
\qquad
\qquad
\qquad
\qquad
\qquad

IN THIS CHAPTER, you will understand and use the \qquad ideas of superposition.
\qquad
Slide 17-2

Chapter 17 Preview

What is superposition?

Waves can pass through each other.
When they do, their displacements add
together at each point. This is called the principle of superposition. It is a property of waves but not of particles.
«LOOKING BACK Sections 16.1-16.4
Properties of traveling waves

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chapter 17 Preview
Why is superposition important?
Superposition and standing waves occur often in the world
around us, especially when there are reflections. Musical
instruments, microwave systems, and lasers all depend on standing
waves. Standing waves are also important for large structures
such as buildings and bridges. Superposition of light waves causes
interference, which is used in electro-optic devices and precision
measuring techniques.

Chapter 17 Reading Questions	

Reading Question 17.1

When a wave pulse on a string reflects from \qquad a hard boundary, how is the reflected pulse related to the incident pulse?
A. Shape unchanged, amplitude unchanged
B. Shape inverted, amplitude unchanged
C. Shape unchanged, amplitude reduced
D. Shape inverted, amplitude reduced
E. Amplitude unchanged, speed reduced
\qquad
© 2017 Pearson Education, inc.

Reading Question 17.1

When a wave pulse on a string reflects from a hard boundary, how is the reflected pulse related to the incident pulse?
A. Shape unchanged, amplitude unchanged
B. Shape inverted, amplitude unchanged
C. Shape unchanged, amplitude reduced
D. Shape inverted, amplitude reduced
E. Amplitude unchanged, speed reduced

Reading Question 17.2

There are some points on a standing \qquad wave that never move. What are these points called? \qquad
A. Harmonics
B. Normal Modes \qquad
C. Nodes
D. Anti-nodes
E. Interference

Reading Question 17.2

There are some points on a standing wave that never move. What are these points called? \qquad
A. Harmonics
B. Normal Modes \qquad
C. Nodes
D. Anti-nodes
E. Interference

22017 Pearson Education, 1re.

Reading Question 17.3

Two sound waves of nearly equal frequencies are played simultaneously. What is the name of the acoustic phenomena you hear if you listen to these two waves?
A. Beats
B. Diffraction
C. Harmonics
D. Chords \qquad
E. Interference
©2017 Pearson Edxation, inc.

Reading Question 17.3

Two sound waves of nearly equal frequencies are played simultaneously. What is the name of the acoustic phenomena you hear if you listen to these two waves?

A. Beats

B. Diffraction
C. Harmonics
D. Chords
E. Interference

Reading Question 17.4

The various possible standing waves on a \qquad string are called the
A. Antinodes.
B. Resonant nodes.
C. Normal modes.
D. Incident waves.

Reading Question 17.4

The various possible standing waves on a string are called the
A. Antinodes.
B. Resonant nodes.
C. Normal modes.
D. Incident waves.

Reading Question 17.5

The frequency of the third harmonic of a string is \qquad
A. One-third the frequency of the fundamental. \qquad
B. Equal to the frequency of the fundamental.
C. Three times the frequency of the fundamental. \qquad
D. Nine times the frequency of the fundamental.

Reading Question 17.5

The frequency of the third harmonic of a string is
A. One-third the frequency of the fundamental.
B. Equal to the frequency of the fundamental.
C. Three times the frequency of the fundamental.
D. Nine times the frequency of the fundamental.

\qquad
\qquad
\qquad

The Principle of Superposition

- If wave 1 displaces a particle in the medium by D_{1} \qquad and wave 2 simultaneously displaces it by D_{2}, the net displacement of the particle is $D_{1}+D_{2}$.

Principle of superposition When two or more waves are simultaneously present at a single point in space, the displacement of the medium at that point is the sum of the displacements due to each individual wave

QuickCheck 17.1

Two wave pulses on a string approach each other at speeds of $1 \mathrm{~m} / \mathrm{s}$. How does the string look at $t=3 \mathrm{~s}$?

Slide $17-24$

Standing Waves

- Shown is a time-lapse photograph of a standing wave on a vibrating string.

- It's not obvious from the photograph, but this is actually a superposition of two waves.
- To understand this, consider two sinusoidal waves with the same frequency, wavelength, and amplitude traveling in opposite directions.

Standing Waves

Standing Waves

- The figure has collapsed several graphs into a single graphical representation of a standing wave.
- A striking feature of a standing-wave pattern is the existence of nodes, points that never move!
- The nodes are spaced $\lambda / 2$ apart.

- Halfway between the nodes are the antinodes where the particles in the medium oscillate with maximum displacement.
© 2017 Pearson Education, rac.

Standing Waves

QuickCheck 17.3

What is the wavelength of this standing wave?
\qquad
A. 0.25 m .

B. 0.5 m . \qquad
C. 1.0 m .
D. 2.0 m .
E. Standing waves don't have a wavelength.

QuickCheck 17.3

What is the wavelength of this standing wave?
\qquad
\qquad
A. 0.25 m .

B. 0.5 m . \qquad
C. 1.0 m .
D. 2.0 m .
E. Standing waves don't have a wavelength.
\qquad
\qquad

Standing Waves

- This photograph shows the Tacoma Narrows suspension bridge just before it collapsed.
- Aerodynamic forces caused the amplitude of a particular standing wave of the bridge to increase dramatically.
- The red line shows the original line of the deck of the bridge.

