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Reading Question 7.1

If an object is rotating clockwise, this corresponds to a 

______ angular velocity.

A. Positive

B. Negative
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If an object is rotating clockwise, this corresponds to a 

______ angular velocity.
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Reading Question 7.2

The angular displacement of a rotating object is measured in

A. Degrees.

B. Radians.

C. Degrees per second.

D. Radians per second.
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Reading Question 7.2
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Reading Question 7.3

Moment of inertia is

A. The rotational equivalent of mass.

B. The time at which inertia occurs.

C. The point at which all forces appear to act. 

D. An alternative term for moment arm.
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Moment of inertia is

A. The rotational equivalent of mass.

B. The time at which inertia occurs.

C. The point at which all forces appear to act. 

D. An alternative term for moment arm.

© 2015 Pearson Education, Inc.



Slide 7-9

Reading Question 7.4

Which factor does the torque on an object not depend on?

A. The magnitude of the applied force

B. The object’s angular velocity

C. The angle at which the force is applied

D. The distance from the axis to the point at which the force 

is applied
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Reading Question 7.4

Which factor does the torque on an object not depend on?

A. The magnitude of the applied force

B. The object’s angular velocity
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is applied
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Reading Question 7.5

A net torque applied to an object causes

A. A linear acceleration of the object.

B. The object to rotate at a constant rate.

C. The angular velocity of the object to change.

D. The moment of inertia of the object to change.
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Reading Question 7.5
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Section 7.1 Describing Circular 
and Rotational Motion
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Describing Circular and Rotational Motion

• Rotational motion is the motion of objects that spin about 

an axis.
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• We use the angle θ from 

the positive x-axis to 

describe the particle’s 

location.

• Angle θ is the angular 

position of the particle. 

• θ is positive when 

measured counterclockwise

from the positive x-axis. 

• An angle measured clockwise from the positive x-axis has 

a negative value.

Angular Position
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Angular Position

• We measure angle θ in 

the angular unit of 

radians, not degrees.

• The radian is abbreviated 

“rad.”

• The arc length, s, is the 

distance that the particle 

has traveled along its 

circular path.
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Angular Position

• We define the particle’s angle θ in terms of arc length and 

radius of the circle:
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Angular Position

• One revolution (rev) is when a particle travels all the way 

around the circle. 

• The angle of the full circle is

© 2015 Pearson Education, Inc.
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Angular Displacement and Angular Velocity

• For linear motion, a particle with a larger velocity 

undergoes a greater displacement
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• For uniform circular motion, a particle with a larger 

angular velocity will undergo a greater angular 

displacement ∆θ.

• Angular velocity is the angular displacement through 

which the particle moves each second.

Angular Displacement and Angular Velocity
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Angular Displacement and Angular Velocity

• The angular velocity ω = ∆θ/∆t is constant for a 

particle moving with uniform circular motion. 
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Find the angular velocities of the two particles in Figure 

7.2b.

PREPARE For uniform circular motion, we can use any 

angular displacement ∆θ, as long as we use the 

corresponding time interval ∆t. For each particle, we’ll 

choose the angular displacement corresponding to the 

motion from t = 0 s to t = 5 s.

Example 7.1 Comparing angular velocities

© 2015 Pearson Education, Inc.
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Example 7.1 Comparing angular velocities 
(cont.)

SOLVE The particle on the left travels one-quarter of a full circle 

during the 5 s time interval. We learned earlier that a full circle 

corresponds to an angle of 2π rad, so the angular displacement 

for this particle is ∆θ = (2π rad)/4 = π/2 rad. Thus its angular 

velocity is
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Example 7.1 Comparing angular velocities 
(cont.)

The particle on the right travels halfway around the 

circle, or π rad, in the 5 s interval. Its angular velocity is

© 2015 Pearson Education, Inc.



Slide 7-25

Angular Displacement and Angular Velocity

• The linear displacement during a time interval is

• Similarly, the angular displacement for uniform circular 

motion is
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Angular Displacement and Angular Velocity

• Angular speed is the absolute value of the angular 

velocity.

