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PHYSICS ©

FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E

Chapter 17 Lecture —

RANDALL D. KNIGHT
=

pter 17 Superposition

IN THIS CHAPTER, you will understand and use the
ideas of superposition.
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Chapter 17 Preview

What is superposition?

Waves can pass through each other. AN =N
When they do, their displacements add A

together at each point. This is called the

principle of superposition, It is a property A AN

of waves but not of particles.

< LOOKING BACK Sections 16.1-16.4
Properties of traveling waves
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Chapter 17 Preview

What is a standing wave?

A standing wave is created when two

waves travel in opposite directions

between two boundaries.

= Standing waves have well-defined
patterns called modes.

= Some points on the wave, called
nedes, do not oscillate at all.
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Maode |

Maode 2
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pter 17 Preview

How are standing waves related to music?

The notes played by musical instruments
are standing waves.

= Guitars have string standing waves.

m Flutes have pressure standing waves.
Changing the length of a standing

wave changes its frequency and the

note played.

< LOOKING BACK Section 16.5 Sound waves
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Pressure

7
Displacement
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Chapter 17 Preview

What is interference?

When two sources emit waves with the

same wavelength, the overlapped waves

create an interference pattern.

m Constructive interference (red) occurs
where waves add to produce a wave
with a larger amplitude.

m Destructive interference (black) occurs
where waves cancel.
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apter 17 Preview

What are beats?

The superposition of two waves with
slightly different frequencies produces
a loud-soft-loud-soft modulation of
the intensity called beats. Beats have
important applications in music,

ultr: ics, and tel imunications.
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apter 17 Preview

Why is superposition important?

Superposition and standing waves occur often in the world
around us, especially when there are reflections. Musical
instruments, microwave systems, and lasers all depend on standing
waves. Standing waves are also important for large structures

such as buildings and bridges. Superposition of light waves causes
interference, which is used in electro-optic devices and precision
measuring techniques.
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Chapter 17 Reading Questions
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Reading Question 17.1

When a wave pulse on a string reflects from
a hard boundary, how is the reflected pulse
related to the incident pulse?

Shape unchanged, amplitude unchanged
Shape inverted, amplitude unchanged
Shape unchanged, amplitude reduced
Shape inverted, amplitude reduced
Amplitude unchanged, speed reduced

moow»
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Reading Question 17.1

When a wave pulse on a string reflects from
a hard boundary, how is the reflected pulse
related to the incident pulse?

A. Shape unchanged, amplitude unchanged
'B. Shape inverted, amplitude unchanged
Shape unchanged, amplitude reduced
Shape inverted, amplitude reduced
Amplitude unchanged, speed reduced

moo
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Reading Question 17.2

There are some points on a standing
wave that never move. What are these
points called?

Harmonics
Normal Modes
Nodes
Anti-nodes
Interference

moow»
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Reading Question 17.2

There are some points on a standing
wave that never move. What are these
points called?

A. Harmonics
B. Normal Modes
/' C. Nodes

D. Anti-nodes

E. Interference
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Reading Question 17.3

Two sound waves of nearly equal frequencies are
played simultaneously. What is the name of the
acoustic phenomena you hear if you listen to
these two waves?

A. Beats
B. Diffraction
C. Harmonics
D. Chords
E. Interference
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Reading Question 17.3

Two sound waves of nearly equal frequencies are
played simultaneously. What is the name of the
acoustic phenomena you hear if you listen to
these two waves?

vA. Beats
Diffraction
Harmonics
Chords

Interference

moowp
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Reading Question 17.4

The various possible standing waves on a
string are called the

A. Antinodes.

B. Resonant nodes.
C. Normal modes.
D. Incident waves.
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Reading Question 17.4

The various possible standing waves on a
string are called the

A. Antinodes.

B. Resonant nodes.
+'C. Normal modes.
D. Incident waves.
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Reading Question 17.5

The frequency of the third harmonic of a string is

One-third the frequency of the fundamental.
Equal to the frequency of the fundamental.
Three times the frequency of the fundamental.
Nine times the frequency of the fundamental.

Cow>
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Reading Question 17.5

The frequency of the third harmonic of a string is

A. One-third the frequency of the fundamental.

B. Equal to the frequency of the fundamental.

/'C. Three times the frequency of the fundamental.
D. Nine times the frequency of the fundamental.
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Chapter 17 Content, Examples, and
QuickCheck Questions
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Particles versus Waves

= Two particles flying through the same point at the same
time will collide and bounce apart, as in Figure (a).

= But waves, unlike particles, can pass directly through
each other, as in Figure (b).

(a) Pitching machines

N

p

Alan i oBill Alan %
The balls collide

and bounce apart through each other

The waves pass
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The Principle of Superposition

= |f wave 1 displaces a particle in the medium by D,
and wave 2 simultaneously displaces it by D,, the net
displacement of the particle is D, + D,.

©2017 Pearson Education, Inc

Principle of superposition When two or more waves are simultaneously present
at a single point in space, the displacement of the medium at that point is the sum
of the displacements due to each individual wave.
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The Principle of Superposition

through each other.

point.
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= The figure shows the
superposition of two waves N el
on a string as they pass o T2 T d T eNB

I mis 1 m/s

* 1=0s

Two waves approach

e Constructive

= The principle of AN nterference 25
superposition comes into T ‘M -
play wherever the waves T
overlap. e 3%

= Thesolid lineisthe sumat 5 3 5. & x(m)
each point of the two 1 mls 1mis
displacements at that 4s

The waves emerge unchanged.
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QuickCheck 17.1

Two wave pulses on a
string approach each
other at speeds of

1 m/s. How does the
string look at =3 s?

