College Lecture
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Chapter 7

Rotational Motion

knight - jones - field

Chapter 7 Preview
Looking Ahead

Rotational Kinematics Torque Rotational Dynamics

The spinning roulette wheel isn’t going To start something moving, apply a force. The girl pushes on the outside edge of the
anywhere, but it is moving. This is To start something rotating, apply a torque, merry-go-round, gradually increasing its
rotational motion. as this sailor is doing to the wheel. rotation rate.

You'll learn about angular veloclty and other You’ll see that torque depends on how hard You’ll learn a version of Newton’s second
quantities we use to describe rotational motion. you push and also on where you push. A push  law for rotational motion and use it to solve
far from the axle gives a large torque. problems.
Text p. 189
© 2015 Pearson Education, Inc. Slide 7-2

Reading Question 7.1

If an object is rotating clockwise, this corresponds to a
angular velocity.

A. Positive
B. Negative

© 2015 Pearson Education, Inc. Slide 7-3

Reading Question 7.1

If an object is rotating clockwise, this corresponds to a
angular velocity.

A. Positive
v B. Negative
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Reading Question 7.2

The angular displacement of a rotating object is measured in

Degrees.
Radians.
Degrees per second.

SOow

Radians per second.
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Reading Question 7.2

The angular displacement of a rotating object is measured in

A. Degrees.

l/ B. Radians.
C. Degrees per second.
D. Radians per second.
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Reading Question 7.3

Moment of inertia is

The rotational equivalent of mass.
The time at which inertia occurs.
The point at which all forces appear to act.

oCawy»

An alternative term for moment arm.
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Reading Question 7.3

Moment of inertia is

o/ A. The rotational equivalent of mass.
B. The time at which inertia occurs.
C. The point at which all forces appear to act.
D. An alternative term for moment arm.
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Reading Question 7.4

Which factor does the torque on an object not depend on?

The magnitude of the applied force
The object’s angular velocity
The angle at which the force is applied

oSawy

The distance from the axis to the point at which the force
is applied
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Reading Question 7.4

Which factor does the torque on an object not depend on?

A. The magnitude of the applied force
¢/ B. The object’s angular velocity
C. The angle at which the force is applied

D. The distance from the axis to the point at which the force
is applied
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Reading Question 7.5

A net torque applied to an object causes

A linear acceleration of the object.
The object to rotate at a constant rate.
The angular velocity of the object to change.

oCawy»

The moment of inertia of the object to change.
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Reading Question 7.5

A net torque applied to an object causes

A. Alinear acceleration of the object.
B. The object to rotate at a constant rate.

¢/ C. The angular velocity of the object to change.
D. The moment of inertia of the object to change.
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Describing Circular and Rotational Motion
* Rotational motion is the motion of objects that spin about
an axis.
Section 7.1 Describing Circular
and Rotational Motion
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Angular Position Angular Position
* We use the angle 6 from . * We measure angle 6 in .
the positive x-axis to the angular unit of
describe the particle’s Purficle radians, not degrees. Particle . _
; Arc length .. . Arc length
location. reens * The radian is abbreviated reens
* Angle 0 is the angular 5,1, r . “rad.” Angila r .
position of the particle.  position ) - The arc length, s, is the position .
* @ is positive when . SwE— x distance that the pgrtwle SwE— x
measured counterclockwise citenlar fotisn has traveled along its circilar fiotiet
from the positive x-axis. circular path.
* An angle measured clockwise from the positive x-axis has
a negative value.
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Angular Position

* We define the particle’s angle @ in terms of arc length and
radius of the circle:

. g
8 (radiang) = -

g=rf
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Angular Position

* One revolution (rev) is when a particle travels all the way
around the circle.

¢ The angle of the full circle is
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Angular Displacement and Angular Velocity

* For linear motion, a particle with a larger velocity
undergoes a greater displacement

(a) Uniform linear motion

A particle with a small A particle with a large
particle Wit a8l 0s 1s 2s 3s 4s Ss 0s 1s 2s 3s 4s Ss parucle ACAIEG
velocity v undergoes a velocity v undergoes a
small displacement -, mA MA .large displacement
each second. ey BX X ¢ ereusennen" €ach second.
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Angular Displacement and Angular Velocity

* For uniform circular motion, a particle with a larger
angular velocity will undergo a greater angular
displacement A#.