The Mathematics of Standing Waves

- A sinusoidal wave traveling to the right along the x-axis with angular frequency $\omega=2 \pi f$, wave number $k=2 \pi / \lambda$ and amplitude a is

$$
D_{\mathrm{R}}=a \sin (k x-\omega t)
$$

- An equivalent wave traveling to the left is

$$
D_{\mathrm{L}}=a \sin (k x+\omega t)
$$

- We previously used the symbol A for the wave amplitude, but here we will use a lowercase a to represent the amplitude of each individual wave and reserve A for the amplitude of the net wave.

Q2017 Pearson Education, Inc

The Mathematics of Standing Waves

- According to the principle of superposition, the net displacement of the medium when both waves are present is the sum of D_{R} and D_{L} :

$$
D(x, t)=D_{\mathrm{R}}+D_{\mathrm{L}}=a \sin (k x-\omega t)+a \sin (k x+\omega t)
$$

- We can simplify this by using a trigonometric identity, and arrive at

$$
D(x, t)=A(x) \cos \omega t
$$

- Where the amplitude function $A(x)$ is defined as

$$
A(x)=2 a \sin k x
$$

- The amplitude reaches a maximum value of $A_{\text {max }}=2 a$ at points where $\sin k x=1$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 17.1 Node Spacing on a String

EXAMPLE 17.1 Node spacing on a string
A very long string has a linear density of $5.0 \mathrm{~g} / \mathrm{m}$ and is stretched
with a tension of 8.0 N .100 Hz waves with amplitudes of 2.0 mm are generated at the ends of the string.
a. What is the node spacing along the resulting standing wave?
b. What is the maximum displacement of the string?

MODEL Two counter-propagating waves of equal frequency create a standing wave.

2017 Pearson Eucuation, 1re

Example 17.1 Node Spacing on a String

EXAMPLE 17.1 Node spacing on a string
visualize The standing wave will look like Figure 17.5a.

(a) Nodes are spaced $\lambda / 2$ apart.

Example 17.1 Node Spacing on a String

EXAMPLE 17.1 Node spacing on a string

\qquad
SOLVE a. The speed of the waves on the string is

$$
v=\sqrt{\frac{T_{\mathrm{s}}}{\mu}}=\sqrt{\frac{8.0 \mathrm{~N}}{0.0050 \mathrm{~kg} / \mathrm{m}}}=40 \mathrm{~m} / \mathrm{s}
$$

\qquad
and the wavelength is

$$
\lambda=\frac{v}{f}=\frac{40 \mathrm{~m} / \mathrm{s}}{100 \mathrm{~Hz}}=0.40 \mathrm{~m}=40 \mathrm{~cm}
$$

\qquad
Thus the spacing between adjacent nodes is $\lambda / 2=20 \mathrm{~cm}$.
b. The maximum displacement is $A_{\text {max }}=2 a=4.0 \mathrm{~mm}$.

2017 Pearson Eucuation, lrc.

Waves on a String with a Boundary

- When a wave reflects from a boundary, the reflected wave is inverted, but has the same amplitude.

Creating Standing Waves

- The figure shows a string of length L tied at $x=0$ and $x=L$.
- Reflections at the ends of the string cause waves of equal amplitude and wavelength to travel in opposite directions along the string.
- These are the conditions that cause a standing wave!

2017 Pearson Education, 1ro
Slide 17-44

Standing Waves on a String

- For a string of fixed length L, the boundary conditions can be satisfied only if the wavelength has one of the values:

$$
\lambda_{m}=\frac{2 L}{m} \quad m=1,2,3,4, \ldots
$$

- Because $\lambda f=v$ for a sinusoidal wave, the oscillation frequency corresponding to wavelength λ_{m} is

$$
f_{m}=\frac{v}{\lambda_{m}}=\frac{v}{2 L / m}=m \frac{v}{2 L} \quad m=1,2,3,4, \ldots
$$

- The lowest allowed frequency is called the fundamental frequency: $f_{1}=v / 2 L$.

After:

The reflected pulse is inverted and its amplitude is unchanged.

2017 Pearson Euvation, 1ro
-
\qquad

Standing Waves on a String

- Shown are the first four possible standing waves on a string of fixed length L.
- These possible standing waves are called the modes of the string, or sometimes the normal modes.
- Each mode, numbered by the integer m, has a unique wavelength and frequency.

Q2017 Pearson Education, Moc:
Slide 17-46

Standing Waves on a String

- m is the number of antinodes on the standing wave.
\qquad
- The fundamental mode, with $m=1$, has $\lambda_{1}=2 L$.
- The frequencies of the normal modes form a series: \qquad $f_{1}, 2 f_{1}, 3 f_{1}, \ldots$
- The fundamental frequency f_{1} can be found as the \qquad difference between the frequencies of any two adjacent modes: $f_{1}=\Delta f=f_{\mathrm{m}+1}-f_{\mathrm{m}}$.
- Below is a time-exposure photograph of the $m=3$ standing wave on a string.

Q 2017 Pearson Education, hro

QuickCheck 17.4

What is the mode number of this standing wave? \qquad
A. 4

B. 5
C. 6
D. Can't say without knowing what kind of wave it is. \qquad
\qquad
\qquad

QuickCheck 17.4

What is the mode number
of this standing wave?

Mode \# = number of antinodes
B. 5
C. 6
D. Can't say without knowing what kind of wave it is.

QuickCheck 17.5

A standing wave on a string vibrates as shown.
Suppose the string tension is reduced to $1 / 4$ its original value while the frequency and length are kept unchanged. Which standing wave pattern is produced?

The frequency is $f_{m}=m \frac{v}{2 L}$.
Quartering the tension reduces v by one half.
Thus m must double to keep the frequency constant.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Standing Electromagnetic Waves
Standing electromagnetic waves can be established between two parallel mirrors that reflect light back and forth.