1 mis I m/s
o p——p——p—— +— x (m)
01 2 3 4 5 6 7T 8

Approaching pulses at 1= 0's

A C. m
. . x(m) —t———— x(m)
o1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
B. /\ D.
. x(m) M v (m)
0 1 2 3 4 5 6 7 8 12 3 4 5 6 17
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QuickCheck 17.1

Two wave pulses on a
string approach each
other at speeds of

1 mis

1 m/s

— - [—‘
(m)

1 m/s. How does the 0 12 34 3
string look at r =3 s? Approaching pulses at1=0's
A [ (\ v
T T T X (m) 1 T T T T — X (M)
0 1 2 4 5 6 7 1 2 3 4 5 6 17 8
B. /\ D.
. x(m) M v (m)
o1 2 3 4 5 6 7 1 2 3 4 5 6
2017 passon e, Side 17:25

QuickCheck 17.2

Two wave pulses on a 1 mis
string approach each s
T T )
other at speeds of NVZREREE i
—_—
1 m/s. How does the 1 mis
string look at =3 s? Approaching pulses at 1=0's
A C.
x(m) x(m)
01 2 3 4 5 6 7 g 0o 1 2 {/4\1 6 7 B
B. D.
N | . S—
01 2 3 4 5 6 7 o 0|2V1567n‘m
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QuickCheck 17.2

Two wave pulses on a 1 mis
string approach each .
T e} —— +— x (m)
other at speeds of o\/v 345 6 7 8
—_—
1 m/s. How does the I mis
string look at =3 s? Approaching pulses ats=0s
A G
T — T T T T T — X (m) T T T T T — x(m)
01 2 3 4 5 6 7 0 1 2 {/N s 71 8
B. V D.
01 2 3 4 5 6 7 o t)lz{/ﬁsa?s‘m
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Standing Waves

= Shown is a time-lapse
photograph of a standing
wave on a vibrating string.

= |t's not obvious from the photograph, but this is
actually a superposition of two waves.

= To understand this, consider two sinusoidal waves with
the same frequency, wavelength, and amplitude
traveling in opposite directions.
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Standing Waves

The red wave is The green wave is
2 10 the left

traveling to the right trave

At this time the waves exactly
overlap and the superposition
has a maximum amplitude

At this time a crest of the red
wave meets a trough of the

green wave. The waves cancel

Antinode Node
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Standing Waves

(a) Nodes ar ced A/2 apart.
= The figure has collapsed D Antinodes H
several graphs into a A :
single graphical 0 v x
representation of a A '
standing wave. o1 MNodes
= Astriking feature of a ® i 1/ Theintensity is maximum
. . I 1 at the antinodes.
standing-wave pattern is o
the existence of nodes, Fowe : 3
points that never move! !

The nodes are spaced P4 T AN

A2 apart- The u}tcnul,\ is zero at the nodes.
Halfway between the nodes are the antinodes where the
particles in the medium oscillate with maximum displacement.
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Standing Waves

(a) Nodes are spaced A/2 apart.
D Antinodes

A2

Nodes

]
|

I

! The intensity is maximum
: at the antinodes.
|
| e

I

I

I

I

. Y u —Xx
0 WA 2

The intensity is zero at the nodes.
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= |In Chapter 16 you
learned that the
intensity of a wave is
proportional to the
square of the
amplitude: 7 oc 42.

= Intensity is maximum
at points of constructive
interference and zero
at points of destructive
interference.
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QuickCheck 17.3

What is the wavelength
of this standing wave?

A. 025m.

B. 0.5m.

C. 1.0m.

D. 2.0m.

E. Standing waves don’t

have a wavelength.

©2017 Pearson Education, Inc

KK

T T T T T T T T T x(m)
0 05 1.0 15 20
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QuickCheck 17.3

What is the wavelength
of this standing wave?

A. 0.25m.

B. 0.5m.
¥C. 1.0m.

D. 2.0m.

E. Standing waves don’t
have a wavelength.

©2017 Pearson Education, Inc

XAKK

——T—T—T—TT7X (m)
0 05 10 15 20
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Standing Waves

= This photograph
shows the Tacoma
Narrows suspension
bridge just before it
collapsed.
Aerodynamic forces
caused the amplitude
of a particular standing
wave of the bridge to
increase dramatically.
The red line shows the original line of the deck of the
bridge.
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The Mathematics of Standing Waves

= A sinusoidal wave traveling to the right along the
x-axis with angular frequency w = 2zf, wave number
k = 2z/2 and amplitude a is

Dy = asin(kx — wt)
= An equivalent wave traveling to the left is
Dy = asin(kx + wr)
= We previously used the symbol A for the wave
amplitude, but here we will use a lowercase a to

represent the amplitude of each individual wave and
reserve A for the amplitude of the net wave.
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The Mathematics of Standing Waves

According to the principle of superposition, the net
displacement of the medium when both waves are
present is the sum of Dy and D; :

D(x, t) = Dy + Dy, = asin(kx — wt) + asin(kx + wf)

We can simplify this by using a trigonometric identity,
and arrive at

D(x, 1) = A(x) coswt

Where the amplitude function A(x) is defined as
A(x) = 2asinkx

The amplitude reaches a maximum value of A, = 2a
at points where sin kx= 1.
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The Mathematics of Standing Waves

©2017 Pearson Education, Inc

D(x, 1) = A(x) coswt

When r =0, coswt = 1.
“Thus the outer curve is the

" Shown iS the graph Of B amplitude function A(x)
D(x,t) at several 2
instants of time.

= The nodes occur at 0 x
x,,=mAl2, where m is
an integer. 24

The oscillation amplitude
changes with position.

A(x) = 2asinkx
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Example 17.1 Node Spacing on a String
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EXAMPLE 17.1 ‘ Node spacing on a string

A very long string has a linear density of 5.0 g/m and is stretched
with a tension of 8.0 N. 100 Hz waves with amplitudes of 2.0 mm
are generated at the ends of the string.

a. What is the node spacing along the resulting standing wave?
b. What is the maximum displacement of the string?

MODEL Two counter-propagating waves of equal frequency create
a standing wave.
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Example 17.1 Node Spacing on a String

EXAMPLE 17.1 ‘ Node spacing on a string

VISUALIZE The standing wave will look like Figure 17.5a.

©2017 Pearson Education, Inc

(a) Nodes are spaced A/2 apart.

D Antinodes &

¢ Ny A2
——
]
I
X

|
]
: [ Nodes
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Example 17.1 Node Spacing on a String

EXAMPLE 17.1 | Node spacing on a string

SOLVE a. The speed of the waves on the string is

s 80N
v=af e =0
VoV 0.0050 kg/m
and the wavelength is
v _ 40 m/s
== =0.40m =40 ¢
7 T00Hz 0= 2R ET

Thus the spacing between adjacent nodes is A/2 = 20 em.

b. The maximum displacement is A, = 2a = 4.0 mm.

max
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Waves on a String with a Discontinuity

= A string with a large linear density is connected to one
with a smaller linear density.

The tension is the same in both strings, so the wave
speed is slower on the left, faster on the right.

