.

Slide 17-81
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� As two waves of equal amplitude and frequency travel 
together along the x-axis, the net displacement of the 
medium is:

� We can use a trigonometric identity to write the net 
displacement as

where ∆ϕ = ϕ1 + ϕ2 is the phase difference between the 
two waves.

The Mathematics of Interference
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� The amplitude has a maximum value A = 2a if 
cos(∆ϕ/2) =±1.

� This is maximum constructive interference, 
when

where m is an integer.

� Similarly, the amplitude is zero if cos(∆ϕ/2) = 0.

� This is perfect destructive interference, when:

The Mathematics of Interference

Slide 17-83

© 2017 Pearson Education, Inc.

� Shown are two 
identical sources located 
one wavelength apart: 

∆x = λ

� The two waves are 
“in step” with
∆ϕ = 2π, so we have 

maximum constructive 
interference with A = 2a.

Interference in One Dimension

Slide 17-84
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� Shown are two 
identical sources located 
half a wavelength apart: 

∆x = λ/2

� The two waves 
have phase 
difference ∆ϕ = π,
so we have perfect 
destructive interference 
with A = 0.

Interference in One Dimension
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Example 17.7 Interference Between Two 

Sound Waves
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Example 17.7 Interference Between Two 

Sound Waves
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Example 17.7 Interference Between Two 

Sound Waves

Slide 17-88
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Example 17.7 Interference Between Two 

Sound Waves
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� It is entirely possible, of 
course, that the two 
waves are neither 
exactly in phase nor 

exactly out of phase.

� Shown are the 
calculated interference 
of two waves that differ 
in phase by 40º, 90º and 
160º.

The Mathematics of Interference

Slide 17-90
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Two loudspeakers emit sound 

waves with the same wavelength 

and the same amplitude. The 

waves are shown displaced, for 

clarity, but assume that both are 

traveling along the same axis. At 

the point where the dot is, 

A. the interference is constructive.

B. the interference is destructive.

C. the interference is somewhere between 

constructive and destructive.

D. There’s not enough information to tell about 

the interference.

QuickCheck 17.9

Slide 17-91

© 2017 Pearson Education, Inc.

Two loudspeakers emit sound 

waves with the same wavelength 

and the same amplitude. The 

waves are shown displaced, for 

clarity, but assume that both are 

traveling along the same axis. At 

the point where the dot is, 

A. the interference is constructive.

B. the interference is destructive.

C. the interference is somewhere between 

constructive and destructive.

D. There’s not enough information to tell about 

the interference.

QuickCheck 17.9
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Two loudspeakers emit sound 

waves with the same wavelength 

and the same amplitude. Which of 

the following would cause there to 

be destructive interference at the 

position of the dot?

A. Move speaker 2 forward (right) 1.0 m.

B. Move speaker 2 forward (right) 0.5 m.

C. Move speaker 2 backward (left) 0.5 m.

D. Move speaker 2 backward (left) 1.0 m.

E. Nothing. Destructive interference is not possible 

in this situation.

QuickCheck 17.10

Slide 17-93
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Two loudspeakers emit sound 

waves with the same wavelength 

and the same amplitude. Which of 

the following would cause there to 

be destructive interference at the 

position of the dot?

A. Move speaker 2 forward (right) 1.0 m.

B. Move speaker 2 forward (right) 0.5 m.

C. Move speaker 2 backward (left) 0.5 m.

D. Move speaker 2 backward (left) 1.0 m.

E. Nothing. Destructive interference is not possible 

in this situation.

QuickCheck 17.10

Move this peak back 

1/4 wavelength to 

align with the trough 

of wave 1. 
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Example 17.8 More Interference of Sound 

Waves

Slide 17-95

© 2017 Pearson Education, Inc.

Example 17.8 More Interference of Sound 

Waves
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Example 17.8 More Interference of Sound 

Waves
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� Thin transparent films, 
placed on glass surfaces, 
such as lenses, can 
control reflections from 

the glass.

� Antireflection coatings on 
the lenses in cameras, 
microscopes, and other 
optical equipment are 
examples of thin-film 

coatings.

Application: Thin-Film Optical Coatings

Slide 17-98
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� The phase difference between the two reflected waves is

where n is the index of refraction 
of the coating, d is the thickness, 
and λ is the wavelength of the 
light in vacuum or air.

� For a particular thin-film, constructive or destructive 
interference depends on the wavelength of the light:

Application: Thin-Film Optical Coatings

Slide 17-99
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Example 17.9 Designing an Antireflection 

Coating

Slide 17-98
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Example 17.9 Designing an Antireflection 

Coating
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Example 17.9 Designing an Antireflection 

Coating
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� A circular or spherical 
wave can be written

where r is the distance 
measured outward from 
the source.