(b) Uniform circular motion

A particle with a small

A particle with a large

L3 angular velocity 5 " mgular velocity
25 undergoes a small angular 4s S undergoes a large angular
.- displacement each second. : displacement each second.
1s
Os ) " OS

* Angular velocity is the angular displacement through
which the particle moves each second.
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Angular Displacement and Angular Velocity

__angular displacement  Af
¢ time interval At

Angular velocity of a particle in uniform circular motion

* The angular velocity @ = AG/At is constant for a
particle moving with uniform circular motion.
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Example 7.1 Comparing angular velocities

Find the angular velocities of the two particles in Figure

7.2b.

(b) Uniform circular motion

A particle with a large
o angular velocity @
undergoes a large angular
displacement each second

A particle with a small
angular velocity
2 s undergoes a small angular
] displacement each second.
s

2s

Is

0s 5s

PREPARE For uniform circular motion, we can use any
angular displacement A6, as long as we use the
corresponding time interval At. For each particle, we’ll
choose the angular displacement corresponding to the
motion fromr=0stor=3s.
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Example 7.1 Comparing angular velocities
(cont.)

(b) Uniform circular motion

A particle with a small A particle with a large

35 angular velocity 5 ; e angular velocity o
2 undergoes a small angular A5 s undergoes a large angular
.- displacement each second. displacement each second.
Is
' 0s Ss " 0s

SOLVE The particle on the left travels one-quarter of a full circle
during the 5 s time interval. We learned earlier that a full circle
corresponds to an angle of 2z rad, so the angular displacement
for this particle is A0 = (2x rad)/4 = n/2 rad. Thus its angular
velocity is

mﬁﬁ@m@sﬁﬁmﬁ
At Ns
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== (3.214 raulin

Example 7.1 Comparing angular velocities

(cont.)

(b) Uniform circular motion

A particle with a small

A particle with a large
e angular ity @
2 undergoes a large angular

angular velocity @
2 undergoes a small angular

.. displacement each second. displacement each second.
Is

The particle on the right travels halfway around the
circle, or 7 rad, in the 5 s interval. Its angular velocity is
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A wvad
W= = = (.628 rad/s
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Angular Displacement and Angular Velocity

* The linear displacement during a time interval is
Hr-n=Az=v At

¢ Similarly, the angular displacement for uniform circular

motion is

Hf—01=A0=wAt

Angular displacement for uniform circular motion
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Angular Displacement and Angular Velocity

* Angular speed is the absolute value of the angular
velocity.

* The angular speed is related to the period T

Zgr 1ad
Vil

@m

* Frequency (in rev/s) f= 1/T:
@ = (2w rad)f
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Example 7.3 Rotations in a car engine
The crankshaft in your car engine is turning at 3000 rpm.
What is the shaft’s angular speed?

PREPARE We’ll need to convert rpm to rev/s and then use
Equation 7.6.

SOLVE We convert rpm to rev/s by

' rev yf 1 min _ :
é 3000 min}{ 0 s E == 5.0 revis
Thus the crankshaft’s angular speed is

w = (2o rad)f = (2w rad)(30.0 revis) = 314 radfs
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Angular-Position and Angular-Velocity Graphs
* We construct angular position-versus-time graphs using
the change in angular position for each second.

* Angular velocity-versus-time graphs can be created by
finding the slope of the corresponding angular position-
versus-time graph.
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Relating Speed and Angular Speed

* Speed v and angular speed w are related by

V= wr

Relationship between speed and angular speed

* Angular speed » must be in units of rad/s.
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Example 7.5 Finding the speed at two points on
aCD

The diameter of an audio compact disk is
12.0 cm. When the disk is spinning at its
maximum rate of 540 rpm, what is the
speed of a point (a) at a distance 3.0 cm
from the center and (b) at the outside
edge of the disk, 6.0 cm from the center?

PREPARE Consider two points A and B
on the rotating compact disk in
FIGURE 7.7. During one period 7, the disk rotates once, and
both points rotate through the same angle, 2z rad. Thus the
angular speed, @ = 27/T, is the same for these two points; in fact,
it is the same for all points on the disk.
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Example 7.5 Finding the speed at two points on
a CD (cont.)