When a wave Discontinuity where the
encounters Such a wave speed increases

discontinuity, some  Before: =
of the wave’s energy mmj \em"

is transmitted forward

After:

and some is reflected. -+ A “wua
Imm.« ? -
String with slower Slrmg'wiih faster
wave speed wave speed
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Waves on a String with a Discontinuity

= Below, a wave encounters discontinuity at which the
wave speed decreases.
= In this case, the reflected pulse is inverted.
= We say that the ) )
reflected wave Discontinuity where the
h h h wave speed decreases
as a phase change B
. . —-
of = upon reflection.  Befere A 9

After:

e

-—

L

The reflected pulse is inverted.
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Waves on a String with a Boundary

Boundary
When a wave Before: N
reflects from a
boundary, the
reflected wave is After:

inverted, but has

the same V

amplitude. S
The reflected pu]sc is inverted
and its amplitude is unchanged.
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Creating Standing Waves

The figure shows a Wiggle the string in the middle.
string of length L tied ¢
atx=0andx=1L.
Reflections at the
ends of the string
cause waves of equal
amplitude and - NN— NN
wavelength to travel

in opposite directions =
along the string.

These are the

conditions that cause

a standing wave!

The reflected waves travel
through each other. This
creates a standing wave.

x=1L
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Standing Waves on a String

For a string of fixed length L, the boundary
conditions can be satisfied only if the wavelength
has one of the values:

B=2 =i 8d...
m

Because /f = v for a sinusoidal wave, the oscillation

frequency corresponding to wavelength 4,, is

=B U U =
aiarr it
The lowest allowed frequency is called the
fundamental frequency: f, = v/2L.
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Standing Waves on a String

= Shown are the first four m=1 o
possible standing waves on )

a string of fixed length L. T

= These possible standing Y
waves are called the modes ~ f Deeed
of the string, or sometimes by STy
the normal modes. . \_)\/" N \)

= Each mode, numbered by Yok Sl Nt
the integer m, has a unique HSE S5
wavelength and frequency. R VAN,

N N N
3 v

=i =42
=3 £
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Standing Waves on a String

= m is the number of antinodes on the standing wave.

= The fundamental mode, with m =1, has 4, = 2L.

= The frequencies of the normal modes form a series:
S 2 31

= The fundamental frequency f, can be found as the
difference between the frequencies of any two adjacent
modes: f, =Af =fi1 — fur

= Below is a time-exposure photograph of the m =3
standing wave on a string.
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QuickCheck 17.4

What is the mode number
of this standing wave?

A 4
5
6

Can't say without
knowing what kind of
wave it is.

cow
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QuickCheck 17.4

What is the mode number
of this standing wave?

A. 4 Y
\
‘/ 2 Z Mode # = number of antinodes

D. Can't say without
knowing what kind of
wave it is.
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QuickCheck 17.5

A standing wave on a string vibrates as shown.

Suppose the string tension is reduced to 1/4 its

original value while the frequency and length are Original standing wave
kept unchanged. Which standing wave pattern is
produced?
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QuickCheck 17.5

A standing wave on a string vibrates as shown.
Suppose the string tension is reduced to 1/4 its
original value while the frequency and length are
kept unchanged. Which standing wave pattern is
produced?

2

The frequency is £ =, .
qUENCY IS f, =m> -

Quartering the tension reduces v by one half.
Thus m must double to keep the frequency constant.

©2017 Pearson Education, Inc. Slide 17-51
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ves

= Standing electromagnetic waves can be established
between two parallel mirrors that reflect light back
and forth.

= Atypical laser cavity has a length L ~ 30 cm, and
visible light has a wavelength 1 = 600 nm.

= The standing light wave in a typical laser cavity has a
mode number m that is 2L/2 = 1,000,000!

Laser cavity
| | \\ | Laser
\ Standing light wave beam
Full reflector Partial reflector
®2017 Pearson Education, Inc. Slide 17-52
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Example 17.3 The Standing Light Wave Inside

a Laser

EXAMPLE 17.3 | The standing light wave inside a laser
Helium-neon lasers emit the red laser light commonly used in
classroom demonstrations and supermarket checkout scanners. A
helium-neon laser operates at a wavelength of precisely 632.9924
nm when the spacing between the mirrors is 310,372 mm

a. In which mode does this laser operate?

b. What is the next longest wavelength that could form a standing
wave in this laser cavity?

MODEL The light wave forms a standing wave between the two
mirrors
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Example 17.3 The Standing Light Wave Inside

a Laser

T
EXAMPLE 17.3 | The standing light wave inside a laser

visuaLIZE The standing wave looks like Figure 17.12.

SOLVE a. We can use A, = 2L/m 1o find that m (the mode) is
2L 2(0.310372 m)

T ea 0 e
‘There are 980,650 antinodes in the standing light wave.
b. The next longest wavelength that can fit in this laser cavity
will have one fewer node. It will be the m = 980,649 mode and its
wavelength will be

- 2(0.310372 m) ——

B

Assess The wavelength increases by a mere 0.0006 nm when the
mode number is decreased by 1.
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Standing Sound Waves

Along, narrow column of air, such as the air in a tube or
pipe, can support a longitudinal standing sound wave.
A closed end of a column of air must be a displacement
node, thus the boundary conditions—nodes at the
ends—are the same as for a standing wave on a string.
It is often useful to think of sound as a pressure wave
rather than a displacement wave: The pressure
oscillates around its equilibrium value.

The nodes and antinodes of the pressure wave are
interchanged with those of the displacement wave.
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Standing Sound Wave Time Sequence
Slide 1 of 3

Ax Positive Ax is to
the right

= Shownisthe m=2
standing sound wave o

in a closed-closed e _“.--‘-'j\/‘
tube of air at r=0. ‘ =0

1o the left

Z

¥

. Rarefaction . Compression

v ~
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Standing Sound Wave Time Sequence
Slide 2 of 3

Ax

= Shownisthe m=2
standing sound wave in 0 —x
a closed-closed tube of
air a quarter-cycle after r=T4
t=0.

Uniform pressure

No displacement

©2017 Pearson Education, Inc. Slide 17-57
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Standing Sound Wave Time Sequence

Slide 3 of 3

= Shown

t=0.

standing sound wave in 0
a closed-closed tube of
air a half-cycle after

©2017 Pearson Education, Inc

isthe m=2 /\

L
=7
.Compression _, Rarefaction
- <
These molecules never moved
They're at nodes.
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Standing Sound Waves

= Shown are the
displacement Ax and
pressure graphs for the
m =2 mode of standing
sound waves in a
closed-closed tube.

= The nodes and
antinodes of the
pressure wave are
interchanged with those
of the displacement

wave.