� The amplitude a of a 

circular or spherical wave 
diminishes as r increases.

A Circular or Spherical Wave

D(r, t) = a sin(kr – ωt + ϕ0)
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Interference in Two and Three Dimensions

� Two overlapping water waves create an interference 
pattern.
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• = Points of constructive 
interference. A crest is aligned 
with a crest, or a trough with a 
trough.

• = Points of destructive 

interference. A crest is aligned 
with a trough of another wave.

Interference in Two and Three Dimensions

Slide 17-105



3/25/2019

36

© 2017 Pearson Education, Inc.

� The mathematical description of interference in two 
or three dimensions is very similar to that of one-
dimensional interference.

� The conditions for constructive and destructive 

interference are

where ∆r is the path-length difference.

Interference in Two and Three Dimensions

Slide 17-106
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� The figure shows two 
identical sources that are 
in phase.

� The path-length difference 
∆r determines whether the 

interference at a particular 
point is constructive or 
destructive.

Interference in Two and Three Dimensions
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Interference in Two and Three Dimensions
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Two in-phase sources emit 
sound waves of equal 
wavelength and intensity. At the 
position of the dot, 

A. The interference is 
constructive.

B. The interference is 
destructive.

C. The interference is somewhere 
between constructive and destructive.

D. There’s not enough information to tell 
about the interference.

QuickCheck 17.11

Slide 17-109
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QuickCheck 17.11

Two in-phase sources emit 
sound waves of equal 
wavelength and intensity. At the 
position of the dot, 

A. The interference is 
constructive.

B. The interference is 
destructive.

C. The interference is somewhere 
between constructive and destructive.

D. There’s not enough information to tell 
about the interference.
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Two in-phase sources emit 
sound waves of equal 
wavelength and intensity. How 
many antinodal lines (lines of 

constructive interference) are 
in the interference pattern?

A. 1  

B. 2

C. 3

D. 4

E. 5

QuickCheck 17.12
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Two in-phase sources emit 
sound waves of equal 
wavelength and intensity. How 
many antinodal lines (lines of 

constructive interference) are 
in the interference pattern?

A. 1  

B. 2

C. 3

D. 4

E. 5

QuickCheck 17.12

Sources are 1.5 λ apart, so 

no point can have ∆r more 

than 1.5 λ.
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Problem-Solving Strategy: Interference of Two 

Waves
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Problem-Solving Strategy: Interference of Two 

Waves
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Example 17.10 Two-Dimensional Interference 

Between Two Loudspeakers
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Example 17.10 Two-Dimensional Interference 

Between Two Loudspeakers
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Example 17.10 Two-Dimensional Interference 

Between Two Loudspeakers
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Example 17.10 Two-Dimensional Interference 

Between Two Loudspeakers
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Example 17.10 Two-Dimensional Interference 

Between Two Loudspeakers

Slide 17-119

© 2017 Pearson Education, Inc.

� The figure shows 
the history graph for 
the superposition of 
the sound from two 

sources of equal 
amplitude a, but 

slightly different 
frequency.

Beats
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� With beats, the sound intensity rises and falls twice

during one cycle of the modulation envelope.

� Each “loud-soft-loud” is one beat, so the beat frequency
fbeat, which is the number of beats per second, is twice

the modulation frequency fmod.

� The beat frequency is

where, to keep fbeat from being negative, we will always 
let f1 be the larger of the two frequencies. 

� The beat frequency is simply the difference between the 
two individual frequencies.

Beats

Slide 17-121
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� Shown is a graphical 
example of beats.

� Two “fences” of 
slightly different 

frequencies are 
superimposed on 
each other.

� The center part of the 
figure has two “beats” 
per inch:

Visual Beats

fbeat = 27 – 25 = 2

Slide 17-122
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You hear 2 beats per second when two sound sources, 
both at rest, play simultaneously. The beats disappear if 
source 2 moves toward you while source 1 remains at 
rest. The frequency of source 1 is 500 Hz. The 

frequency of source 2 is

A. 496 Hz

B. 498 Hz

C. 500 Hz

D. 502 Hz

E. 504 Hz

QuickCheck 17.13
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You hear 2 beats per second when two sound sources, 
both at rest, play simultaneously. The beats disappear if 
source 2 moves toward you while source 1 remains at 
rest. The frequency of source 1 is 500 Hz. The 

frequency of source 2 is

A. 496 Hz

B. 498 Hz

C. 500 Hz

D. 502 Hz

E. 504 Hz

QuickCheck 17.13
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Example 17.11 Detecting Bats with Beats

Slide 17-125

© 2017 Pearson Education, Inc.

Example 17.11 Detecting Bats with Beats
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Example 17.11 Detecting Bats with Beats
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Chapter 17 Summary Slides
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General Principles
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Important Concepts
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Important Concepts
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Applications
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Applications
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