• The angular speed is related to the period T: 

• Frequency (in rev/s) f = 1/T:

© 2015 Pearson Education, Inc.
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Example 7.3 Rotations in a car engine

The crankshaft in your car engine is turning at 3000 rpm. 

What is the shaft’s angular speed?

PREPARE We’ll need to convert rpm to rev/s and then use 

Equation 7.6.

SOLVE We convert rpm to rev/s by

Thus the crankshaft’s angular speed is
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Angular-Position and Angular-Velocity Graphs

• We construct angular position-versus-time graphs using 

the change in angular position for each second.

• Angular velocity-versus-time graphs can be created by 

finding the slope of the corresponding angular position-

versus-time graph. 
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Relating Speed and Angular Speed

• Speed v and angular speed ω are related by

• Angular speed ω must be in units of rad/s.
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The diameter of an audio compact disk is 

12.0 cm. When the disk is spinning at its 

maximum rate of 540 rpm, what is the 

speed of a point (a) at a distance 3.0 cm 

from the center and (b) at the outside 

edge of the disk, 6.0 cm from the center?

PREPARE Consider two points A and B 

on the rotating compact disk in 

FIGURE 7.7. During one period T, the disk rotates once, and 

both points rotate through the same angle, 2π rad. Thus the 

angular speed, ω = 2π/T, is the same for these two points; in fact, 

it is the same for all points on the disk.

Example 7.5 Finding the speed at two points on 
a CD

© 2015 Pearson Education, Inc.
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Example 7.5 Finding the speed at two points on 
a CD (cont.)

But as they go around one time, 

the two points move different 

distances. The outer point B goes 

around a larger circle. The two 

points thus have different speeds. 

We can solve this problem by first 

finding the angular speed of the 

disk and then computing the speeds at the two points.
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Example 7.5 Finding the speed at two points on 
a CD (cont.)

SOLVE We first convert the 

frequency of the disk to rev/s:

We then compute the angular speed using Equation 7.6:
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We can now use Equation 7.7 

to compute the speeds of points 

on the disk. At point A, 

r = 3.0 cm = 0.030 m, so the 

speed is

At point B, r = 6.0 cm = 0.060 m, so the speed at the outside 

edge is

Example 7.5 Finding the speed at two points on 
a CD (cont.)
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Example 7.5 Finding the speed at two points on 
a CD (cont.)

ASSESS The speeds are a few 

meters per second, which seems 

reasonable. The point farther 

from the center is moving at a 

higher speed, as we expected.

© 2015 Pearson Education, Inc.
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QuickCheck 7.7

This is the angular velocity graph of a wheel. How many 

revolutions does the wheel make in the first 4 s?

A. 1

B. 2

C. 4

D. 6

E. 8
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QuickCheck 7.7

This is the angular velocity graph of a wheel. How many 

revolutions does the wheel make in the first 4 s?

A. 1

B. 2

C. 4

D. 6

E. 8
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QuickCheck 7.9

Starting from rest, a wheel with constant angular 

acceleration turns through an angle of 25 rad in a time t. 

Through what angle will it have turned after time 2t?

A. 25 rad

B. 50 rad

C. 75 rad

D. 100 rad

E. 200 rad
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QuickCheck 7.9
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Section 7.2 The Rotation of a Rigid Body
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The Rotation of a Rigid Body

• A rigid body is an extended

object whose size and shape 

do not change as it moves.

• The rigid-body model is a 

good approximation for many 

real objects.
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The Rotation of a Rigid Body
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Rotational Motion of a Rigid Body

• Every point on a 

rotating body has 

the same angular 

velocity.

• Two points on the 

object at different 

distances from the 

axis of rotation will 

have different speeds.

© 2015 Pearson Education, Inc.
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QuickCheck 7.2

Rasheed and Sofia are riding a merry-go-round that is 

spinning steadily. Sofia is twice as far from the axis as is 

Rasheed. Sofia’s angular velocity is ______ that of Rasheed. 