©2017 Pearson Education, Inc

ssure p,

pscillating around
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Example 17.4 Singing in the Shower
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EXAMPLE 17.4 | Singing in the shower

A shower stallis 2.45 m (8 0 tall, For what Frequencies less than 500 Hz are there standing
sound waves in the shower stall?

MODEL The shower stall. to 4 first approximation, is a column of air 245 m long. It is
closed at the ends by the ceiling and floor. Assume a 20°C speed of sound.

VISUALIZE A standing sound wave will have nodes at the ceiling and the fioor. The
=2 mode will look like Figure 17.14 rotated 90°,

SOLVE The fundamental frequency for a standing sound wave in this air column is

v 33mfs

-= 70 Hz
)

The possible standing-wave frequent

quency. These are 70 Hz, 140 Hz, 210 H.

ASSESS The many possible standing waves in a shower cause the sound to sesonate, which
helps explain why some people like 1o sing in the shower. Our approximation of the shower
stall as a one-dimensional twhe is a abit (00 simpli
would find additional modes, making the “sound spectrum’

er multiples of the fundamental fre-

350 He, 420 Hz, and 490 Hz.

three-dimensional analysis
en richer,

Slide 17-60
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Standing Sound Waves

= Shown are
displacement and
pressure graphs for the
first three standing-
wave modes of a tube
closed at both ends:

2L
Ay =—
m
p
Ju= mi
m=1,2,3,4,..

©2017 Pearson Education, Inc

Closed-closed

L
Pressure
/
—y =
Displacement =i
m=2
m=3
Slide 17-61
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Standing Sound Waves

= Shown are
displacement and
pressure graphs for the
first three standing-
wave modes of a tube
open at both ends:

2L
M=o
m
— v
fa=my,
m=1,2,3,4,..

©2017 Pearson Education, Inc

Open-open

Pressure =
i / i
\

Displacement m=1

QIO«:QXO

m=2

m=3
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Standing Sound Waves

= Shown are
displacement and
pressure graphs for the
first three standing-
wave modes of a tube
open at one end but
closed at the other:

4L
Ay =—

m

v
Sw=myr
m=1,3,57,..

©2017 Pearson Education, Inc

Open-closed
L
Pressure
Displacement

m=1

m=3

m=3
Slide 17-63
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QuickCheck 17.6

An open-open tube of air has
length L. Which is the
displacement graph of the m =3 L
standing wave in this tube?

©2017 Pearson Education, Inc
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QuickCheck 17.6

An open-open tube of air has
length L. Which is the
displacement graph of the m =3 L
standing wave in this tube?

A C. \/\/\_/\/
L L
B. D.
/
L 7 L
/ /
3/2 wavelengths Antinodes at open ends
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QuickCheck 17.7

An open-closed tube of air of length
L has the closed end on the right. |
Which is the displacement graph of I

the m = 3 standing wave in this tube?

Slide 17-66
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3/25/2019

An open-closed tube of air of length
L has the closed end on the right. |
Which is the displacement graph of L
the m = 3 standing wave in this tube?
A C.

L V L
B D. ?

/f
L / L /
3/4 wavelengths Node at closed end
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Example 17.5 Resonances of the Ear Canal

EXAMPLE 17.5 | Resonances of the ear canal

The eardrum, which transmits sound vibrations to the sensory or-
gans of the inner ear, lies at the end of the ear canal. For adults,
the ear canal is about 2.5 cm in length. What frequency standing
waves can occur in the ear canal that are within the range of
human hearing? The speed of sound in the warm air of the ear
canal is 350 m/s.

MoDEL The ear canal is open to the air at one end, closed by the
eardrum at the other. We can model it as an open-closed tube. The
standing waves will be those of Figure 17.15¢.
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Example 17.5 Resonances of the Ear Canal

EXAMPLE 17.5 | Resonances of the ear canal

soLvE The lowest standing-wave frequency is the fundamental
frequency for a 2.5-cm-long open-closed tube:

v 350 mis
=—=——H-——=73500Hz
N =T 20025 m)

Standing waves also occur at the harmonics, but an open-closed
tube has only odd harmonics. These are

£2=3f, = 10,500 Hz

fi="5f,=17.500 Hz
Higher harmonics are beyond the range of human hearing, as
discussed in Section 16.5.
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Example 17.5 Resonances of the Ear Canal

EXAMPLE 17.5 | Resonances of the ear canal

Assess The ear canal is short, so we expected the standing-wave
frequencies to be relatively high. The air in your ear canal responds
readily to sounds at these freq i hat we call a

of the ear canal—and transmits theses sounds to the eardrum.
Consequently, your ear actually is slightly more sensitive to sounds
with frequencies around 3500 Hz and 10,500 Hz than to sounds
at nearby frequencies.
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Musical Instrumen

= |nstruments such as the harp,
the piano, and the violin have
strings fixed at the ends and
tightened to create tension.

= Adisturbance generated on the
string by plucking, striking, or
bowing it creates a standing
wave on the string.

= The fundamental frequency is the musical note you
hear when the string is sounded:

v 1 T
== uN%
where T is the tension in the string and x is its linear
density.
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Musical Instruments

= With a wind instrument, blowing into the mouthpiece
creates a standing sound wave inside a tube of air.

= The player changes the notes by using her fingers to
cover holes or open valves, changing the length of the
tube and thus its fundamental frequency:

fi Y for an open-open tube instrument,

" 2L suchasaflute

f = Y for an open-closed tube
4L  instrument, such as a clarinet

In both of these equations, v is the speed of sound in
the air inside the tube.

Overblowing wind instruments can sometimes produce
higher harmonics such as f, = 2f, and f; = 3f;.
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QuickCheck 17.8

At room temperature, the fundamental frequency of
an open-open tube is 500 Hz. If taken outside on a
cold winter day, the fundamental frequency will be

A. Less than 500 Hz.
B. 500 Hz.
C. More than 500 Hz.
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QuickCheck 17.8

At room temperature, the fundamental frequency of
an open-open tube is 500 Hz. If taken outside on a
cold winter day, the fundamental frequency will be

v’ A. Less than 500 Hz.
B. 500 Hz.
C. More than 500 Hz.
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Example 17.6 Flutes and Clarinets

EXAMPLE 17.6 | Flutes and clarinets

A clarinet is 66.0 cm long. A flute is nearly the same length, with
63.6 cm between the hole the player blows across and the end of
the flute. What are the frequencies of the lowest note and the next
higher harmonic on a flute and on a clarinet? The speed of sound in
warm air is 350 m/s.

