
\qquad

IN THIS CHAPTER, you will learn the basic properties of traveling waves.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chapter 16 Preview

What are some wave properties?
A wave is characterized by:

- Wave speed: How fast it travels through the medium.
- Wavelength: The distance between two neighboring crests.
- Frequency: The number of oscillations
 per second.
- Amplitude: The maximum displacement.
«LOOKING BACK Sections 15.1-15.2 Properties of simple harmonic motion

| Chapter 16 Preview | |
| :--- | :--- | :--- | :--- |
| | |

Chapter 16 Preview

Chapter 16 Preview
How will I use waves?
Waves are literally everywhere. Communications systems
from radios to cell phones to fiber optics use waves. Sonar
and radar and medical ultrasound use waves. Music and musical
instruments are all about waves. Waves are present in the oceans,
the atmosphere, and the earth. This chapter and the next will
allow you to understand and work with a wide variety of waves
that you may meet in your career.
Slide 16.8

Chapter 16 Reading Questions
Slive 16:9

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reading Question 16.1

A graph showing wave displacement versus position at a specific instant of time is called a \qquad
A. Snapshot graph. \qquad
B. History graph.
C. Bar graph.
D. Line graph.
E. Composite graph.
© 2017 Peaston Edxation, Ino.

Reading Question 16.2

A graph showing wave displacement versus time at a specific point in space is called a \qquad
\qquad
A. Snapshot graph.
B. History graph. \qquad
C. Bar graph.
D. Line graph. \qquad
E. Composite graph.

Reading Question 16.2

A graph showing wave displacement versus time at a specific point in space is called a
A. Snapshot graph.
B. History graph.
C. Bar graph.
D. Line graph.
E. Composite graph.

Reading Question 16.3

A wave front diagram shows
A. The wavelengths of a wave.
B. The crests of a wave.
C. How the wave looks as it moves toward you.
D. The forces acting on a string that's under tension.
E. Wave front diagrams were not discussed in this chapter.

Reading Question 16.3

A wave front diagram shows
A. The wavelengths of a wave.
B. The crests of a wave.
C. How the wave looks as it moves toward you.
D. The forces acting on a string that's under tension.
E. Wave front diagrams were not discussed in this chapter.

Reading Question 16.4

The constant, k, introduced in Section 16.3 on Sinusoidal Waves, is
A. The Boltzman's constant, with units: J/K \qquad
B. The Coulomb constant, with units: $\mathrm{N} \mathrm{m}^{2} / \mathrm{c}^{2}$
C. The force constant, with units: n / m
D. The wave number, with units: $\mathrm{rad} / \mathrm{m}$
E. The wavelength, with units: m
© 2017 Pearson Education, inc.

Reading Question 16.4

The constant, k, introduced in Section 16.3 on Sinusoidal Waves, is
A. The Boltzman's constant, with units: J/K
B. The Coulomb constant, with units: $\mathrm{N} \mathrm{m}^{2} / \mathrm{c}^{2}$
C. The force constant, with units: n / m
D. The wave number, with units: $\mathbf{r a d} / \mathrm{m}$ \qquad
E. The wavelength, with units: m

Reading Question 16.5

The waves analyzed in this chapter are
A. String waves.
B. Sound and light waves.
C. Sound and water waves.
D. String, sound, and light waves.
E. String, water, sound, and light waves.

Q2017 Pearson Edacation, Ino.

Reading Question 16.5

The waves analyzed in this chapter are
A. String waves. \qquad
B. Sound and light waves.
C. Sound and water waves. \qquad
D. String, sound, and light waves.
E. String, water, sound, and light waves.

\qquad
\qquad
\qquad
\qquad

The Wave Model

- The wave model is built around the idea of a traveling wave, which is an organized disturbance traveling with a well-defined wave speed.
 mechanical wave is the substance through or along which the wave moves.

A Transverse Wave

- A transverse wave is a wave in which the displacement is perpendicular to the direction in which the wave travels.
- For example, a wave travels along a string in a horizontal direction while the particles that make up the string oscillate vertically.
 Slide 16-22

A Longitudinal Wave

- In a longitudinal wave, the particles in the medium move parallel to the direction in which the wave travels. \qquad
\qquad
- If you give the first mass in the chain a sharp push, a disturbance travels down the chain by compressing and expanding the springs.