A. Half

B. The same as

C. Twice

D. Four times

E. We can’t say without 

knowing their radii.
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Rasheed and Sofia are riding a merry-go-round that is 

spinning steadily. Sofia is twice as far from the axis as is 

Rasheed. Sofia’s angular velocity is ______ that of Rasheed. 

A. Half

B. The same as

C. Twice

D. Four times

E. We can’t say without 

knowing their radii.

QuickCheck 7.2
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QuickCheck 7.3

Rasheed and Sofia are riding a merry-go-round that is 

spinning steadily. Sofia is twice as far from the axis as is 

Rasheed. Sofia’s speed is ______ that of Rasheed. 

A. Half

B. The same as

C. Twice

D. Four times

E. We can’t say without 

knowing their radii.
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QuickCheck 7.3

Rasheed and Sofia are riding a merry-go-round that is 

spinning steadily. Sofia is twice as far from the axis as is 

Rasheed. Sofia’s speed is ______ that of Rasheed. 

A. Half

B. The same as

C. Twice     v = ωr

D. Four times

E. We can’t say without 

knowing their radii.
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QuickCheck 7.4

Two coins rotate on a turntable. 

Coin B is twice as far from the axis 

as coin A.

A. The angular velocity of A is twice that of B

B. The angular velocity of A equals that of B

C. The angular velocity of A is half that of B
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QuickCheck 7.4
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Angular Acceleration

• Angular acceleration is defined as:

• The units of angular acceleration 

are rad/s2.
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Angular Acceleration

[Insert Figure 7.12]

© 2015 Pearson Education, Inc.
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QuickCheck 7.5

The fan blade is slowing down. What are the signs of ω

and α?

A. ω is positive and α is positive.

B. ω is positive and α is negative.

C. ω is negative and α is positive.

D. ω is negative and α is negative.

E. ω is positive and α is zero.
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QuickCheck 7.5

The fan blade is slowing down. What are the signs of ω

and α?

A. ω is positive and α is positive.

B. ω is positive and α is negative.

C. ω is negative and α is positive.

D. ω is negative and α is negative.

E. ω is positive and α is zero.

“Slowing down” means that ω and α have opposite signs, not 

that α is negative.
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QuickCheck 7.6

The fan blade is speeding up. What are the signs of ω

and α? 

A. ω is positive and α is positive.

B. ω is positive and α is negative.  

C. ω is negative and α is positive.  

D. ω is negative and α is negative.  
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QuickCheck 7.6

The fan blade is speeding up. What are the signs of ω

and α? 

A. ω is positive and α is positive.

B. ω is positive and α is negative.  

C. ω is negative and α is positive. 

D. ω is negative and α is negative.  
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Example Problem

A high-speed drill rotating counterclockwise takes 2.5 s to 

speed up to 2400 rpm. 

A. What is the drill’s angular acceleration?

B. How many revolutions does it make as it reaches top 

speed? 
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Linear and Circular Motion

© 2015 Pearson Education, Inc.
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QuickCheck 7.8

Starting from rest, a wheel with constant angular 

acceleration spins up to 25 rpm in a time t. What will its 

angular velocity be after time 2t?

A. 25 rpm

B. 50 rpm

C. 75 rpm

D. 100 rpm

E. 200 rpm
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QuickCheck 7.8
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Tangential Acceleration

• Tangential acceleration is the 

component of acceleration directed 

tangentially to the circle.

• The tangential acceleration measures 

the rate at which the particle’s speed 

around the circle increases. 
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• We can relate tangential acceleration to the angular 

acceleration by v = ωr. 

Tangential Acceleration

© 2015 Pearson Education, Inc.



Section 7.3 Torque
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Torque

• Forces with equal strength 

will have different effects 

on a swinging door.

• The ability of a force to 

cause rotation depends on

• The magnitude F of the force.

• The distance r from the pivot—the axis about which the 

object can rotate—to the point at which force is applied.

• The angle at which force is applied.