- A typical laser cavity has a length $L \approx 30 \mathrm{~cm}$, and visible light has a wavelength $\lambda \approx 600 \mathrm{~nm}$.
- The standing light wave in a typical laser cavity has a mode number m that is $2 L / \lambda \approx 1,000,000$!

Q2017 Pearson Euvacion, lrac

Example 17.3 The Standing Light Wave Inside
a Laser

EXAMPLE 17.3 The standing light wave inside a laser
Helium-neon lasers emit the red laser light commonly used in
classroom demonstrations and supermarket checkout scanners. A
helium-neon laser operates at a wavelength of precisely 632.9924
nm when the spacing between the mirrors is 310.372 mm .
a. In which mode does this laser operate?
b. What is the next longest wavelength that could form a standing wave in this laser cavity?
model The light wave forms a standing wave between the two mirrors.

Example 17.3 The Standing Light Wave Inside a Laser

EXAMPLE 17.3 The standing light wave inside a laser
\qquad visualize The standing wave looks like Figure 17.12

SOLVE a. We can use $\lambda_{m}=2 L / m$ to find that m (the mode) is \qquad

$$
m=\frac{2 L}{\lambda_{m}}=\frac{2(0.310372 \mathrm{~m})}{6.329924 \times 10^{-7} \mathrm{~m}}=980,650
$$

There are 980,650 antinodes in the standing light wave
b. The next longest wavelength that can fit in this laser cavit
will have one fewer node. It will be the $m=980,649$ mode and its wavelength will be

$$
\lambda=\frac{2 L}{m}=\frac{2(0.310372 \mathrm{~m})}{980,649}=632.9930 \mathrm{~nm}
$$

ASSESS The wavelength increases by a mere 0.0006 nm when the mode number is decreased by 1 .

Standing Sound Waves

- A long, narrow column of air, such as the air in a tube or pipe, can support a longitudinal standing sound wave.
- A closed end of a column of air must be a displacement node, thus the boundary conditions-nodes at the ends-are the same as for a standing wave on a string.
- It is often useful to think of sound as a pressure wave rather than a displacement wave: The pressure oscillates around its equilibrium value.
- The nodes and antinodes of the pressure wave are interchanged with those of the displacement wave.

Q2017 Pearson Edxation, Ino.

Standing Sound Wave Time Sequence
Slide 1 of 3

- Shown is the $m=2$ standing sound wave in a closed-closed tube of air at $t=0$

Standing Sound Wave Time Sequence
Slide 2 of 3

- Shown is the $m=2$ standing sound wave in a closed-closed tube of air a quarter-cycle after $t=0$.

Standing Sound Wave Time Sequence Slide 3 of 3

- Shown is the $m=2$ standing sound wave in a closed-closed tube of air a half-cycle after $t=0$.

Q 2017 Pearson Eucaction, Inc.
Slide $17-58$

Example 17.4 Singing in the Shower

EXAMPLE 17.4	Singing in the shower

A shower stall is $2.45 \mathrm{~m}(8 \mathrm{ff}$ tall. For what frequencies less than 500 Hz are there standing
sound waves in the shower sall?
MODEL The shower stall, to a firm
closed at the ends by the ceiling and floor. Assume a $200^{\circ} \mathrm{C}$ speed of sound.
VISUALIzE A standing sound wave will have nodes at the ceiling and the floor. The
$m=2$ mode will look like Figure 17.14 rotated 90°.
$m=2$ mode will look like Figure 17.14 rotated 90°.
sotve The fundamental frequency for a standing sound wave in this air column is $f_{1}=\frac{v}{2 L}=\frac{343 \mathrm{~m} / \mathrm{s}}{2(2.45 \mathrm{~m})}=70 \mathrm{~Hz}$
The possible standing-wave frequencies are integer multiples of the fundamental fre
quency. These are $70 \mathrm{~Hz}, 140 \mathrm{~Hz}, 210 \mathrm{~Hz}, 280 \mathrm{~Hz}, 350 \mathrm{~Hz}, 420 \mathrm{~Hz}$, and 490 Hz
quency. These are $70 \mathrm{~Hz}, 140 \mathrm{~Hz}, 210 \mathrm{~Hz}, 280 \mathrm{~Hz}, 350 \mathrm{~Hz}, 420 \mathrm{~Hz}$, and 490 Hz
Assess The many possible standing waves in a shower cause the sound to orsonate, which
helps explain why some people like to sing in the shower. Our approximation of the shower
stall as a one-dimensional tube is actually a bit too simplistic. A three-dimensional analysis
would find additional modes, making the "sound spectrum" even richer.
would find additional modes. making the "sound spectrum" even richer.

2017 Pearson Educaion, Inc.

Standing Sound Waves

- Shown are displacement and pressure graphs for the first three standingwave modes of a tube open at one end but closed at the other:
$\lambda_{m}=\frac{4 L}{m}$
Open-closed
$f_{m}=m \frac{v}{4 L}$
$m=1,3,5,7, \ldots$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QuickCheck 17.6
An open-open tube of air has length L. Which is the
displacement graph of the $m=3$ $\bar{\square}$ $\xrightarrow[L]{\rightleftarrows}$
standing wave in this tube?
\qquad

\qquad
\qquad
B.

D.

\qquad
\qquad

QuickCheck 17.6

An open-open tube of air has length L. Which is the
displacement graph of the $m=3$
displacement graph of the $m=3$
standing wave in this tube?
\qquad
\qquad
\qquad
$\bar{\longrightarrow}$
$\xrightarrow[L]{\longleftrightarrow}$

\qquad
\qquad
\qquad
\qquad

Example 17.5 Resonances of the Ear Canal

EXAMPLE 17.5 \quad Resonances of the ear canal
The eardrum, which transmits sound vibrations to the sensory or
gans of the inner ear, lies at the end of the ear canal. For adults,
the ear canal is about 2.5 cm in length. What frequency standing
waves can occur in the ear canal that are within the range of
human hearing? The speed of sound in the warm air of the ear canal is $350 \mathrm{~m} / \mathrm{s}$.
MODEL The ear canal is open to the air at one end, closed by the
eardrum at the other. We can model it as an open-closed tube. The standing waves will be those of Figure 17.15c.