A longitudinal wave
 Slide 16-23

Wave Speed

- The speed of transverse waves on a string stretched with tension T_{s} is

$$
v_{\text {string }}=\sqrt{\frac{T_{s}}{\mu}}
$$

(wave speed on a stretched string)

where μ is the string's mass-to-length ratio, also called the linear density:
$\mu=\frac{m}{L}$

Q2017 Pearson Education, 1ro
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QuickCheck 16.1

These two wave pulses travel along the same stretched string, one after the other. Which is true?

\qquad
\qquad
A. $v_{\mathrm{A}}>v_{\mathrm{B}}$
B. $v_{\mathrm{B}}>v_{\mathrm{A}}$
C. $v_{\mathrm{A}}=v_{\mathrm{B}}$
D. Not enough information to tell.
© 2017 Pearson Eucacaion, Inc.

QuickCheck 16.1

These two wave pulses travel along the same stretched string, one after the other. Which is true?

\qquad
\qquad
\qquad
A. $v_{\mathrm{A}}>v_{\mathrm{B}}$
B. $v_{\mathrm{B}}>v_{\mathrm{A}}$
\qquad
C. $v_{\mathrm{A}}=v_{\mathrm{B}}$ Wave speed depends on the properties of the medium,
D. Not not on the amplitude of the way
\qquad
D. Not enough information to tell.

QuickCheck 16.2

For a wave pulse on a string to travel twice as fast, the string tension must be
A. Increased by a factor of 4 .
B. Increased by a factor of 2 .
C. Decreased to one half its initial value.
D. Decreased to one fourth its initial value.
E. Not possible. The pulse speed is always the same.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QuickCheck 16.2

For a wave pulse on a string to travel twice as fast, the string tension must be \qquad
A. Increased by a factor of 4.
B. Increased by a factor of 2 .
C. Decreased to one half its initial value.
D. Decreased to one fourth its initial value.
E. Not possible. The pulse speed is always the same.

Snapshot Graph

- A graph that shows the wave's displacement as a function of position at a single instant of time is called a snapshot graph.
- For a wave on a string, a snapshot graph is literally a picture of the wave at this instant.

\qquad
\qquad
\qquad
$\Delta y \quad$ This is a graph of the string's displacement as a function of position at time t_{1}
\qquad

2017 Pearson Eucacaion, lro

One-Dimensional Waves

- The figure shows a sequence of snapshot graphs as a wave pulse moves.
- These are like successive frames from a movie.
- Notice that the wave pulse moves forward distance $\Delta x=v \Delta t$ during the time interval Δt.
- That is, the wave moves with constant speed.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

An Alternative Look at a Traveling Wave

\qquad

Example 16.2 Finding a History Graph From a Snapshot Graph

```
EXAMPLE 16.2 Finding a history graph from a snapshot graph
```



```
*)
amen
```


Slide 16-34

Example 16.2 Finding a History Graph From a Snapshot Graph \qquad

© 2017 Pearson Education, he Slide 16-35

QuickCheck 16.3

This is a snapshot graph at $t=1 \mathrm{~s}$ of a wave pulse traveling to the right at $1 \mathrm{~m} / \mathrm{s}$. Which graph below shows the wave pulse at $t=-1 \mathrm{~s}$?

C.

D.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QuickCheck 16.3

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QuickCheck 16.4

This is a snapshot graph at $t=1 \mathrm{~s}$ of a wave pulse traveling to the right at $1 \mathrm{~m} / \mathrm{s}$. Which graph below shows the
 history graph at $x=1 \mathrm{~m}$?
C.

B.

D.

QuickCheck 16.4

This is a snapshot graph at $t=1 \mathrm{~s}$ of a wave pulse traveling to the right at $1 \mathrm{~m} / \mathrm{s}$. Which graph below shows the history graph at $x=1 \mathrm{~m}$?

D.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Displacement

" In "the wave" at a sporting event, the wave moves around the stadium, but the particles (people) undergo small displacements from their equilibrium positions.

- When describing a wave mathematically, we'll use the generic symbol D to stand for the displacement of a wave of any type.
- $D(x, t)=$ the displacement at time t of a particle at position x.
© 2017 Pearson Eucacaion, lic.