© 2015 Pearson Education, Inc.
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Torque

• Torque (τ) is the rotational equivalent of force.

• Torque units are newton-meters, abbreviated N ⋅ m.
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• The radial line is the line 

starting at the pivot and 

extending through the point 

where force is applied.

• The angle ϕ is 

measured from the 

radial line to the 

direction of the force.

Torque

© 2015 Pearson Education, Inc.
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Torque

• The radial line is the line

starting at the pivot and 

extending through the 

point where force is 

applied.

• The angle ϕ is measured 

from the radial line to the 

direction of the force.

• Torque is dependent on 

the perpendicular component 

of the force being applied.
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• An alternate way to calculate 

torque is in terms of the 

moment arm.

• The moment arm (or lever 

arm) is the perpendicular 

distance from the line of 

action to the pivot.

• The line of action is the line 

that is in the direction of the 

force and passes through the 

point at which the force acts.

Torque

© 2015 Pearson Education, Inc.
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Torque

• The equivalent expression for 

torque is 

• For both methods for 

calculating torque, the 

resulting expression is 

the same:
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QuickCheck 7.10

The four forces shown have the same strength. Which force 

would be most effective in opening the door?

A. Force F1

B. Force F2

C. Force F3

D. Force F4

E. Either F1 or F3
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QuickCheck 7.10

The four forces shown have the same strength. Which force 

would be most effective in opening the door?

A. Force F1

B. Force F2

C. Force F3

D. Force F4

E. Either F1 or F3

Your intuition likely led you to choose F1. 

The reason is that F1 exerts the largest torque

about the hinge.
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Ryan is trying to open a stuck door. 

He pushes it at a point 0.75 m from 

the hinges with a 240 N force 

directed 20° away from being 

perpendicular to the door. 

There’s a natural pivot point, the 

hinges. What torque does Ryan exert? 

How could he exert more torque?

PREPARE In FIGURE 7.20 the radial line is shown drawn from the 

pivot—the hinge—through the point at which the force is applied. 

We see that the component of that is perpendicular to the radial line 

is F
⊥

= F cos 20° = 226 N. The distance from the hinge to the point at 

which the force is applied is r = 0.75 m. 

Example 7.9 Torque in opening a door

© 2015 Pearson Education, Inc.
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SOLVE We can find the torque 

on the door from Equation 7.10:

The torque depends on how hard Ryan pushes, where he 

pushes, and at what angle. If he wants to exert more torque, he 

could push at a point a bit farther out from the hinge, or he could 

push exactly perpendicular to the door. Or he could simply push 

harder!    

ASSESS As you’ll see by doing more problems, 170 N ⋅ m is a 

significant torque, but this makes sense if you are trying to free a 

stuck door. 

Example 7.9 Torque in opening a door (cont.)
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Torque

• A torque that tends to rotate the object in a counter-

clockwise direction is positive, while a torque that 

tends to rotate the object in a clockwise direction is 

negative.

© 2015 Pearson Education, Inc.
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Net Torque

• The net torque is the sum 

of the torques due to the 

applied forces:

© 2015 Pearson Education, Inc.

[Insert Figure 7.23]
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QuickCheck 7.11

Which third force on the wheel, applied at point P, will 

make the net torque zero?

© 2015 Pearson Education, Inc.
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QuickCheck 7.11

Which third force on the wheel, applied at point P, will 

make the net torque zero?

A.

© 2015 Pearson Education, Inc.

Section 7.4 Gravitational Torque 
and the Center of Gravity
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Gravitational Torque and the Center of Gravity

• Gravity pulls downward on 

every particle that makes up 

an object (like the gymnast).

• Each particle experiences a 

torque due to the force of 

gravity.
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Gravitational Torque and the Center of Gravity

• The gravitational torque can 

be calculated by assuming 

that the net force of gravity 

(the object’s weight) acts as 

a single point.

• That single point is called the 

center of gravity.