Example 17.5 Resonances of the Ear Canal

EXAMPLE 17.5 Resonances of the ear canal \qquad
solve The lowest standing-wave frequency is the fundamental frequency for a $2.5-\mathrm{cm}$-long open-closed tube: \qquad

$$
f_{1}=\frac{v}{4 L}=\frac{350 \mathrm{~m} / \mathrm{s}}{4(0.025 \mathrm{~m})}=3500 \mathrm{~Hz}
$$

Standing waves also occur at the harmonics, but an open-closed tube has only odd harmonics. These are
\qquad

$$
\begin{aligned}
& f_{3}=3 f_{1}=10,500 \mathrm{~Hz} \\
& f_{5}=5 f_{1}=17,500 \mathrm{~Hz}
\end{aligned}
$$

\qquad
Higher harmonics are beyond the range of human hearing, as discussed in Section 16.5 \qquad

Example 17.5 Resonances of the Ear Canal

EXAMPLE 17.5 Resonances of the ear canal
ASSESS The ear canal is short, so we expected the standing-wave frequencies to be relatively high. The air in your ear canal responds readily to sounds at these frequencies-what we call a resonance of the ear canal-and transmits theses sounds to the eardrum. Consequently, your ear actually is slightly more sensitive to sounds with frequencies around 3500 Hz and $10,500 \mathrm{~Hz}$ than to sounds at nearby frequencies.
\qquad
\qquad
\qquad
\qquad
\qquad

Musical Instruments

- Instruments such as the harp, the piano, and the violin have strings fixed at the ends and tightened to create tension.
- A disturbance generated on the string by plucking, striking, or bowing it creates a standing
 wave on the string. \qquad
- The fundamental frequency is the musical note you hear when the string is sounded:

$$
f_{1}=\frac{v}{2 L}=\frac{1}{2 L} \sqrt{\frac{T_{\mathrm{s}}}{\mu}}
$$

where T_{s} is the tension in the string and μ is its linear density.
Q2017 Pearson Education, 1ro

Musical Instruments

- With a wind instrument, blowing into the mouthpiece creates a standing sound wave inside a tube of air.
- The player changes the notes by using her fingers to
\qquad cover holes or open valves, changing the length of the tube and thus its fundamental frequency: \qquad

$$
\begin{array}{ll}
f_{1}=\frac{v}{2 L} & \begin{array}{l}
\text { for an open-open tube instrument, } \\
\text { such as a flute }
\end{array} \\
f_{1}=\frac{v}{4 L} & \begin{array}{l}
\text { for an open-closed tube } \\
\text { instrument, such as a clarinet }
\end{array}
\end{array}
$$

- In both of these equations, v is the speed of sound in the air inside the tube.
- Overblowing wind instruments can sometimes produce higher harmonics such as $f_{2}=2 f_{1}$ and $f_{3}=3 f_{1}$.
2017 Pearson Education, Inc. Slide 17-72

QuickCheck 17.8

At room temperature, the fundamental frequency of \qquad an open-open tube is 500 Hz . If taken outside on a cold winter day, the fundamental frequency will be \qquad
A. Less than 500 Hz .
B. 500 Hz .
C. More than 500 Hz .

QuickCheck 17.8

At room temperature, the fundamental frequency of an open-open tube is 500 Hz . If taken outside on a cold winter day, the fundamental frequency will be \qquad
A. Less than $\mathbf{5 0 0} \mathbf{~ H z}$.
B. 500 Hz .
C. More than 500 Hz .

\qquad

Example 17.6 Flutes and Clarinets

EXAMPLE 17.6 Flutes and clarinets
SOLVE The lowest frequency is the fundamental frequency. For the flute, an open-open tube, this is

$$
f_{1}=\frac{v}{2 L}=\frac{350 \mathrm{~m} / \mathrm{s}}{2(0.636 \mathrm{~m})}=275 \mathrm{~Hz}
$$

The clarinet, an open-closed tube, has

$$
f_{1}=\frac{v}{4 L}=\frac{350 \mathrm{~m} / \mathrm{s}}{4(0.660 \mathrm{~m})}=133 \mathrm{~Hz}
$$

The next higher harmonic on the flute's open-open tube is $m=2$ with frequency $f_{2}=2 f_{1}=550 \mathrm{~Hz}$. An open-closed tube has only odd harmonics, so the next higher harmonic of the clarinet is $f_{3}=3 f_{1}=399 \mathrm{~Hz}$. \qquad

Example 17.6 Flutes and Clarinets

EXAMPLE 17.6 Flutes and clarinets
ASSESS The clarinet plays a much lower note than the flutemusically, about an octave lower-because it is an open-closed tube. It's worth noting that neither of our fundamental frequencies is exactly correct because our open-open and open-closed tube models are a bit too simplified to adequately describe a real instrument. However, both calculated frequencies are close because our models do capture the essence of the physics.

Interference in One Dimension

- The pattern resulting from the superposition of two waves is often called interference. In this section we will look at the interference of two waves traveling in \qquad the same direction.

Two overlapped sound waves
\qquad

Speaker 2 Speaker 1
Point of detection

Interference in One Dimension

- A sinusoidal wave traveling to the right along the x-axis has a displacement:
$D=a \sin \left(k x-\omega t+\phi_{0}\right)$
- The phase constant ϕ_{0} tells us what the source is doing at $t=0$.