MODEL The flute is an open-open tube, open at the end as well
as at the hole the player blows across. A clarinet is an open-closed
tube because the player’s lips and the reed seal the tube at the
upper end.
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Example 17.6 Flutes and Clarinets

EXAMPLE 17.6 | Flutes and clarinets

SOLVE The lowest frequency is the fundamental frequency. For
the flute, an open-open tube, this is

v 30mls
h=30= 206a6m) - M2

The clarinet, an open-closed tube, has

v 350 m/s

(== _=133Hz
h=4 4(0.660 m)

The next higher harmonic on the flute’s open-open tube is m =2
with frequency f, = 2 f; = 550 Hz. An open-closed tube has only
odd harmonics, so the next higher harmonic of the clarinet is
£;=3f, =399 Hz.
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Example 17.6 Flutes and Clarinets

EXAMPLE 17.6 | Flutes and clarinets

ASSESS The clarinet plays a much lower note than the flute—
musically, about an octave lower—because it is an open-closed
tube. It’s worth noting that neither of our fundamental frequencies
is exactly correct because our open-open and open-closed tube
models are a bit too simplified to adequately describe a real instrument.
However, both calculated frequencies are close because our models
do capture the essence of the physics.
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Interference in One Dimension

= The pattern resulting from the superposition of two
waves is often called interference. In this section we
will look at the interference of two waves traveling in
the same direction.

Two overlapped sound waves

Xy

Speaker 2 Speaker 1 Point of detection
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Interference in One Dimension

= A sinusoidal wave
traveling to the
right along the
x-axis has a
displacement:
D = a sin(kx —wt + @)
= The phase
constant ¢, tells us
what the source is
doing at r=0.

©2017 Pearson Education, Inc

Snapshot graph at ¢ = 0 for ¢, = 0 rad

.« When this crest was emitted,

" a quarter-cycle ago, the speaker
cone was all the way forward.

a < — |/

A A

" Now this speaker cone, at x = 0,
is centered and moving backward

Snapshot graph at t = 0 for ¢y = /2 rad

.. This speaker cone is

all the way forward
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Con

= D, = asin(kx, — ot + ¢,,)
D, = a sin(kx, -t + ¢,,)
D=D,+D,

= The two waves are in
phase, meaning that

D\ (x) = Dy(x)
= The resulting amplitude is

A =2a for maximum
constructive interference.

©2017 Pearson Education, Inc

uctive Interference

Maximum constructive interference

These two waves are in phase.
Their crests are alig

Their superposition produces a

traveling wave with amplitude 2a.
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Destructive Interference

= D, =a sin(kx, — ot + ¢,,)
D, = a sin(kx, —wt + ¢,,)
D=D,+D,

= The two waves are out of
phase, meaning that

D\ (x) ==Dy(x)
= The resulting amplitude is

A =0 for perfect
destructive interference.

©2017 Pearson Education, Inc

Perfect destructive interference

These two waves are out of phase
The crests of one wave are aligned
with the troughs of the other. Wave 2

()

Their superposition produces a

4 wave with zero amplitude
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The Mathematics of Interference

= As two waves of equal amplitude and frequency travel
together along the x-axis, the net displacement of the
medium is:

D =D+ D, = asinlkx; — wt + ¢ ) + asin(kx, — wi + ¢y )
= asing, + asing,
= We can use a trigonometric identity to write the net
displacement as

D= [ZHCUS

Adl] .
T” Sin(kx,p = OF + (holeyy)

where A = ¢, + 4, is the phase difference between the
two waves.
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The Mathematics of Interference

The amplitude has a maximum value A = 2q if
cos(A¢g/2) = £1.
This is maximum constructive interference,
when

Ap=m-2m (maximum amplitude A = 2a)

where m is an integer.
Similarly, the amplitude is zero if cos(A¢/2) = 0.
This is perfect destructive interference, when:

Ad = (m + %) 27 (minimum amplitude A = Q)

©2017 Pearson Education, Inc Slide 17-83

Interference in One Dimension

= Shown are two Speaker 2

identical sources located —
one wavelength apart:
Ax =1

\ This crest is emitted as a crest

= The two waves are Identical sources from speaker 2 passes by.
w - Ay =10 o
in step” with e Speaker 1 )
A¢ = 27, s0 we have \ —_—
maximum constructive /\/
interference with A = 2a. Ar=A :
Path-length The two waves are in
difference phase (A¢ = 27 rad) and

interfere constructively.
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Interference in One Dimensi

= Shown are two Identical sources are separated by half a
identical sources located  wavelength.
half a wavelength apart:

Ax =2 2
The two waves
have phase
difference A¢ ==, i
so we have perfect
destructive interference
with A =0.
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Example 17.7 Interference Between Two

Sound Waves

EXAMPLE 17.7 | Interference between two sound waves
You are standing in front of two side-by-side loudspeakers playing
sounds of the same cncy. Initially th is almost no sound at

s is moved slowly away from you. The

as the separation betw
um when the speakers are 0.75 m
es 1o move, the intensity starts to
‘What is the distance between the speakers when the sound
s again a minim

MODEL The changing sound intensity is due to the interference of

two overlapped sound waves.

VISUALIZE Moving one speaker relative to the other changes the
phase difference between the waves.
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Example 17.7 Interference Between Two

Sound Waves

EXAMPLE 17.7 | Interference between two sound waves

SOLVE A minimum sound intensity implies that the two sound
waves are interfering destruetively. Initially the loudspeakers are
side by side, so the situation is as shown in Figure 17.20a with
Ax=0and Ad,=mrad. T cakers themselves are out
of not change Ay, but it
does change the path-length difference Ax and thus increases the
overall phase difference A¢. Constructive interference, causing
maximum intensity, is reached when

A A
A¢=znT‘+ Atfm:‘_’ﬂT‘*—'n =2 rad

where we used m = | because this is the first separation giving

constructive interference.
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Example 17.7 Interference Between Two

Sound Waves

EXAMPLE 17.7 | Interference between two sound waves
SOLVE The speaker separation at which this occurs is Ax = A2
This is the situation shown in FIGURE 17.21.

Because Ax=075m is A2, the sound’s wavelength is
A= 1.50 m. The next point of destructive interference, with m = 1,
accurs when

Ax Ax
Ag= 3177+ Ady= 3717+1r= 3w rad
Thaus the distance between the speakers when the sound intensity
is again a minimum is
Ax=A=150m
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Example 17.7 Interference Between Two

Sound Waves

EXAMPLE 17.7 | Interference between two sound waves
ASSESS A separation of A gives constructive interference for two
identical speakers (Agg = 0). Here the phase difference of  rad
between the speakers (one is pushing forward as the other pulls
back) gives destructive interference at this separation.