Sinusoidal Waves

A history graph at one point in space
\qquad

- Above is a history graph for a sinusoidal wave, showing the displacement of the medium at one point in space.
- Each particle in the medium undergoes simple harmonic motion with frequency f, where $f=1 / T$.
- The amplitude A of the wave is the maximum value of the displacement.
2017 Pearson Education, lrc.
Slide 16-43

Sinusoidal Waves

A snapshot graph at one instant of time
\qquad

\qquad
\qquad
\qquad

- Above is a snapshot graph for a sinusoidal wave, showing the wave stretched out in space, moving to the \qquad right with speed v.
The distance spanned by one cycle of the motion is \qquad called the wavelength λ of the wave.

Q2017 Pearson Education, rac

QuickCheck 16.5

A wave on a string is traveling to the right. At this instant, the motion of the piece of string marked with a dot is

A. Up.
B. Down.
C. Right.
D. Left.
E. Zero. Instantaneously at rest.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 2017 Pearson Educaion, Inc. Slide 16-45

QuickCheck 16.5

A wave on a string is traveling to the right. At this instant, the motion of the piece of string marked with a dot is
A. Up.

B. Down.
C. Right.
D. Left.
E. Zero. Instantaneously at rest.

Q2017 Pearson Education, nce
Slide 16-46
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sinusoidal Waves

20017 Pearson Euvation, rac.
Slide 16-47

Sinusoidal Waves

- The distance spanned by one cycle of the motion is called the wavelength λ of the wave. Wavelength is measured in units of meters.
- During a time interval of exactly one period T, each crest of a sinusoidal wave travels forward a distance of exactly one wavelength λ.
- Because speed is distance divided by time, the wave speed must be

$$
v=\frac{\text { distance }}{\text { time }}=\frac{\lambda}{T}
$$

or, in terms of frequency: $\quad v=\lambda f$ $v=\frac{\text { distance }}{\text { time }}=\frac{\lambda}{T}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QuickCheck 16.6

The period of this wave is
A. 1 s
B. 2 s

C. 4 s
D. Not enough information to tell.

QuickCheck 16.6

The period of this wave is
A. 1 s
B. 2 A sinusoidal wave moves
B. 2 s forward one wavelength

C. $4 \mathrm{~s} \quad(2 \mathrm{~m})$ in one period. \qquad
D. Not enough information to tell.

The Mathematics of Sinusoidal Waves

- Define the angular frequency of a wave:

$$
\omega=2 \pi f=\frac{2 \pi}{T}
$$

\qquad
\qquad

$$
k=\frac{2 \pi}{\lambda}
$$

\qquad

- The displacement caused by a traveling sinusoidal wave is

$$
D(x, t)=A \sin \left(k x-\omega t+\phi_{0}\right)
$$

(sinusoidal wave traveling in the positive x-direction)

- This wave travels at a speed $v=\omega / k$.

Equation of a Sinusoidal Traveling Wave

History graph at x_{1}
If x is fixed, $D\left(x_{1}, t\right)=A \sin \left(k x_{1}-\omega t+\phi_{0}\right)$
gives a sinusoidal history graph at one
point in space, x_{1}. It repeats every $T \mathrm{~s}$.
-A
If t is fixed, $D\left(x, t_{1}\right)=A \sin \left(k x-\omega t_{1}+\phi_{0}\right)$
gives a sinusoidal snapshot graph at one
instant of time, t_{1}. It repeats every $\lambda \mathrm{m}$.

\qquad

QuickCheck 16.7

\qquad
\qquad
A sinusoidal wave travels along a lightweight string with wavelength λ_{1} and frequency f_{1}. It reaches a heavier string, \qquad with a slower wave speed, and continues on with wavelength λ_{2} and frequency f_{2}. Which is true? \qquad
A. $\lambda_{2}=\lambda_{1}$ and $f_{2}<f_{1}$
B. $\lambda_{2}=\lambda_{1}$ and $f_{2}>f_{1}$
C. $\lambda_{2}>\lambda_{1}$ and $f_{2}=f_{1}$
D. $\lambda_{2}<\lambda_{1}$ and $f_{2}=f_{1}$
E. $\lambda_{2}<\lambda_{1}$ and $f_{2}<f_{1}$