22017 Pearson Education, rac.

Constructive Interference

- $D_{1}=a \sin \left(k x_{1}-\omega t+\phi_{10}\right)$
$D_{2}=a \sin \left(k x_{2}-\omega t+\phi_{20}\right)$
$D=D_{1}+D_{2}$
- The two waves are in phase, meaning that $D_{1}(x)=D_{2}(x)$
- The resulting amplitude is $A=2 a$ for maximum constructive interference.

2017 Pearson Eucation, lre
Slide 17-80

Destructive Interference

- $D_{1}=a \sin \left(k x_{1}-\omega t+\phi_{10}\right)$
$D_{2}=a \sin \left(k x_{2}-\omega t+\phi_{20}\right)$
$D=D_{1}+D_{2}$
- The two waves are out of phase, meaning that

$$
D_{1}(x)=-D_{2}(x)
$$

- The resulting amplitude is $A=0$ for perfect destructive interference.

2017 Pearson Education, lrc.

Maximum constructive interference These two waves are in phase.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Mathematics of Interference

- As two waves of equal amplitude and frequency travel together along the x-axis, the net displacement of the medium is:
$D=D_{1}+D_{2}=a \sin \left(k x_{1}-\omega t+\phi_{10}\right)+a \sin \left(k x_{2}-\omega t+\phi_{20}\right)$

$$
=a \sin \phi_{1}+a \sin \phi_{2}
$$

We can use a trigonometric identity to write the net displacement as

$$
D=\left[2 a \cos \left(\frac{\Delta \phi}{2}\right)\right] \sin \left(k x_{\mathrm{avg}}-\omega t+\left(\phi_{0}\right)_{\mathrm{avg}}\right)
$$

where $\Delta \phi=\phi_{1}+\phi_{2}$ is the phase difference between the two waves.

O2017 Pearson Eucuation, rac.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Mathematics of Interference

- The amplitude has a maximum value $A=2 a$ if $\cos (\Delta \phi / 2)= \pm 1$.
- This is maximum constructive interference, when

$$
\Delta \phi=m \cdot 2 \pi \quad \text { (maximum amplitude } A=2 a \text {) }
$$

\qquad
where m is an integer.

- Similarly, the amplitude is zero if $\cos (\Delta \phi / 2)=0$.
- This is perfect destructive interference, when:
$\Delta \phi=\left(m+\frac{1}{2}\right) \cdot 2 \pi \quad$ (minimum amplitude $A=0$)

Example 17.7 Interference Between Two Sound Waves

EXAMPLE 17.7 $\begin{aligned} & \text { Interference between two sound waves }\end{aligned}$ \qquad
You are standing in front of two side-by-side loudspeakers playing
sounds of the same frequency. Initially there is almost no sound at
all. Then one of the speakers is moved slowly away from you. The
sound intensity increases as the separation between the speakers
increases, reaching a maximum when the speakers are 0.75 m
decrese. What is the distance between the seakers whe the sound
intensity is again a minimum?
MODEL The changing sound intensity is due to the interference of
two overlapped sound waves.
VISUALIZE Moving one speaker relative to the other changes the phase difference between the waves.

Example 17.7 Interference Between Two Sound Waves

EXAMPLE 17.7	Interference between two sound waves

SOLVE A minimum sound intensity implies that the two sound waves are interfering destructively. Initially the loudspeakers are side by side, so the situation is as shown in Figure 17.20a with $\Delta x=0$ and $\Delta \phi_{0}=\pi \mathrm{rad}$. That is, the speakers themselves are out of phase. Moving one of the speakers does not change $\Delta \phi_{0}$, but it
does change the path-length difference Δx and thus increases the
overall phase difference $\Delta \phi$. Constructive interference, causing maximum intensity, is reached when

$$
\Delta \phi=2 \pi \frac{\Delta x}{\lambda}+\Delta \phi_{0}=2 \pi \frac{\Delta x}{\lambda}+\pi=2 \pi \mathrm{rad}
$$

where we used $m=1$ because this is the first separation giving constructive interference.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 17.7 Interference Between Two Sound Waves

EXAMPLE 17.7 $\begin{aligned} & \text { Interference between two sound waves }\end{aligned}$
Solve The speaker separation at which this occurs is $\Delta x=\lambda / 2$.
This is the situation shown in FIGURE 17.21.
Because $\Delta x=0.75 \mathrm{~m}$ is $\lambda / 2$, the sound's wavelength is
$\lambda=1.50 \mathrm{~m}$. The next point of destructive interference, with $m=$
rs when
$\Delta \phi=2 \pi \frac{\Delta x}{\lambda}+\Delta \phi_{0}=2 \pi \frac{\Delta x}{\lambda}+\pi=3 \pi \mathrm{rad}$
Thus the distance between the speakers when the sound intensity
is again a minimum is
$\Delta x=\lambda=1.50 \mathrm{~m}$ \qquad
\qquad
\qquad
\qquad

Example 17.7 Interference Between Two Sound Waves

EXAMPLE 17.7 Interference between two sound waves

ASSESS A separation of λ gives constructive interference for two
identical speakers $\left(\Delta \phi_{0}=0\right)$. Here the phase difference of $\pi \mathrm{rad}$
between the speakers (one is pushing forward as the other pulls back) gives destructive interference at this separation.