The sources are out of phase, Ay, = & rad

LI ave

1IN

I
Ax= 1A ;
I
The sources eparated As a result, the
©2017 Pearson Education, e by half a wavelength waves are in phase.
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The Mathematics of Interference

For A¢ = 40°, the interference is constructive
but not maximum constructive.

v Ap=40° A=1.88

= |tis entirely possible, of L/
course, that the two 0+ x
waves are neither ]
exactly in phase nor ’
Ag =9 A=14dla
exactly out of phase. a

77
Shown are the L] NN

calculated interference
of two waves that differ Ad = 160° A =035

in phase by 402, 902 and O%%%
160°. marl “eit]

For A¢ = 160°, the interference is destructive
but not perfect destructive
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QuickCheck 17.9

Two loudspeakers emit sound N\ A=20m
waves with the same wavelength \ﬁ
and the same amplitude. The

traveling along the same axis. At
the point where the dot is,

A. the interference is constructive.
B. the interference is destructive.

C. theinterference is somewhere between
constructive and destructive.

D. There’s not enough information to tell about
the interference.

©2017 Pearson Education, Inc

waves are shown displaced, for (]77/\\/\'/
clarity, but assume that both are 2 //

— —
1.0m A=20m
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QuickCheck 17.9

Two loudspeakers emit sound 8 A=20m
waves with the same wavelength \ﬁ
and the same amplitude. The

traveling along the same axis. At
the point where the dot is,

A. the interference is constructive.
B. the interference is destructive.

i/ C. the interference is somewhere between
constructive and destructive.

D. There’s not enough information to tell about
the interference.
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waves are shown displaced, for ib/\\/\'/
clarity, but assume that both are 2 /

— —_—
1.Om A=20m
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QuickCheck 17.10

Two loudspeakers emit sound A=20m

\

and the same amplitude. Which of

the following would cause there to \

be destructive interference at the 2 )

position of the dot?

Move speaker 2 forward (right) 1.0 m.
Move speaker 2 forward (right) 0.5 m.
Move speaker 2 backward (left) 0.5 m.
Move speaker 2 backward (left) 1.0 m.

Nothing. Destructive interference is not possible
in this situation.

moow»

©2017 Pearson Education, Inc

waves with the same wavelength 1;(}9/\ /\/

1L.Om A=20m
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QuickCheck 17.10

Two loudspeakers emit sound A=20m
waves with the same wavelength
and the same amplitude. Which of
the following would cause there to
be destructive interference at the

position of the dot? b T
A. Move speaker 2 forward (right) 1.0 m. Move this peak back

: 1/4 wavelength to
B. Move speaker 2 forward (right) 0.5 m. align with the trough

/C. Move speaker 2 backward (left) 0.5 m.  of wave 1.
D. Move speaker 2 backward (left) 1.0 m.

E. Nothing. Destructive interference is not possible
in this situation.
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Example 17.8 More Interference of Sound

WEVES

EXAMPLE 17.8 | More interference of sound waves

Two loudspeakers emit 500 Hz sound waves with an amplitude
of 0.10 mm. Speaker 2 is 1.00 m behind speaker 1, and the phase
difference between the speakers is 90°. What is the amplitude of
the sound wave at a point 2.00 m in front of speaker 1?7

MODEL The amplitude is determined by the interference of the two
waves. Assume that the speed of sound has a room-temperature
(20°C) value of 343 m/s.
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Example 17.8 More Interference of Sound

Waves

EXAMPLE 17.8 ‘ More interference of sound waves
soLVE The amplitude of the sound wave is
A =|[2acos(Agpr2)|

where a = 0.10 mm and the phase difference between the waves is

Ax
Ab=dr— b = zw—A‘ + Ay
The sound’s wavelength is

v 343mfs
A=Y= g 6es
F 500 Hz "
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32



Example 17.8 More Interference of Sound

WWEVEES

EXAMPLE 17.8 ‘ More interference of sound waves

soLvE Distances x; = 2.00 m and x, = 3.00 m are measured from the
speakers, so the path-length difference is Ax= 1.00 m. We're
given that the inherent phase difference between the speakers is
Adpy = 7/2 rad. Thus the phase difference at the observation point is

1.00m &
0 T d=1073r
Gem 2 rad = 10.73 rad

and the amplitude of the wave at this point is

A
m:sz"+ Ao =127

NE

2

= |2 A —
= [2acos 5

(0.200 mm) cos

|:U.I2I mm

AssEss The interference is constructive because A = a, but less
than maximum constructive interference.
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Application: Thin-Film Optical Coatings

Air Thin film  Glass
. . e - Index n
= Thin transparent films, g
pIaCed on gIaSS SUrraCeS, the first surface.
such as lenses, can
H 2. Part of the wave reflects back
control reflections from wih a hase shif of sl par
the gIaSS. continues on into the film,
= Antireflection coatings on A
the lenses in cameras, ” et a o e sl
microscopes, and other pes o cn o S o
optical equipment are o
examples of thin-film e i o agi
Coatings_ and interfere
d
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Application: Thin-Film Optical Coatings

= The phase difference between the two reflected waves is

2d 2nd

Ap = Zﬁm = ZTTT
where n is the index of refraction
of the coating, d is the thickness,
and 1 is the wavelength of the

light in vacuum or air.

= For a particular thin-film, constructive or destructive
interference depends on the wavelength of the light:

2nd -
Ac = ? m=1,2,3,... (constructive interference)
2nd -
Ap = - m=1,2,3,... (destructive interference)
m=3
®2017 Pearson Education, Inc. Slide 17-99
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Example 17.9 Designing an Antireflection

Coating

EXAMPLE 17.9 | Designing an antireflection coating

Magnesium fluoride (MgF,) is used as an antireflection coating
on lenses. The index of refraction of MgF; is 1.39. What is the
thinnest film of MgF, that works as an antireflection coating at
A = 510 nm, near the center of the visible spectrum?

MODEL Reflection is minimized if the two reflected waves inter-
fere destructively.