20017 Pearson Education, lnc.

QuickCheck 16.7

A sinusoidal wave travels along a lightweight string with wavelength λ_{1} and frequency f_{1}. It reaches a heavier string, \qquad with a slower wave speed, and continues on with wavelength λ_{2} and frequency f_{2}. Which is true?
A. $\quad \lambda_{2}=\lambda_{1}$ and $f_{2}<f_{1}$
B. $\lambda_{2}=\lambda_{1}$ and $f_{2}>f_{1}$
C. $\lambda_{2}>\lambda_{1}$ and $f_{2}=f_{1}$
D. $\quad \lambda_{2}<\lambda_{1}$ and $f_{2}=f_{1}$
E. $\lambda_{2}<\lambda_{1}$ and $f_{2}<f_{1}$

17 Pearson Education, Inc.

Advanced Topic: The Wave Equation on a String

Advanced Topic: The Wave Equation on a String

- The figure shows our
little piece of the string
with the tension forces
resolved into x - and y -
components.
- We identify the two rise/run $\cdots \cdots+\cdots, T_{y}(x)$
horizontal components
as T_{s}.
- Because they are equal but opposite, the net horizontal force is zero.
- The net force on this little piece of string in the transverse direction (the y-direction) is

$$
F_{\text {net } y}=T_{y}(x+\Delta x)+T_{y}(x)
$$

© 2017 Pearson Education, , hco
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Advanced Topic: The Wave Equation on a String

- We can apply Newton's second law to a string segment of mass $\mu \Delta x$, where μ is the linear density of the string in kg / m.
- We make use of the partial derivatives of $D(x, t)$ with respect to time and distance:

$$
\frac{\partial^{2} D}{\partial t^{2}}=\frac{T_{\mathrm{s}}}{\mu} \frac{\partial^{2} D}{\partial x^{2}} \quad \text { (wave equation for a string) }
$$

- This is the wave equation for a string.
- Just like Newton's second law for a particle, it governs the dynamics of motion on a string.

Q 2017 Pearson Education, Inc.

Traveling Wave Solutions

- Now that we have a wave equation for a string, we can apply
\qquad it to a well known solution, sinusoidal waves:

$$
D(x, t)=A \sin \left(k x-\omega t+\phi_{0}\right)
$$

Applying the wave equation, we can solve for the speed of this wave, which we know is ω / k :

$$
v=\frac{\omega}{k}=\sqrt{\frac{T_{\mathrm{s}}}{\mu}}
$$

- We derived this specifically for a string, but any physical system that obeys the wave equation will support sinusoidal waves traveling with speed v :

$$
\frac{\partial^{2} D}{\partial t^{2}}=v^{2} \frac{\partial^{2} D}{\partial x^{2}} \quad \text { (the general wave equation) }
$$

Example 16.4 Generating a Sinusoidal Wave

EXAMPLE 16.4 Generating a sinusoidal wave

A very long string with $\mu=2.0 \mathrm{~g} / \mathrm{m}$ is stretched along the x-axis with a tension of 5.0 N . At $x=0 \mathrm{~m}$ it is tied to a 100 Hz simple harmonic oscillator that vibrates perpendicular to the string with an amplitude of 2.0 mm . The oscillator is at its maximum positive displacement at $t=0 \mathrm{~s}$.
a. Write the displacement equation for the traveling wave on the string.
b. At $t=5.0 \mathrm{~ms}$, what is the string's displacement at a point 2.7 m from the oscillator?

MODEL The oscillator generates a sinusoidal traveling wave on a string. The displacement of the wave has to match the displacement of the oscillator at $x=0 \mathrm{~m}$.

Example 16.4 Generating a Sinusoidal Wave	
EXAMPLE 16.4 Generating a sinusoidal wave SOLVE a. The equation for the displacement is $D(x, t)=A \sin \left(k x-\omega t+\phi_{0}\right)$ with A, k, ω, and ϕ_{0} to be determined. The wave amplitude is the same as the amplitude of the oscillator that generates the wave, so $A=2.0 \mathrm{~mm}$. The oscillator has its maximum displacement $y_{\mathrm{osc}}=A=2.0 \mathrm{~mm}$ at $t=0 \mathrm{~s}$, thus $D(0 \mathrm{~m}, 0 \mathrm{~s})=A \sin \left(\phi_{0}\right)=A$ This requires the phase constant to be $\phi_{0}=\pi / 2 \mathrm{rad}$. The wave's frequency is $f=100 \mathrm{~Hz}$, the frequency of the source; therefore the angular frequency is $\omega=2 \pi f=200 \pi \mathrm{rad} / \mathrm{s}$.	
© 2017 Pearson Education, 1re.	Slide 16-61