© 2015 Pearson Education, Inc.
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Example 7.12 The torque on a flagpole

A 3.2 kg flagpole extends 

from a wall at an angle of 

25° from the horizontal. 

Its center of gravity is 

1.6 m from the point 

where the pole is attached 

to the wall. What is the gravitational torque on  the flagpole 

about the point of attachment?

PREPARE FIGURE 7.26 shows the situation. For the purpose of 

calculating torque, we can consider the entire weight of the pole 

as acting at the center of gravity. Because the moment arm r
⊥

is 

simple to visualize here, we’ll use Equation 7.11 for the torque.
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Example 7.12 The torque on a flagpole (cont.)

SOLVE From Figure 7.26, 

we see that the moment arm 

is r
⊥

= (1.6 m) cos  25° = 

1.45 m. Thus the gravitational 

torque on the flagpole, about 

the point where it attaches to 

the wall, is

We inserted the minus sign because the torque tries to rotate the pole 

in a clockwise direction. 

ASSESS If the pole were attached to the wall by a hinge, the 

gravitational torque would cause the pole to fall. However, the actual 

rigid connection provides a counteracting (positive) torque to the pole 

that prevents this. The net torque is zero.

© 2015 Pearson Education, Inc.
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Gravitational Torque and the Center of Gravity

• An object that is free to 

rotate about a pivot will 

come to rest with the 

center of gravity 

below the pivot point. 

• If you hold a ruler by 

one end and allow it to 

rotate, it will stop rotating 

when the center of gravity 

is directly above or below the pivot point. There is no 

torque acting at these positions.
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QuickCheck 7.12

Which point could be the center of gravity of this 

L-shaped piece?

© 2015 Pearson Education, Inc.

B.

D.

A.

C.
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QuickCheck 7.12

Which point could be the center of gravity of this 

L-shaped piece?

© 2015 Pearson Education, Inc.

B.

D.

A.

C.
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Calculating the Position of the Center of 
Gravity

• The torque due to gravity when the pivot is at the 

center of gravity is zero.

• We can use this to find an expression for the position of 

the center of gravity.

© 2015 Pearson Education, Inc.
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Calculating the Position of the Center of 
Gravity

• For the dumbbell to 

balance, the pivot must 

be at the center of 

gravity.

• We calculate the torque 

on either side of the 

pivot, which is located 

at the position xcg.

© 2015 Pearson Education, Inc.

[Insert Figure 7.29]
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Calculating the Position of the Center of 
Gravity

• The torque due to the 

weight on the left side 

of the pivot is

• The torque due to the 

weight on the right side 

of the pivot is

© 2015 Pearson Education, Inc.

[Insert Figure 7.29 

(repeated)]
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Calculating the Position of the Center of 
Gravity

• The total torque is

• The location of the center of gravity is
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Calculating the Position of the Center of 
Gravity

• Because the center of 

gravity depends on 

distance and mass from 

the pivot point, objects 

with large masses count 

more heavily.

• The center of gravity 

tends to lie closer to the 

heavier objects or particles 

that make up the object.

© 2015 Pearson Education, Inc.
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Calculating the Position of the Center of 
Gravity

© 2015 Pearson Education, Inc.
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Example 7.13 Where should the dumbbell be 
lifted? 

A 1.0-m-long dumbbell has a 10 kg mass on the left and a 

5.0 kg mass on the right. Find the position of the center of 

gravity, the point where the dumbbell should be lifted in 

order to remain balanced.

PREPARE First we sketch the situation as in FIGURE 7.30.

© 2015 Pearson Education, Inc.
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Example 7.13 Where should the dumbbell be 
lifted? (cont.) 

Next, we can use the steps from Tactics Box 7.1 to find the 

center of gravity. Let’s choose the origin to be at the 

position of the 10 kg mass on the left, making x1 = 0 m and 

x2 = 1.0 m. Because the dumbbell masses lie on the x-axis, 

the y-coordinate of the center of gravity must also lie on the 

x-axis. Thus we only need to solve for the x-coordinate of 

the center of gravity.
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Example 7.13 Where should the dumbbell be 
lifted? (cont.)