But as they go around one time,
the two points move different
distances. The outer point B goes
around a larger circle. The two
points thus have different speeds.
We can solve this problem by first
finding the angular speed of the
disk and then computing the speeds at the two points.
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Example 7.5 Finding the speed at two points on
a CD (cont.)

SOLVE We first convert the
frequency of the disk to rev/s:

(. revy (1min
=510 %) x (120
! ( minj (ﬁ@ﬂ

= § ) rev/s

We then compute the angular speed using Equation 7.6:

o = (2ar 1ad}(2.00 rev/s) = 56.5 rad/s
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Example 7.5 Finding the speed at two points on
a CD (cont.)

We can now use Equation 7.7
to compute the speeds of points
on the disk. At point A,
r=3.0cm=0.030 m, so the
speed is
va = wr = (56.5 rad/s)(0.030 m) = 1.7 m/s
At point B, r = 6.0 cm = 0.060 m, so the speed at the outside
edge is

vg = wr = (56.5 rad/s)(0.060 m) = 3.4 mis
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Example 7.5 Finding the speed at two points on
a CD (cont.)

ASSESS The speeds are a few
meters per second, which seems
reasonable. The point farther
from the center is moving at a
higher speed, as we expected.
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QuickCheck 7.7

This is the angular velocity graph of a wheel. How many
revolutions does the wheel make in the first 4 s?

w (rev/s)
A1 5
B. 2
C. 4 1A
D. 6
0 T T T T t(S)
E. 8 o 1 2 3 4
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QuickCheck 7.7

This is the angular velocity graph of a wheel. How many
revolutions does the wheel make in the first 4 s?

w (rev/s)
A1 5
B. 2
C. 4 11
vV D 6
0 T T T T t(S)
E. 8 o 1 2 3 4

A6 = area under the angular velocity curve
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QuickCheck 7.9 QuickCheck 7.9

Starting from rest, a wheel with constant angular Starting from rest, a wheel with constant angular
acceleration turns through an angle of 25 rad in a time . acceleration turns through an angle of 25 rad in a time .
Through what angle will it have turned after time 2¢? Through what angle will it have turned after time 2¢?

A. 25rad A. 25rad

B. 50 rad B. 50rad

C. 75rad C. 75rad

D. 100 rad ¢/ D. 100rad A8« (Ar)?

E. 200 rad E. 200 rad
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The Rotation of a Rigid Body

* Arigid body is an extended et
object whose size and shape SR
do not change as it moves.

* The rigid-body model is a A
good approximation for many I
Section 7.2 The Rotation of a Rigid Body real objects.

. “~ Size and shape
A rigid bod
rigié body do not change as
the object moves.
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The Rotation of a Rigid Body

Traj ectory

v ¥ Mk

Translational motion: Rotational motion:

The object as a whole The object rotates about a
moves along a trajectory fixed point. Every point on
but does not rotate. the object moves in a circle.

© 2015 Pearson Education, Inc.

Combination motion:
An object rotates as it
moves along a trajectory.
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Rotational Motion of a Rigid Body

* Every point on a
rotating body has
the same angular
velocity.

* Two points on the
object at different
distances from the
axis of rotation will
have different speeds.

© 2015 Pearson Education, Inc.

These are the
same angles.

Points 1 and 2 have
_the same .
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QuickCheck 7.2

Rasheed and Sofia are riding a merry-go-round that is
spinning steadily. Sofia is twice as far from the axis as is

Rasheed. Sofia’s angular velocity is

Half

The same as
Twice

Four times

moawp>

We can’t say without
knowing their radii.
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that of Rasheed.
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QuickCheck 7.2

Rasheed and Sofia are riding a merry-go-round that is
spinning steadily. Sofia is twice as far from the axis as is
Rasheed. Sofia’s angular velocity is

Half

The same as
Twice

Four times

We can’t say without
knowing their radii.

© 2015 Pearson Education, Inc.

that of Rasheed.
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QuickCheck 7.3

Rasheed and Sofia are riding a merry-go-round that is
spinning steadily. Sofia is twice as far from the axis as is
Rasheed. Sofia’s speed is that of Rasheed.

Half

The same as
Twice

Four times

moawp>

We can’t say without
knowing their radii.
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QuickCheck 7.3

Rasheed and Sofia are riding a merry-go-round that is
spinning steadily. Sofia is twice as far from the axis as is
Rasheed. Sofia’s speed is that of Rasheed.