Sound Waves

- For air at room temperature $\left(20^{\circ} \mathrm{C}\right)$, the speed of sound is $v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}$.
- Your ears are able to detect sinusoidal sound waves with frequencies between about 20 Hz and 20 kHz .
\qquad
- Low frequencies are perceived as "low pitch" bass notes, while high frequencies are heard as "high pitch" treble notes
Sound waves with frequencies above 20 kHz are called ultrasonic frequencies.
- Oscillators vibrating at frequencies of many MHz generate the ultrasonic waves used in

\qquad ultrasound medical imaging.

Electromagnetic Waves

- A light wave is an electromagnetic wave, an oscillation of the electromagnetic field.
- Other electromagnetic waves, such as radio waves, microwaves, and ultraviolet light, have the same physical characteristics as light waves, even though we cannot sense them with our eyes

\qquad
\qquad
\qquad
\qquad
All electromagnetic waves travel through vacuum with the same speed, called the speed of light. \qquad
- The value of the speed of light is $c=299,792,458 \mathrm{~m} / \mathrm{s}$.

At this speed, light could circle the earth 7.5 times in a mere second-if there were a way to make it go in circles!
\qquad

- Light waves travel with speed c in a vacuum, but they slow down as they pass through transparent materials such as water or glass or even, to a very slight extent, air.

TABLE 16.2 Typical indices of refraction		
The speed of light in a material is characterized	Material	Index of refraction
	Vacuum	1 exactly
materia	Air	1.0003
refraction n, defined as	Water	1.33
speed of light in a vacuum c	Glass	1.50
$n=\frac{\text { speed of light in the material }}{}=\bar{v}$	Diamond	2.42

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Index of Refraction

QuickCheck 16.8

A light wave travels, as a plane wave, from air ($n=1.0$) into glass ($n=1.5$). Which diagram shows the correct wave fronts?
A.

QuickCheck 16.8

A light wave travels, as a plane wave, from air ($n=1.0$) into glass ($n=1.5$). Which diagram shows the correct wave fronts?

C.

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 16.6 Light Traveling Through Glass

```
XAMPLE 16.6 Light traveling through glas
*angec ight with a wavclength of 600 nm is incident upon a b. The wavelength inside tho glass
00-mm-thick glass microscope slide.
4.What is the ligh specd in the glass?
M.How many warcengghs or the lightare inside the side?
glass is n
    vtmm}=\frac{c}{\mp@subsup{n}{\textrm{tm}}{\textrm{m}}=}=\frac{3.00\times1\mp@subsup{0}{}{0}\textrm{m}/\textrm{m}}{1.50}=2.00\times1\mp@subsup{0}{}{\circ}\textrm{m}/\textrm{s
    N
    wavelenglts span a disancee d=N\lambda. so the number of wawe
    lengths in d= 1.00 mm is
    N=\frac{d}{\lambda}=\frac{1.00\times1\mp@subsup{0}{}{-}\textrm{m}}{4.00\times1\mp@subsup{0}{}{7}\textrm{m}}=2500
    Assess The fact that 250, wavcengghs fit within 1 mm stows
```


Advanced Topic: The Wave Equation in a Fluid

- This excess fluid pressure at position x can be related to the displacement of the medium by

$$
p(x, t)=-B \frac{\partial D}{\partial x}
$$

Q2017 Pearson Education, In

Advanced Topic: The Wave Equation in a Fluid

- A displacement wave of amplitude A
$D(x, t)=A \sin \left(k x-\omega t+\phi_{0}\right)$ is associated with a pressure wave $p(x, t)=-B \frac{\partial D}{\partial x}=-k B A \cos \left(k x-\omega t+\phi_{0}\right)$
$=-p_{\text {max }} \cos \left(k x-\omega t+\phi_{0}\right)$

- The pressure amplitude, or maximum excess pressure, is

$$
p_{\max }=k B A=\frac{2 \pi f B A}{v_{\text {sound }}}
$$

- A sound wave is also a traveling pressure wave.
 ${ }^{2017}$ Pearson Education, 1 rc.