SOLVE The x-coordinate of 

the center of gravity is found 

from Equation 7.15:

The center of gravity is 0.33 m from the 10 kg mass or, 

equivalently, 0.17 m left of the center of the bar.

ASSESS The position of the center of gravity is closer to the 

larger mass. This agrees with our general statement that the 

center of gravity tends to lie closer to the heavier particles.
© 2015 Pearson Education, Inc.



Section 7.5 Rotational Dynamics 
and Moment of Inertia 
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Rotational Dynamics and Moment of Inertia

• A torque causes an angular 

acceleration.

• The tangential and angular 

accelerations are

© 2015 Pearson Education, Inc.
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Rotational Dynamics and Moment of Inertia

• We compare with torque:

• We find the relationship 

with angular acceleration:
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Newton’s Second Law for Rotational Motion

• For a rigid body 

rotating about a 

fixed axis, we can 

think of the object 

as consisting of 

multiple particles.

• We can calculate 

the torque on each 

particle.

• Because the object rotates 

together, each particle has the 

same angular acceleration.

© 2015 Pearson Education, Inc.
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• The torque for each 

“particle” is

• The net torque is

Newton’s Second Law for Rotational Motion
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• The quantity Σmr2 in 

Equation 7.20, which 

is the proportionality 

constant between angular 

acceleration and net torque, 

is called the object’s 

moment of inertia I:

• The units of moment of inertia are kg ⋅ m2. 

• The moment of inertia depends on the axis of rotation.

Newton’s Second Law for Rotational Motion

© 2015 Pearson Education, Inc.
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Newton’s Second Law for Rotational Motion

A net torque is the cause of angular acceleration.
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Interpreting the Moment of Inertia

• The moment of inertia 

is the rotational 

equivalent of mass.

• An object’s moment of 

inertia depends not only 

on the object’s mass but 

also on how the mass is 

distributed around the 

rotation axis.

© 2015 Pearson Education, Inc.
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Interpreting the Moment of Inertia

• The moment of inertia is 

the rotational equivalent 

of mass.

• It is more difficult to spin 

the merry-go-round when 

people sit far from the 

center because it has a 

higher inertia than when 

people sit close to the 

center.

© 2015 Pearson Education, Inc. Slide 7-102

Interpreting the Moment of Inertia
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Your friend is creating an 

abstract sculpture that 

consists of three small, 

heavy spheres attached 

by very lightweight 

10-cm-long rods as shown 

in FIGURE 7.36. The 

spheres have masses 

m1 = 1.0 kg, m2 = 1.5 kg, and m3 = 1.0 kg. What is the object’s 

moment of inertia if it is rotated about axis A? About axis B?

PREPARE We’ll use Equation 7.21 for the moment of inertia:

I = m1r1
2 + m2r2

2 + m3r3
2

In this expression, r1, r2, and r3 are the distances of each particle from 

the axis of rotation, so they depend on the axis chosen.

Example 7.15 Calculating the moment of inertia
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Example 7.15 Calculating the moment of inertia 
(cont.)

Particle 1 lies on both 

axes, so r1 = 0 cm in 

both cases. Particle 2 

lies 10 cm (0.10 m) from 

both axes. Particle 3 is 

10 cm from axis A but 

farther from axis B. We 

can find r3 for axis B by using the 

Pythagorean theorem, which gives r3 = 14.1 cm. 

These distances are indicated in the figure.
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Example 7.15 Calculating the moment of inertia 
(cont.)

SOLVE For each axis, 

we can prepare a table 

of the values of r, m, 

and mr 2 for each 

particle, then add the 

values of mr 2. For 

axis A we have
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For axis B we have

Example 7.15 Calculating the moment of inertia 
(cont.)
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ASSESS We’ve already 

noted that the moment of 

inertia of an object is 

higher when its mass is 

distributed farther from 

the axis of rotation. 

Here, m3 is farther from 

axis B than from axis A, leading to a higher moment of 

inertia about that axis.