©2017 Pearson Edueatn, sidi7.165°8

Example 17.9 Designing an Antireflection

Coating

EXAMPLE 17.9 | Designing an antireflection coating

SOLVE The film thicknesses that cause destructive interference at
wavelength A are

1\ A
d=fm ===
d [m 2) o
The thinnest film has m = 1. Its thickness is
A _ 510nm
= =92nm

4= T 3129
The film thickness is significantly less than the wavelength of visible
light!
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Example 17.9 Designing an Antireflection

Coating

EXAMPLE 17.9 ‘ Designing an antireflection coating

Assess The reflected light is completely eliminated (perfect
destructive interference) only if the two reflected waves have equal
amplitudes. In practice, they don’t. Nonetheless, the reflection is
reduced from = 4% of the incident intensity for “bare glass™ to
well under 1%. Furthermore, the intensity of reflected light is much
reduced across most of the visible spectrum (400-700 nm), even
though the phase difference deviates more and more from 7 rad
as the wavelength moves away from 510 nm. It is the increasing
reflection at the ends of the v e spectrum (A = 400 nm and
A = 700 nm), where A¢ dev nificantly from 77 rad, that
gives a reddish-purple tinge to the lenses on cameras and binoc-
ulars. Homework problems will Tet you explore situations wh
only one of the two reflections has a reflection phase shift of
 rad.

Le:
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A Circular or Spherical Wave

The wave fronts are Troughs are halfway

= Acircular or spherical crests, separated by . between wave fronts.
wave can be written H ;

D(1, t) = a sin(kr — ot + ¢)

where r is the distance
measured outward from
the source.

= The amplitude a of a

circular or spherical wave
diminishes as r increases.

This graph shows the
displacement of the
medium.
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Interference in Two and Three Dimensions

= Two overlapping water waves create an interference
pattern.
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Interference in Two and Three Dimensions

Two in-phase sources emit

« = Points of constructive
interference. A crest is aligned
with a crest, or a trough with a
trough.

» = Points of destructive
interference. A crest is aligned
with a trough of another wave.

* Constructive
interference occurs
where two erests or
two troughs overlap
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Interference in Two and Three Dimensions

= The mathematical description of interference in two
or three dimensions is very similar to that of one-
dimensional interference.

= The conditions for constructive and destructive
interference are

Maximum constructive interference:
A¢=21r%+ Ado=m-27

m=0,1,2,...
Maximum destructive interference:

A¢=21r%+ Ady=(m+})-2m

where Ar is the path-length difference.
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Interference in Two and Three Dimensions

®AtA, Ary = A, so this is a point
of constructive interference.

= The figure shows two
identical sources that are
in phase.

The path-length difference
Ar determines whether the
interference at a particular
point is constructive or
destructive.

® AUB, Ary = 1A, s0 this is a point
of destructive interference
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Interference in Two and Three Dimensions

Antinodal lines, constructive
interference, oscillation with
maximum amplitude. Intensity
is at its maximum value.

Nodal lines, destructive
interference, oscillation with
minimum amplitude. Intensity
is close to zero.

Ar=2A

©2017 Pearson Education, Inc. Slide 17-108

3/25/2019

36



QuickCheck 17.11

Two in-phase sources emit
sound waves of equal
wavelength and intensity. At the
position of the dot,

A. The interference is
constructive.

B. The interference is
destructive.

C. The interference is somewhere
between constructive and destructive.

D. There’s not enough information to tell
about the interference.

©2017 Pearson Education, Inc
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QuickCheck 17.11

Two in-phase sources emit
sound waves of equal
wavelength and intensity. At the
position of the dot,

v’A. The interference is
constructive.

B. The interference is
destructive.

C. The interference is somewhere
between constructive and destructive.

D. There’s not enough information to tell
about the interference.
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QuickCheck 17.12

Two in-phase sources emit
sound waves of equal
wavelength and intensity. How
many antinodal lines (lines of
constructive interference) are
in the interference pattern?

A.

B.
C.
D
E

O W DN =

©2017 Pearson Education, Inc
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QuickCheck 17.12

Two in-phase sources emit
sound waves of equal
wavelength and intensity. How
many antinodal lines (lines of
constructive interference) are
in the interference pattern?

A1
B. 2 —

VC. 3 Sources are 1.5 4 apart, so
D. 4 no point can have Ar more
E. 5 than 1.5 4.
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Problem-Solving Strategy: Interference of Two

WEVES

Interference of two waves

MoDEL Model the waves as linear, circular, or spherical.

visuaLize Draw a picture showing the sources of the waves and the point
where the waves interfere. Give relevant dimensions. Identify the distances r|
and r, from the sources to the point. Note any phase difference A, between the
two sources.

©2017 Pearson Education, Inc

Slide 17-113

Problem-Solving Strategy: Interference of Two

Waves

Interference of two waves

soLve The interference depends on the path-length difference Ar=r, — r, and
the source phase difference Ad,.

A
Constructive:  A¢ =27 Tr +Ady=m-2mw

- m=0,1,2,...
Destructive:  Ag =+ Ady= (m+3)-2m

For identical sources (A, = 0), the interference is maximum constructive if
Ar = mA, maximum destructive if Ar = (m + %))t.

assess Check that your result has correct units and significant figures, is reasonable,
and answers the question.
Bercise 18

Slide 17-114
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Example 17.10 Two-Dimensional Interference

Between Two Loudspeakers

EXAMPLE 17.10 ‘ Two-dimensional interference
between two loudspeakers

Two loudspeakers in a plane are 2.0 m apart and in phase with
each other. Both emit 700 Hz sound s into a room where the
speed of sound is 341 m/s. A listener stands 5.0 m in front of the
loudspeakers and 2.0 m to one side of the center. Is the interference
at this point maximum constructive, maximum destructive, or in
between? How will the situation differ if the loudspeakers are out
of phase?

MODEL The two speakers are sources of in-phase, spherical
waves. The overlap of these waves causes interference.
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Example 17.10 Two-Dimensional Interference

Between Two Loudspeakers

EXAMPLE 17.10 | Two-dimensional interference
between two loudspeakers
VISUALIZE FIGURE 17.28 shows the loudspeakers and defines the

distances ry and r, to the point of observation. The figure includes
ons and notes that Ach; = 0 rad.

s0m

LOm

Lam

700 Hz

©2017 Pearson Education, Inc
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Example 17.10 Two-Dimensional Interference

Between Two Loudspeakers

EXAMPLE 17.10 | Two-dimensional interference
between two loudspeakers

SOLVE It’s not r, and r, that matter, but the difference Ar between
them. From the geometry of the figure we can calculate that

no=V(5.0m)’+ (1L.0m)P=510m
r=V(50m)+(3.0m)’=583m

Thusthe path-length dif
length of the sound waves

nceis Ar=r, — r; = 0.73 m. The wave-
s

v _ 34l mfs
S 700 Hz

A= =0.487m
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Example 17.10 Two-Dimensional Interference

Between Two Loudspeakers

EXAMPLE 17.10 | Two-dimensional interference
between two loudspeakers
SOLVE In terms of wavelengths, the path-length difference is
Ar=3A
Because the sources are in phase (Ad,=0), this is the
condition for destructive interference. If the sources were out of

phase (A, = 7 rad), then the phase difference of the waves at the
listener would be

+ 7 rad = 447 rad

Ar 3
Ap=2m—C+ Ado =23

This is an integer multiple of 277 rad, so in this case the interference
would be constructive.
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Example 17.10 Two-Dimensional Interference

Between Two Loudspeakers

EXAMPLE 17.10 | Two-dimensional interference
between two loudspeakers

ASSESS Both the path-length difference and any inherent phase
difference of the sources must be considered when evaluating
interference.