Predicting the Speed of Sound

- Applying Newton's second law along x to the displacement $D(x, t)$ of a small, cylindrical piece of fluid gives a wave equation:

$$
\frac{\partial^{2} D}{\partial t^{2}}=\frac{B}{\rho} \frac{\partial^{2} D}{\partial x^{2}}
$$

- By comparing this to the general wave equation discussed for waves on a string, we can predict the speed of sound in a fluid:

$$
v_{\text {sound }}=\sqrt{\frac{B}{\rho}}
$$

O2017 Peasone Eabacaion, Ime

EXAMPLE 16.7 The speed of sound in water
Predict the speed of sound in water at $20^{\circ} \mathrm{C}$

but this is a $4^{\circ} \mathrm{C}$. To thre significant figures, the density at $20^{\circ} \mathrm{C}$
m^{2}. Thus we predict

Q2017 Pearson Education, lme
Slide 16-77
\qquad
Example 16.7 The Speed of Sound in Water
\qquad

Waves in Two and Three Dimensions

- Consider circular ripples spreading on a pond.
- The lines that locate the crests are called wave fronts.
- If you observe circular wave fronts very, very far from the source, they appear to be straight lines.

Waves in Two and Three Dimensions

Phase and Phase Difference

- The quantity $\left(k x-\omega t+\phi_{0}\right)$ is called the phase of the
wave, denoted ϕ.
- The phase difference $\Delta \phi$ between two points on a wave depends on only the ratio of their separation Δx to the wavelength λ.
- The phase difference between two adjacent wave fronts is $2 \pi \mathrm{rad}$.

The phase of the wave at this point is wave ase his point wave at this point is wave at this point is The phase difference
\ddots

$$
\Delta \phi=2 \pi \frac{\Delta x}{\lambda}
$$

© 2017 Peasson Education, Inc
Slide 16-80

QuickCheck 16.9

A spherical wave travels outward from a point source. What is the phase difference between the two points on the wave marked with dots?
A. $\pi / 4$ radians
B. $\pi / 2$ radians

C. π radians
D. $7 \pi / 2$ radians
E. 7π radians
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QuickCheck 16.9

A spherical wave travels outward from a point source. What is the phase difference between the two points on the wave marked with dots?
A. $\pi / 4$ radians
B. $\pi / 2$ radians
C. π radians
D. $7 \pi / 2$ radians
E. 7π radians

The phase difference between adjacent wave fronts is 2π radians.

Example 16.8 The Phase Difference
Between Two Points on a Sound Wave

```
EXAMPLE 16.8 The phase difference between two points on a sound wave
$100 Hz sound wave travels with a wave speced of 343 m/k, and thus
.What s the phase difference betwecen tw
How far apararare two poins whose plauce differs by 90?
HODEL Treat the wave as a plane wave traveling in the positive b. A phase difference }\Delta\phi=9\mp@subsup{0}{}{\circ}\mathrm{ is }\pi/2\mathrm{ rad. This will be the phase
sotve a. The phase difference between two points is
        \Delta\phi=2\pi\frac{\Deltax}{\lambda}
In this case, \Deltax=60.0\textrm{cm}=0.600 m.The wavelength is
    \lambda=\frac{v}{f}=\frac{3.43 m/s}{100Hz}=3.43\textrm{m}
```


Power and Intensity

- The power of a wave is the rate, in joules per second, at which the wave transfers energy
- When plane waves of power P impinge on area a, we define the intensity I to be

$I=\frac{P}{a}=$ power-to-area ratio
2017 Pearson Education, lnc.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 16.9 The Intensity of a Laser Beam

EXAMPLE 16.9 \quad The intensity of a laser beam
A typical red laser pointer emits 1.0 mW of light power into a $1.0-\mathrm{mm}$-diameter laser beam. What is the intensity of the laser beam? MODEL The laser beam is a light wave.