Example 7.15 Calculating the moment of inertia 
(cont.)
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The Moments of Inertia of Common Shapes
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Section 7.6 Using Newton’s Second Law 
for Rotation 
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Using Newton’s Second Law for Rotation
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Example 7.18 Starting an airplane engine

The engine in a small air-plane is 

specified to have a torque of 

500 N ⋅ m. This engine drives a 

2.0-m-long, 40 kg single-blade 

propeller. On start-up, how long 

does it take the propeller to reach 

2000 rpm?
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Example 7.18 Starting an airplane engine 
(cont.)

PREPARE The propeller can be 

modeled as a rod that rotates 

about its center. The engine 

exerts a torque on the propeller.  

FIGURE 7.38 shows the propeller 

and the rotation axis.
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Example 7.18 Starting an airplane engine 
(cont.)

SOLVE The moment of inertia 

of a rod rotating about its 

center is found in Table 7.1:

The 500 N ⋅ m torque of the 

engine causes an angular 

acceleration of

© 2015 Pearson Education, Inc. Slide 7-114

Example 7.18 Starting an airplane engine 
(cont.)

The time needed to reach 

ωf = 2000 rpm = 33.3 rev/s =

209 rad/s is
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Example 7.18 Starting an airplane engine 
(cont.)

ASSESS We’ve assumed a constant 

angular acceleration, which is 

reasonable for the first few seconds 

while the propeller is still turning 

slowly. Eventually, air resistance 

and friction will cause opposing 

torques and the angular acceleration 

will decrease. At full speed, the 

negative torque due to air resistance 

and friction cancels the torque of the engine. Then 

and the propeller turns at constant angular velocity with no 

angular acceleration.
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Constraints Due to Ropes and Pulleys

• If the pulley turns without 

the rope slipping on it then 

the rope’s speed must 

exactly match the speed of 

the rim of the pulley.

• The attached object must 

have the same speed and 

acceleration as the rope.
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Section 7.7 Rolling Motion
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Rolling Motion

• Rolling is a combination motion in which an object rotates 

about an axis that is moving along a straight-line 

trajectory.
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Rolling Motion

• The figure above shows exactly one revolution for a wheel 

or sphere that rolls forward without slipping. 

• The overall position is measured at the object’s center.
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Rolling Motion

• In one revolution, the center moves forward by exactly 

one circumference (∆x = 2πR). 
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Rolling Motion

• Since 2π/T is the angular velocity, we find

• This is the rolling constraint, the basic link between 

translation and rotation for objects that roll without 

slipping.

© 2015 Pearson Education, Inc. Slide 7-122

Rolling Motion

• The point at the bottom of the wheel has a translational 

velocity and a rotational velocity in opposite directions, 

which cancel each other.

• The point on the bottom of a rolling object is 

instantaneously at rest.

• This is the idea behind “rolling without slipping.”
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Example 7.20 Rotating your tires

The diameter of your tires is 0.60 m. You take a 60 mile trip 

at a speed of 45 mph. 

a. During this trip, what was your tires’ angular speed? 

b. How many times did they revolve?
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Example 7.20 Rotating your tires (cont.)

PREPARE The angular speed is related to the speed of a 

wheel’s center by Equation 7.25: ν = ωR. Because the 

center of the wheel turns on an axle fixed to the car, the 

speed v of the wheel’s center is the same as that of the car. 

We prepare by converting the car’s speed to SI units:

Once we know the angular speed, we can find the number 

of times the tires turned from the rotational-kinematic 

equation ∆θ = ω ∆t. We’ll need to find the time traveled 

∆t from ν = ∆x/∆t.
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Example 7.20 Rotating your tires (cont.)

SOLVE a.  From Equation 7.25 we have

b.  The time of the trip is
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Example 7.20 Rotating your tires (cont.)

Thus the total angle through which the tires turn is

Because each turn of the wheel is 2π rad, the number of 

turns is
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Summary
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Summary
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Summary
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