The sources are out of phase, $\Delta \phi_{0}=\pi \mathrm{rad}$

20017 Pearson Eucaction, In

QuickCheck 17.9

Two loudspeakers emit sound waves with the same wavelength and the same amplitude. The waves are shown displaced, for clarity, but assume that both are traveling along the same axis. At

\qquad
\qquad
\qquad the point where the dot is,
A. the interference is constructive.
B. the interference is destructive.
C. the interference is somewhere between constructive and destructive.
D. There's not enough information to tell about the interference.

QuickCheck 17.9

Two loudspeakers emit sound waves with the same wavelength and the same amplitude. The waves are shown displaced, for clarity, but assume that both are traveling along the same axis. At

\qquad
\qquad the point where the dot is,
A. the interference is constructive.
B. the interference is destructive.
C. the interference is somewhere between constructive and destructive.
D. There's not enough information to tell about the interference.

QuickCheck 17.10

Two loudspeakers emit sound waves with the same wavelength and the same amplitude. Which of the following would cause there to be destructive interference at the position of the dot?

\qquad
\qquad
\qquad
A. Move speaker 2 forward (right) 1.0 m . \qquad
B. Move speaker 2 forward (right) 0.5 m .
C. Move speaker 2 backward (left) 0.5 m .
D. Move speaker 2 backward (left) 1.0 m .
E. Nothing. Destructive interference is not possible in this situation.

QuickCheck 17.10

Two loudspeakers emit sound waves with the same wavelength and the same amplitude. Which of the following would cause there to be destructive interference at the position of the dot?

A. Move speaker 2 forward (right) 1.0 m . Move this peak back
B. Move speaker 2 forward (right) 0.5 m . $\quad 1 / 4$ wavelength to
C. Move speaker 2 backward (left) $\mathbf{0 . 5} \mathbf{~ m}$. of wave 1
D. Move speaker 2 backward (left) 1.0 m .
E. Nothing. Destructive interference is not possible in this situation.
© 2017 Pearson Education, lic.

Example 17.8 More Interference of Sound
 Waves

EXAMPLE 17.8 \quad More interference of sound waves
Two loudspeakers emit 500 Hz sound waves with an amplitude of 0.10 mm . Speaker 2 is 1.00 m behind speaker 1 , and the phase difference between the speakers is 90°. What is the amplitude of the sound wave at a point 2.00 m in front of speaker 1 ?
MODEL The amplitude is determined by the interference of the two waves. Assume that the speed of sound has a room-temperature $\left(20^{\circ} \mathrm{C}\right)$ value of $343 \mathrm{~m} / \mathrm{s}$.

Example 17.8 More Interference of Sound

 WavesEXAMPLE 17.8 More interference of sound waves
solve The amplitude of the sound wave is

$$
A=\mid 2 a \cos (\Delta \phi / 2)
$$

\qquad
where $a=0.10 \mathrm{~mm}$ and the phase difference between the waves is

$$
\Delta \phi=\phi_{2}-\phi_{1}=2 \pi \frac{\Delta x}{\lambda}+\Delta \phi_{0}
$$

\qquad
The sound's wavelength is

$$
\lambda=\frac{v}{f}=\frac{343 \mathrm{~m} / \mathrm{s}}{500 \mathrm{~Hz}}=0.686 \mathrm{~m}
$$

Example 17.8 More Interference of Sound Waves

EXAMPLE 17.8 More interference of sound waves
SOLVE Distances $x_{1}=2.00 \mathrm{~m}$ and $x_{2}=3.00 \mathrm{~m}$ are measured from the speakers, so the path-length difference is $\Delta x=1.00 \mathrm{~m}$. We're given that the inherent phase difference between the speakers is $\Delta \phi_{0}=\pi / 2 \mathrm{rad}$. Thus the phase difference at the observation point is
$\Delta \phi=2 \pi \frac{\Delta x}{\lambda}+\Delta \phi_{0}=2 \pi \frac{1.00 \mathrm{~m}}{0.686 \mathrm{~m}}+\frac{\pi}{2} \mathrm{rad}=10.73 \mathrm{rad}$ \qquad
and the amplitude of the wave at this point is
$A=\left|2 a \cos \left(\frac{\Delta \phi}{2}\right)\right|=\left|(0.200 \mathrm{~mm}) \cos \left(\frac{10.73}{2}\right)\right|=0.121 \mathrm{~mm}$
ASSESS The interference is constructive because $A>a$, but les than maximum constructive interference.

Application: Thin-Film Optical Coatings

- Thin transparent films, placed on glass surfaces, such as lenses, can control reflections from the glass.
Antireflection coatings on the lenses in cameras, microscopes, and other optical equipment are examples of thin-film coatings.

2017 Pearson Education, rro
Slide 17-98

Application: Thin-Film Optical Coatings

- The phase difference between the two reflected waves is

$$
\Delta \phi=2 \pi \frac{2 d}{\lambda n}=2 \pi \frac{2 n d}{\lambda}
$$

where n is the index of refraction of the coating, d is the thickness, and λ is the wavelength of the light in vacuum or air.

- For a particular thin-film, constructive or destructive interference depends on the wavelength of the light:
$\lambda_{\mathrm{C}}=\frac{2 n d}{m} \quad m=1,2,3, \ldots \quad$ (constructive interference)
$\lambda_{\mathrm{D}}=\frac{2 n d}{m-\frac{1}{2}} \quad m=1,2,3, \ldots \quad$ (destructive interference)

Example 17.9 Designing an Antireflection Coating

EXAMPLE 17.9 Designing an antireflection coating
Magnesium fluoride $\left(\mathrm{MgF}_{2}\right)$ is used as an antireflection coating on lenses. The index of refraction of MgF_{2} is 1.39 . What is the thinnest film of MgF_{2} that works as an antireflection coating at $\lambda=510 \mathrm{~nm}$, near the center of the visible spectrum?
MODEL Reflection is minimized if the two reflected waves interfere destructively

Q2017 Pearson Eucation, 1ro.