A. Half

B. The same as
vV C. Twice v=or

D. Four times

E. We can’t say without
knowing their radii.
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QuickCheck 7.4

Two coins rotate on a turntable. p—_—
Coin B is twice as far from the axis @
as coin A.
A. The angular velocity of A is twice that of B
B. The angular velocity of A equals that of B
C. The angular velocity of A is half that of B
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QuickCheck 7.4

Two coins rotate on a turntable. p—_—
Coin B is twice as far from the axis @
as coin A.
A. The angular velocity of A is twice that of B
¢/ B. The angular velocity of A equals that of B
C. The angular velocity of A is half that of B
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Angular Acceleration
* Angular acceleration is defined as:

__ change in angular velocity  Aw

o 5 S ===
time interval At

Angular acceleration for a particle in nonuniform circular motion

The angular velocity is changing, so

the wheel has an angular acceleration.

* The units of angular acceleration : o
are rad/s. -
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Angular Acceleration

a is positive when the rigid body is . . .

I / \\‘t
OO

.. rotating counter- ... rotating clockwise
clockwise and and slowing down.
speeding up.

« is negative when the rigid body is . . .

/\\
OO

.. rotating counter- ... rotating clockwise
clockwise and and speeding up.
slowing down.
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QuickCheck 7.5

The fan blade is slowing down. What are the signs of @

and o

Slide 7-51

o 1is positive and s positive.

w 1s positive and ¢ is negative.
o 1s negative and ¢ is positive.
o is negative and ¢is negative.

monw»

o is positive and ¢ is zero.
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QuickCheck 7.5

The fan blade is slowing down. What are the signs of @
and o?

A. o is positive and ¢ is positive.
B.  is positive and & is negative.

¢/ C. wisnegative and «is positive.
D. o is negative and «is negative.
E. wis positive and ¢ is zero.

“Slowing down” means that @ and « have opposite signs, not
that ¢is negative.
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QuickCheck 7.6

The fan blade is speeding up. What are the signs of @
and o?

A. wis positive and ¢ is positive.
B. wis positive and «&is negative.
C. wis negative and & is positive.
D. wis negative and & is negative.
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QuickCheck 7.6

The fan blade is speeding up. What are the signs of @
and o?

A. wis positive and is positive.

=

w1is positive and & is negative.
C. wis negative and & is positive.
¢/ D. wis negative and & is negative.
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Example Problem
A high-speed drill rotating counterclockwise takes 2.5 s to
speed up to 2400 rpm.

A. What is the drill’s angular acceleration?

B. How many revolutions does it make as it reaches top
speed?
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Linear and Circular Motion

SYNTHESIS 7.1 Linear and circular motion

The variables and equations for linear motion have analogs for circular motion.

Linear motion Circular motion

Position (m)-..., . 2 X Oe.. Angle (rad)
w e Ax Aé ........... -
% Velocity (m/s), === w=—— Angular
= R v 2 At L At ..velocity (rad/s)
e
= (R ——
§ Acceleration — Avx — Aw Angular
(m/s?) a0 = a= 2 . >
TS )R e L saas At At ... acceleration (rad/s”)
£ Constant Constant
: = =
2 velocity Ax=var A =wAr angular velocity
=
]
g_ Contiant Av = alAt Aw = aAt Constant
= . ‘O‘I::Ted']']l' = i 2 . 1 , angular
aece CIAUOEEN o — AT Ea(At) Af = wiAt o ia(AI) acceleration
Text: p. 196
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QuickCheck 7.8

Starting from rest, a wheel with constant angular
acceleration spins up to 25 rpm in a time ¢. What will its
angular velocity be after time 2¢?

QuickCheck 7.8

Starting from rest, a wheel with constant angular
acceleration spins up to 25 rpm in a time ¢. What will its
angular velocity be after time 2¢?

A. 25 rpm A. 25 rpm
B. 50 rpm ¢/ B. 50 pm Aw oc At
C. 75 rpm C. 75 rpm
D. 100 rpm D. 100 rpm
E. 200 rpm E. 200 rpm
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Tangential Acceleration R r— Tangential Acceleration

* Tangential acceleration is the
component of acceleration directed
tangentially to the circle.