Lam

LOm

©2017 Pearson Education, e 700 Hz Slide 17-119

The medium oscillates
rapidly at frequency f, ..

= The figure shows
the history graph for 2y AT
the superposition of nn n M n‘ﬂ M n
the sound from two 0 LA i
sources of equal V U ‘U

amplitude a, but
-3

i i —2a H -
slightly different Loud SoftiLoud Soft Loud Soft Loud
frequency.

The amplitude is slowly
modulated as 2acos (w4 1).
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= With beats, the sound intensity rises and falls twice
during one cycle of the modulation envelope.

= Each “loud-soft-loud” is one beat, so the beat frequency
Jiears Which is the number of beats per second, is twice
the modulation frequency f;,q4-

= The beat frequency is

Y e SR Y ) W\ . .
oo = 2ma=12 =22l —-=]=IA-£l

2 2\27 27w

where, to keep f;.,. from being negative, we will always
let f, be the larger of the two frequencies.

= The beat frequency is simply the difference between the
two individual frequencies.

©2017 Pearson Education, Inc. Slide 17-121

Visual Beats

= Shown is a graphical The visual beat frequency
i$ foe = 2 per inch.
example of beats. 27 lines per inch A

= Two “fences” of I
slightly different i
frequencies are
superimposed on
each other.

The center part of the
figure has two “beats”

25 lines per inch

per inch:
Soer =27-25=2
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QuickCheck 17.13

You hear 2 beats per second when two sound sources,
both at rest, play simultaneously. The beats disappear if
source 2 moves toward you while source 1 remains at
rest. The frequency of source 1 is 500 Hz. The
frequency of source 2 is

A. 496 Hz
498 Hz
500 Hz
502 Hz
504 Hz

moow®
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QuickCheck 17.13

You hear 2 beats per second when two sound sources,
both at rest, play simultaneously. The beats disappear if
source 2 moves toward you while source 1 remains at
rest. The frequency of source 1 is 500 Hz. The
frequency of source 2 is

A. 496 Hz
'B. 498 Hz
C. 500Hz
D. 502Hz
E. 504Hz
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Example 17.11 Detecting Bats with Beats

EXAMPLE 17.11 | Detecting bats with beats

The little brown bat is a common species in North America. It
emits echolocation pulses at a frequency of 40 kHz, well above the
range of human hearing. To allow researchers 1o “hear” these bats,
the bat detector shown in FIGURE 17.30 combines the bat’s sound
wave at frequency f; with a wave of frequency f, from a tunable
oscillator. The resulting beat frequency is then amplified and sent
to a loudspeaker. To what frequency should the tunable oscillator
be set to produce an audible beat frequency of 3 kHz?
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Example 17.11 Detecting Bats with Beats

Microphone

f2

oscillator Speaker |f1 —fz‘

Nl . X
O Mixer Filter ~ EQ /\/\

LA
The mixer combines the signal from The filter extracts the
the bat with a sinusoidal wave from an beat frequency, which
oscillator. The result is a modulated wave. is sent to the speaker.
2017 Pearson Eucaton, Siide 17-126
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Example 17.11 Detecting Bats with Beats

EXAMPLE 17.11 ‘ Detecting bats with beats

soLvE Combining two waves with different frequencies gives a
beat frequency

= h- 5l
A beat frequency will be generated at 3 kHz if the oscillator
frequency and the bat frequency differ by 3 kHz. An oscillator
frequency of either 37 kHz or 43 kHz will work nicely.
Assess The electronic circuitry of radios, televisions, and cell
phones makes extensive use of mixers to generate difference
frequencies.
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General Principles

Principle of Superposition

The displacement of a medium when more than one wave is present is the sum at each
point of the displacements due to each individual wave.
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Important Concepts

Standing Waves
Standing waves are duc to the superposition of two
traveling waves moving in opposite directions.
Antinodes
=l

s

‘The amplitude at position x is

Nodes” Noge spacing is JA.

A(x) = 2asinkx
where a is the ampli- _m=1
tude of each wave. ( >
The boundary =

conditions determine -
which standing-wave
frequencies and
wavelengths are =
allowed. The allowed P
standing waves are <>O<_>
modes of the system.

Standing waves on & string

©2017 Pearson Education, Inc

Slide 17-130

Important Concepts

Solving Interference Problems
Maximum constructive interference
occurs where crests are aligned with
crests and troughs with troughs. The
waves are in phase.

Maximum destructive interference
occurs where crests are aligned with
troughs. The waves are out of phase.
MoDEL Model the wave as linear,
circular, or spherical.

visuaLIZE Find distances to the sources.
SOLVE Interference depends on the
phase difference Ad between the waves:

Constructive: Ad = 2w%+ Agy=m+2mw
5 Ar i
Destructive: A= 27"+ Ay = (m +]) -2

Ar is the path-length difference of the twa waves, and Ads, is any phase
difference between the sources. For identical (in-phase) sources:

Constructive: Ar=mA  Destructive: Ar = (m +})A

ASSESS [s the result reasonable?
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Applications

Boundary conditions
Strings, electromagnetic waves, and sound waves in closed-closed
tubes must have nodes at both ends:

2L v
m u=m 2L
The frequencies and wavelengths are the same for a sound wave in an
open-apen tube, which has antinodes at both ends.
A sound wave in an open-closed tube must have a node at the closed
end but an antinode at the open end. This leads to

Ay =mf; m=1,23,....

v
Ap= f_:m4L:mj| m=1,3,5,7.
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Applicatio

Beats (loud-soft-loud-soft modulations of intensity) occur when
two waves of slightly different frequency are superimposed.
D

Soft Loud Soft Loud Soft
The beat frequency between waves of frequencies f; and f; is

fow= i £l
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