Intensity and Decibels

- Human hearing spans an extremely wide range of intensities, from the threshold of hearing at $\approx 1 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$ (at midrange frequencies) to the \qquad threshold of pain at $\approx 10 \mathrm{~W} / \mathrm{m}^{2}$.
- If we want to make a scale of loudness, it's convenient \qquad and logical to place the zero of our scale at the threshold of hearing. \qquad
- To do so, we define the sound intensity level, expressed in decibels (dB), as

$$
\beta=(10 \mathrm{~dB}) \log _{10}\left(\frac{I}{I_{0}}\right)
$$

where $I_{0}=1 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$.
© 2017 Pearson Education, 1rc.

Intensity and Decibels			
	TABLE 16.4 Sound intensity levels of common sounds		
	Sound	$\boldsymbol{\beta}$ (dB)	
	Threshold of hearing	0	
	Person breathing, at 3 m	10	
	A whisper, at 1 m	20	
	Quiet room	30	
	Outdoors, no traffic	40	
	Quiet restaurant	50	
	Normal conversation, at 1 m	60	
	Busy traffic	70	
	Vacuum cleaner, for user	80	
	Niagara Falls, at viewpoint	90	
	Snowblower, at 2 m	100	
	Stereo, at maximum volume	110	
	Rock concert	120	
	Threshold of pain	130	
© 2017 Pearson Education, ric.	Loudest football stadium	140	Slide 16-89

QuickCheck 16.11

The sound intensity level from one solo flute is 70 db . If 10 flutists standing close together play in unison, the sound intensity level will be
A. 700 db
B. 80 db
C. 79 db
D. 71 db
E. 70 db

Q2017 Pearson Edacation, Ino.

QuickCheck 16.11

The sound intensity level from one solo flute is 70 db . If 10 flutists standing close together play \qquad in unison, the sound intensity level will be
A. 700 db
B. 80 db
C. 79 db
D. 71 db
E. 70 db

The Doppler Effect

- As the wave source approaches Nancy, she detects a frequency f_{+}which is slightly higher than f_{0}, the natural frequency of the source.
- If the source moves at a steady speed directly toward Nancy, this frequency f_{+}does not change with time.
- As the wave source recedes away from Pablo, he
\qquad
\qquad
\qquad detects a frequency f_{-}which is slightly lower than f_{0}, the natural frequency of the source.
- Again, as long as the speed of the source is constant, f_{-}is constant in time.

The Doppler Effect

- The frequencies heard by a stationary observer when the sound source is moving at speed v_{0} are

$$
\begin{array}{ll}
f_{+}=\frac{f_{0}}{1-v_{s} / v} & \text { (Doppler effect for an approaching source) } \\
f_{-}=\frac{f_{0}}{1+v_{s} / v} & \text { (Doppler effect for a receding source) }
\end{array}
$$

- The frequencies heard by an observer moving at speed v_{0} relative to a stationary sound source emitting frequency f_{0} are
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{array}{ll}
f_{+}=\left(1+v_{0} / v\right) f_{0} & \text { (observer approaching a source) } \\
f_{-}=\left(1-v_{0} / v\right) f_{0} & \text { (observer receding from a source) }
\end{array}
$$

The Doppler Effect

- Doppler weather radar uses the Doppler shift of reflected radar signals to measure wind speeds and thus better gauge the severity of a storm.
\qquad

QuickCheck 16.12

A siren emits a sound wave with frequency f_{0}. The graph shows the frequency you hear as you stand at rest at $x=0$ on the x-axis.
Which is the correct description of the siren's motion?

A. It moves from left to right and passes you at $t=2 \mathrm{~s}$.
B. It moves from right to left and passes you at $t=2 \mathrm{~s}$.
C. It moves toward you for 2 s but doesn't reach you, then reverses direction at $t=2 \mathrm{~s}$ and moves away.
D. It moves away from you for 2 s , then reverses direction at $t=2 \mathrm{~s}$ and moves toward you but doesn't reach you.
© 2017 Pearson Eucacaion, lmo
Slide 16-98

QuickCheck 16.12

A siren emits a sound wave with frequency f_{0}. The graph shows the frequency you hear as you stand at rest at $x=0$ on the x-axis.
Which is the correct description of the siren's motion?

A. It moves from left to right and passes you at $t=2 \mathrm{~s}$.
B. It moves from right to left and passes you at $t=2 \mathrm{~s}$.
C. It moves toward you for 2 s but doesn't reach you, then reverses direction at $t=2 \mathrm{~s}$ and moves away.
D. It moves away from you for 2 s , then reverses direction at $t=2 \mathrm{~s}$ and moves toward you but doesn't reach you.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 16.11 How Fast Are the Police Traveling?