* The tangential acceleration measures

d, points toward the

the rate at which the particle’s speed ol

(b) Nonuniform circular motion

around the circle increases.
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v is constant.

* We can relate tangential acceleration to the angular
acceleration by v = wr.

a,=ar

Relationship between tangential and angular acceleration
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Section 7.3 Torque

Torque

* Forces with equal strength
will have different effects
on a swinging door.

F. 4 F 1
Top view of door _}
9 z F;

‘ =

* The ability of a force to F

cause rotation depends on
* The magnitude F of the force.

* The distance r from the pivot—the axis about which the
object can rotate—to the point at which force is applied.

Hinge

* The angle at which force is applied.
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Torque
* Torque (7) is the rotational equivalent of force.
T=rF,
Torque due to a force with perpendicular component F;

acting at a distance r from the pivot

* Torque units are newton-meters, abbreviated N - m.

© 2015 Pearson Education, Inc.
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Torque

* The radial line is the line
starting at the pivot and Point of
extending through the point application
where force is applied. oiforee

:  Radial
* The angle ¢ is Pivot ¢ line
measured from the
radial line to the

direction of the force.

¢ is the ang]e between
the radial line and the
direction of the force.
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Torque

* The radial line is the line
starting at the pivot and
extending through the
point where force is
applied.

* The angle ¢ is measured
from the radial line to the
direction of the force.

* Torque is dependent on
the perpendicular component
of the force being applied.

© 2015 Pearson Education, Inc.

" F, =Fsin¢
The component of F a4 /
that is perpendicular P AN
to the radial line ., < \
causes a torque. bt b M-
L

The parallel
component does
not contribute to
the torque.
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Torque

* An alternate way to calculate
torque is in terms of the
moment arm.

* The moment arm (or lever
arm) is the perpendicular
distance from the line of
action to the pivot.

* The line of action is the line
that is in the direction of the
force and passes through the
point at which the force acts.
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The line of action extends /
in the direction of the force «we-==
vector and passes through
the point at which the

force acts.

T

1
/— Line of
, action

The moment arm 7 L /
extends from the pivot
to the line of action . . . %

. and is perpendicular
to the line of action.
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Torque

* The equivalent expression for
torque is

T=r F

Torque due to a force F' with moment arm

* For both methods for
calculating torque, the
resulting expression is
the same:

= pFsing
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The line of action extends /
in the direction of the force «we-==
vector and passes through
the point at which the

force acts.

T

1

/— Line of
¥ .

, action

The moment arm 7 L /
extends from the pivot
to the line of action . . . %

. and is perpendicular
to the line of action.
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QuickCheck 7.10

The four forces shown have the same strength. Which force
would be most effective in opening the door?

Top view of door F,
A. Force F 1 el B ——
B. Force F, , ’
Hinge F o
C. Force F; . 3 |F,
D. Force F,
E. Either F, or F;
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QuickCheck 7.10

The four forces shown have the same strength. Which force
would be most effective in opening the door?

Top view of door F
v/ A. Force F i d | e
B. Force F, , ’
Hinge . F .
C. Force F; By 3 |F,
D. Force F,
E. Either F, or F;

Your intuition likely led you to choose F,.
The reason is that F', exerts the largest torque
about the hinge.
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Example 7.9 Torque in opening a door

Ryan is trying to open a stuck door. = 0

He pushes it at a point 0.75 m from . B |f 240N
the hinges with a 240 N force Jop wiewrof door 20°
directed 20° away from being T — ==
perpendicular to the door. Finge ’ Radial line

There’s a natural pivot point, the
hinges. What torque does Ryan exert?
How could he exert more torque?

PREPARE In FIGURE 7.20 the radial line is shown drawn from the
pivot—the hinge—through the point at which the force ¥is applied.
We see that the component of Fthat is perpendicular to the radial line
is F, = F cos 20° = 226 N. The distance from the hinge to the point at
which the force is applied is r = 0.75 m.
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Example 7.9 Torque in opening a door (cont.)

SOLVE We can find the torque T4 R
on the door from Equation 7.10: Top view of door F |of 240N
‘ - e 20°
7=rF, = (0.75 m){(226 N} a =
=170 N-m Hir‘lge == Osem Radial line

The torque depends on how hard Ryan pushes, where he
pushes, and at what angle. If he wants to exert more torque, he
could push at a point a bit farther out from the hinge, or he could
push exactly perpendicular to the door. Or he could simply push
harder!