Example 17.9 Designing an Antireflection Coating

EXAMPLE 17.9 Designing an antireflection coating
SOLVE The film thicknesses that cause destructive interference at wavelength λ are

$$
d=\left(m-\frac{1}{2}\right) \frac{\lambda}{2 n}
$$

The thinnest film has $m=1$. Its thickness is

$$
d=\frac{\lambda}{4 n}=\frac{510 \mathrm{~nm}}{4(1.39)}=92 \mathrm{~nm}
$$

The film thickness is significantly less than the wavelength of visible
light!
\qquad light!

\qquad
\qquad
\qquad
\qquad

Interference in Two and Three Dimensions

- Two overlapping water waves create an interference pattern.
\qquad

Interference in Two and Three Dimensions

\qquad

Interference in Two and Three Dimensions

- The mathematical description of interference in two or three dimensions is very similar to that of onedimensional interference. \qquad
- The conditions for constructive and destructive interference are \qquad

Maximum constructive interference:

$$
\Delta \phi=2 \pi \frac{\Delta r}{\lambda}+\Delta \phi_{0}=m \cdot 2 \pi
$$

Maximum destructive interference

$$
\Delta \phi=2 \pi \frac{\Delta r}{\lambda}+\Delta \phi_{0}=\left(m+\frac{1}{2}\right) \cdot 2 \pi
$$

where Δr is the path-length difference.
2017 Pearson Education, lra.

QuickCheck 17.11

Two in-phase sources emit sound waves of equal wavelength and intensity. At the position of the dot,
A. The interference is constructive.
B. The interference is destructive.
C. The interference is somewhere between constructive and destructive.
D. There's not enough information to tell about the interference.
-2017 Pearson Education, Inc

QuickCheck 17.11

Two in-phase sources emit sound waves of equal wavelength and intensity. At the position of the dot,
A. The interference is constructive.
B. The interference is destructive.
C. The interference is somewhere between constructive and destructive.
D. There's not enough information to tell about the interference.

Q 2017 Pearson Education, lro

QuickCheck 17.12

Two in-phase sources emit sound waves of equal wavelength and intensity. How many antinodal lines (lines of constructive interference) are in the interference pattern?
A. 1
B. 2
C. 3
D. 4
E. 5

${ }_{2017}$ Pearson Education, lre.

QuickCheck 17.12

Two in-phase sources emit sound waves of equal wavelength and intensity. How many antinodal lines (lines of constructive interference) are in the interference pattern?
A. 1
B. 2
C. 3
D. 4
E. 5

Sources are 1.5λ apart, so no point can have Δr more than 1.5λ.
\qquad
\qquad
\qquad
\qquad
\qquad

Problem-Solving Strategy: Interference of Two Waves

PROBLEM-SOLVING STRATEGY 17.1

Interference of two waves

MODEL Model the waves as linear, circular, or spherical.
visualize Draw a picture showing the sources of the waves and the point where the waves interfere. Give relevant dimensions. Identify the distances r_{1} and r_{2} from the sources to the point. Note any phase difference $\Delta \phi_{0}$ between the two sources.

Problem-Solving Strategy: Interference of Two Waves

$$
\begin{aligned}
& \text { PROBLEM-SOLVING STRATEGY } 17.1 \\
& \text { Interference of two waves } \\
& \text { soLvE The interference depends on the path-length difference } \Delta r=r_{2}-r_{1} \text { and } \\
& \text { the source phase difference } \Delta \phi_{0} \text {. } \\
& \text { Constructive: } \quad \Delta \phi=2 \pi \frac{\Delta r}{\lambda}+\Delta \phi_{0}=m \cdot 2 \pi \\
& \text { Destructive: } \quad \Delta \phi=2 \pi \frac{\Delta r}{\lambda}+\Delta \phi_{0}=\left(m+\frac{1}{2}\right) \cdot 2 \pi \quad m=0,1,2, \ldots
\end{aligned}
$$

\qquad

For identical sources $\left(\Delta \phi_{0}=0\right)$, the interference is maximum constructive if $\Delta r=m \lambda$, maximum destructive if $\Delta r=\left(m+\frac{1}{2}\right) \lambda$.
ASSESS Check that your result has correct units and significant figures, is reasonable, and answers the question.

Exercise 18
22017 Pearson Education, rac.
Slide 17-114
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 17.10 Two-Dimensional Interference
Between Two Loudspeakers

EXAMPLE 17.10 Two-dimensional interference between two loudspeakers

Two loudspeakers in a plane are 2.0 m apart and in phase with each other. Both emit 700 Hz sound waves into a room where the speed of sound is $341 \mathrm{~m} / \mathrm{s}$. A listener stands 5.0 m in front of the loudspeakers and 2.0 m to one side of the center. Is the interference at this point maximum constructive, maximum destructive, or in between? How will the situation differ if the loudspeakers are out of phase?
MODEL The two speakers are sources of in-phase, spherical waves. The overlap of these waves causes interference.
© 2017 Pearson Eucacaion, Inc.

Example 17.10 Two-Dimensional Interference
Between Two Loudspeakers

EXAMPLE 17.10 Two-dimensional interference between two loudspeakers
VISUALIZE FIGURE 17.28 shows the loudspeakers and defines the
distances r_{1} and r_{2} to the point of observation. The figure includes
dimensions and notes that $\Delta \phi_{0}=0$ rad

Slide 17-116
© 2017 Pearson Eucacaion, Inc.