EXAMPLE 16.11 How fast are the police traveling?
solve To find v_{s}, we rewrite Equations 16.65 as

$$
f_{0}=(1+v, / v) f
$$

We subtract the second equation from the first, giving

$$
0=f_{-}-f_{+}+\frac{v_{2}}{v}\left(f_{-}+f_{+}\right)
$$

\qquad
\qquad

$$
f_{0}=\left(1-v_{s} / v\right) f_{*}
$$

\qquad

This is easily solved to give

$$
v_{s}=\frac{f_{+}-f_{-}}{f_{+}+f_{-}} v=\frac{100 \mathrm{~Hz}}{1000 \mathrm{~Hz}} \times 343 \mathrm{~m} / \mathrm{s}=34.3 \mathrm{~m} / \mathrm{s}
$$

ASSESS If you now solve for the siren frequency when at rest, you will find $f_{0}=495 \mathrm{~Hz}$. Surprisingly, the at-rest frequency is not halfway between f - and f_{+}.
The Doppler Effect for Light Waves

- Shown is a Hubble Space Telescope picture of a quasar.
- Quasars are extraordinarily powerful and distant sources of light and radio waves.
- This quasar is receding away from us at more than 90% of the speed of light.

- Any receding source of light is red shifted.
- Any approaching source of light is blue shifted.

λ_{-}	$=\sqrt{\frac{1+v_{\mathrm{s}} / c}{1-v_{\mathrm{s}} / c}} \lambda_{0}$	(receding source)
λ_{+}	$=\sqrt{\frac{1-v_{\mathrm{s}} / c}{1+v_{\mathrm{s}} / c}} \lambda_{0}$	(approaching source)
Q2017 Pearson Education, rac.		Slide 16-102

Example 16.12 Measuring the Velocity of a Galaxy

EXAMPLE 16.12 Measuring the velocity of a galaxy
Hydrogen atoms in the laboratory emit red light with wavelength
656 nm . In the light from a distant galaxy, this "spectral line" is observed at 691 nm . What is the speed of this galaxy relative to the earth?
MODEL The observed wavelength is longer than the wavelength emitted by atoms at rest with respect to the observer (i.e., red shifted), so we are looking at light emitted from a galaxy that is receding from us.
© 2017 Pearson Educaion, hro

Example 16.12 Measuring the Velocity of a
Galaxy

EXAMPLE 16.12 Measuring the velocity of a galaxy
solve Squaring the expression for $\lambda_{\text {_ }}$ in Equations 16.67 and
olving for v_{s} give
\qquad
\qquad
\qquad
$v_{\mathrm{s}}=\frac{\left(\lambda_{-} / \lambda_{0}\right)^{2}-1}{\left(\lambda_{-} / \lambda_{0}\right)^{2}+1} c$
$=(691 \mathrm{~nm} / 656 \mathrm{~nm})^{2}-1$
$=\frac{(691 \mathrm{~nm} / 656 \mathrm{~nm})^{2}+1}{} c$
$=0.052 c=1.56 \times 10^{7} \mathrm{~m} / \mathrm{s}$
ASSESS The galaxy is moving away from the earth at about 5% of the speed of light

22017 Pearson Education, 1 ne

\qquad
\qquad
\qquad

General Principles

Two basic classes of waves:

- Mechanical waves travel through a material
medium such as water or air.
- Electromagnetic waves require no material
medium and can travel through a vacuum.
For mechanical waves, such as sound waves
and waves on strings, the speed of the wave is a property of the medium. Speed does no depend on the size or shape of the wave.
© 2017 Pearson Eucation, 1 nc
Slide $16-107$

Important Concepts

The displacement D of a wave is a function of both position
(where) and time (when). \qquad

- A snapshot graph shows the wave's displacement as a on at a single instant of time.
- A history graph shows the wave's displacement as a function of time at a single point in space.

For a transverse wave on a string, the snapshot graph is a picture of
he wave. The displacement of a longitudinal wave is parallel to the motion; thus the snapshot graph of a longitudinal sound wave is not a picture of the wave.