ASSESS As you’ll see by doing more problems, 170 N - m is a
significant torque, but this makes sense if you are trying to free a
stuck door.
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Torque

* A torque that tends to rotate the object in a counter-
clockwise direction is positive, while a torque that
tends to rotate the object in a clockwise direction is
negative.

A positive torque tries to rotate the
object counterclockwise about the pivot.

Maximum positive torque for a force
perpendicular to the radial line ....-== Bullinestiinhton: fumite
pivot exerts zero torque.

Pushing straight toward the ...,
pivot exerts zero torque.
A negative torque tries to rotate the
object clockwise about the pivot.

Radial line

Point where

force is applied % \payimum negative torque for a force

perpendicular to the radial line

Pivot point
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Net Torque

e The net torque is the sum The axle exerts a force on the
crank to keep Fye = 0. This -
of the torques due to the  force does not exert a torque. . Faxte
K

applied forces:

Tpet = T, F Ty Ty pytess =
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QuickCheck 7.11

Which third force on the wheel, applied at point P, will
make the net torque zero?

’l\IH

© 2015 Pearson Education, Inc.

|

E.
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QuickCheck 7.11

Which third force on the wheel, applied at point P, will
make the net torque zero?

L\f‘t;

No torque  Torques cancel
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Section 7.4 Gravitational Torque

and the Center of Gravity




Gravitational Torque and the Center of Gravity

° GraVity pulls dOWl’lwaI'd on (a) Gravity exerts a force and a
. torque on each particle that
every parthle that makes up makes up the gymnast..,  Rotation axis
an object (like the gymnast).

* Each particle experiences a
torque due to the force of
gravity.
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Gravitational Torque and the Center of Gravity

The weight force provides a torque
about the rotation axis. .,

* The gravitational torque can ®
be calculated by assuming
that the net force of gravity
(the object’s weight) acts as
a single point.

* That single point is called the
center of gravity.

The gymnast responds as if her entire
weight acts at her center of gravity.
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Example 7.12 The torque on a flagpole

A 3.2 kg flagpole extends Known
from a wall at an angle of :’1:13-62nl]<g
25° from the horizontal. =125

I W Line of  Find

Its center of gravity is
! o\ ' action

1.6 m from the point
where the pole is attached
to the wall. What is the gravitational torque on the flagpole
about the point of attachment?

Moment arm

PREPARE FIGURE 7.26 shows the situation. For the purpose of
calculating torque, we can consider the entire weight of the pole
as acting at the center of gravity. Because the moment arm r is
simple to visualize here, we’ll use Equation 7.11 for the torque.
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Torque 7

Example 7.12 The torque on a flagpole (cont.)

SOLVE From Figure 7.26, Known
we see that the moment arm m_=13-62 kg
is r, = (1.6 m) cos 25°= A

1.45 m. Thus the gravitational "W Lineof Find
torque on the flagpole, about ¢ o\ '~ action
the point where it attaches to Moment arm

the wall, is

r=—r w=—r mg=—{L4S m}32 kg9 B mfe®) = —45 N - mt

We inserted the minus sign because the torque tries to rotate the pole
in a clockwise direction.

Torque 7

ASSESS If the pole were attached to the wall by a hinge, the
gravitational torque would cause the pole to fall. However, the actual
rigid connection provides a counteracting (positive) torque to the pole
that prevents this. The net torque is zero.
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Gravitational Torque and the Center of Gravity

* An object that is free to
rotate about a pivot will
come to rest with the
center of gravity
below the pivot point.

When the center
of gravity is
below the pivot,
w, is zero and
there is no

When the center
of gravity is not
below the pivot,
w, exerts a torque
and the ruler will
rotate.

¢ If you hold a ruler by torque.
one end and allow it to
rotate, it will stop rotating
when the center of gravity
is directly above or below the pivot point. There is no
torque acting at these positions.
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QuickCheck 7.12

Which point could be the center of gravity of this
L-shaped piece?
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QuickCheck 7.12

Which point could be the center of gravity of this
L-shaped piece?
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Calculating the Position of the Center of
Gravity

* The torque due to gravity when the pivot is af the
center of gravity is zero.