Example 17.10 Two-Dimensional Interference Between Two Loudspeakers

EXAMPLE 17.10 Two-dimensional interference between two loudspeakers

SOLVE It's not r_{1} and r_{2} that matter, but the difference Δr between
them. From the geometry of the figure we can calculate that
\qquad

$$
r_{1}=\sqrt{(5.0 \mathrm{~m})^{2}+(1.0 \mathrm{~m})^{2}}=5.10 \mathrm{~m}
$$

$$
r_{2}=\sqrt{(5.0 \mathrm{~m})^{2}+(3.0 \mathrm{~m})^{2}}=5.83 \mathrm{~m}
$$

\qquad
Thusthepath-length difference is $\Delta r=r_{2}-r_{1}=0.73 \mathrm{~m}$. The wavelength of the sound waves is

$$
\lambda=\frac{v}{f}=\frac{341 \mathrm{~m} / \mathrm{s}}{700 \mathrm{~Hz}}=0.487 \mathrm{~m}
$$

Example 17.10 Two-Dimensional Interference
Between Two Loudspeakers

EXAMPLE 17.10 Two-dimensional interference between two loudspeakers

solve In terms of wavelengths, the path-length difference is

$$
\Delta r=\frac{3}{2} \lambda
$$

Because the sources are in phase $\left(\Delta \phi_{0}=0\right)$, this is the condition for destructive interference. If the sources were out of phase ($\Delta \phi_{0}=\pi \mathrm{rad}$), then the phase difference of the waves at the listener would be

$$
\Delta \phi=2 \pi \frac{\Delta r}{\lambda}+\Delta \phi_{0}=2 \pi\left(\frac{3}{2}\right)+\pi \mathrm{rad}=4 \pi \mathrm{rad}
$$

This is an integer multiple of 2π rad, so in this case the interference would be constructive.

O2017 Paesson Eabacionen ha

Example 17.10 Two-Dimensional Interference
Between Two Loudspeakers

| EXAMPLE 17.10 | Two-dimensional interference |
| :--- | :--- | :--- | between two loudspeakers

ASSESS Both the path-length difference and any inherent phase
difference of the sources must be considered when evaluating interference.

Beats
The figure shows
the history graph for
the superposition of
the sound from two
sources of equal
amplitude a, but
slightly different
frequency.

Beats

- With beats, the sound intensity rises and falls twice during one cycle of the modulation envelope.
- Each "loud-soft-loud" is one beat, so the beat frequency $f_{\text {beat }}$, which is the number of beats per second, is twice the modulation frequency $f_{\text {mod }}$.
- The beat frequency is

$$
f_{\text {beat }}=2 f_{\text {mod }}=2 \frac{\omega_{\text {mod }}}{2 \pi}=2 \cdot \frac{1}{2}\left(\frac{\omega_{1}}{2 \pi}-\frac{\omega_{2}}{2 \pi}\right)=\left|f_{1}-f_{2}\right|
$$

where, to keep $f_{\text {beat }}$ from being negative, we will always let f_{1} be the larger of the two frequencies.

- The beat frequency is simply the difference between the two individual frequencies.
© 2017 Pearson Education, 1re. Slide 17-121

QuickCheck 17.13

You hear 2 beats per second when two sound sources, both at rest, play simultaneously. The beats disappear if \qquad source 2 moves toward you while source 1 remains at rest. The frequency of source 1 is 500 Hz . The frequency of source 2 is
\qquad
A. 496 Hz \qquad
B. 498 Hz
C. 500 Hz \qquad
D. 502 Hz
E. 504 Hz \qquad

QuickCheck 17.13

You hear 2 beats per second when two sound sources, both at rest, play simultaneously. The beats disappear if \qquad source 2 moves toward you while source 1 remains at rest. The frequency of source 1 is 500 Hz . The frequency of source 2 is
A. 496 Hz
B. 498 Hz
C. 500 Hz
D. 502 Hz
E. 504 Hz

\qquad
\qquad

Important Concepts

Standing Waves
Standing waves are due to the superposition of two
traveling waves moving in opposite directions.

Important Concepts

Solving Interference Problems	
Maximum constructive interference occurs where crests are aligned with crests and troughs with troughs. The waves are in phase.	Antinodal lines, maximum onstructive interference.
Maximum destructive interference occurs where crests are aligned with troughs. The waves are out of phase.	
MODEL Model the wave as linear, circular, or spherical.	
SOLVE Interference depends on the phase difference $\Delta \phi$ between the waves:	
$\text { Constructive: } \Delta \phi=2 \pi \frac{\Delta r}{\lambda}+\Delta \phi_{0}=m \cdot 2 \pi$	
Destructive: $\Delta \phi=2 \pi \frac{\Delta r}{\lambda}+\Delta \phi_{0}=\left(m+\frac{1}{2}\right) \cdot 2 \pi$	
Δr is the path-length difference of the two waves, and $\Delta \phi_{0}$ is any phase difference between the sources. For identical (in-phase) sources:	
Constructive: $\Delta r=m \lambda \quad$ Destructive: $\Delta r=\left(m+\frac{1}{2}\right) \lambda$	
ASSEss is the result reasonable?	

Applications

Boundary conditions
Strings, electromagnetic waves, and sound waves in closed-closed tubes must have nodes at both ends:

$$
\lambda_{m}=\frac{2 L}{m} \quad f_{m}=m \frac{v}{2 L}=m f_{1} \quad m=1,2,3,
$$

The frequencies and wavelengths are the same for a sound wave in an open-open tube, which has antinodes at both ends.
A sound wave in an open-closed tube must have a node at the closed end but an antinode at the open end. This leads to

$$
\lambda_{m}=\frac{4 L}{m} \quad f_{m}=m \frac{v}{4 L}=m f_{1} \quad m=1,3,5,7, \ldots .
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