* We can use this to find an expression for the position of
the center of gravity.
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Calculating the Position of the Center of
Gravity

Calculating the Position of the Center of
Gravity

* For the dumbbell to i i * The torque due to the & &
balance, the pivot must m o y weight on the left side m f— my
be at the center of it ) of the pivot is Hivet )
gravity. Wi 4 T =AW= {x@g = Xy e Wi he
° T T T T X T T T T X
We c'alcula}te the torque 0 x Xeg X ¢ The torque due to the 0 x Xeg e
on either side of the ..., Arbitrary origin of WGight on the I'ight side S, Arbitrar.y origin of
inOt, which is located x-coordinate system of the inOt is x-coordinate system
at the position x,. .
Ty = =Wy = — (0 — X hmy g
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Calculating the Position of the Center of Calculating the Position of the Center of
Gravity Gravity
* The total torque is * Because the center of " 2
—_h — — " v e ity depends on m o m
Tot = 0= 1 + 5 = (Kop — XMg — (3 — Xl g gravi ! o= 2
The | ot i fih ag,f o e distance and mass from B Pivot .
e location of the center of gravity is the pivot point, objects # Wy
T % % with large masses count 5 : : : x
my + more heavily. w1 e xz
my & my Arbltrar.y origin of
E\Pivot i * The center of gravity x-coordinate system
i W, tends to lie closer to the
| | | | x heavier objects or particles
0 x Xeg X that make up the object.

*...., Arbitrary origin of
x-coordinate system
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Calculating the Position of the Center of
Gravity

gg():(T;C.? Finding the center of gravity @

© Choose an origin for your coordinate system. You can choose any conve-
nient point as the origin.

® Determine the coordinates (xy, ¥;), (X2, ¥»), (x3, ¥3),. . . for the particles of
masses my, ny, ms, . . ., respectively.

® The x-coordinate of the center of gravity is

_xymy +xomy +x3my + -

(7-115)

Xeg
nmy +m2+m3+
© Similarly, the y-coordinate of the center of gravity is
_ ¥ yomy + ysms - - (7.16)

- m1+m2+m3+--- ’
Exercises 18-21
Text: p. 204
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Example 7.13 Where should the dumbbell be
lifted?

A 1.0-m-long dumbbell has a 10 kg mass on the left and a
5.0 kg mass on the right. Find the position of the center of
gravity, the point where the dumbbell should be lifted in
order to remain balanced.

PREPARE First we sketch the situation as in FIGURE 7.30.

m; = 10 kg my, =5.0kg

O—s O

T

cg

X

I T
x1=0m x x,=1.0m
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Example 7.13 Where should the dumbbell be
lifted? (cont.)

O—= O
T T T X
x1=0m xg X =10m

Next, we can use the steps from Tactics Box 7.1 to find the
center of gravity. Let’s choose the origin to be at the
position of the 10 kg mass on the left, making x;, = 0 m and
x% = 1.0 m. Because the dumbbell masses lie on the x-axis,
the y-coordinate of the center of gravity must also lie on the
x-axis. Thus we only need to solve for the x-coordinate of
the center of gravity.
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Example 7.13 Where should the dumbbell be
lifted? (cont.)

SOLVE The x-coordinate of my = 10 kg my=5.0kg
the center of gravity is found @ O
. T T T X
from Equation 7.15: q=0m  xg x=10m
_mm togrm  Omy(10kg) + (1.0m)(5.0kg)

Fog iy + ny - ke +50ks

=033 m
The center of gravity is 0.33 m from the 10 kg mass or,
equivalently, 0.17 m left of the center of the bar.

ASSESS The position of the center of gravity is closer to the
larger mass. This agrees with our general statement that the
center of gravity tends to lie closer to the heavier particles.
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Section 7.5 Rotational Dynamics

and Moment of Inertia

Rotational Dynamics and Moment of Inertia

The tangential force F causes the
tangential acceleration d,. F' causes
the particle’s speed to change.

* A torque causes an angular
acceleration.

¢ The tangential and angular
accelerations are

The tension 7 causes the
centripetal acceleration d.

T causes the particle’s -+,

. F direction to change.
i 4
Pivot
point

i QRS
&=

e Rod of length

Path of particle/
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Rotational Dynamics and Moment of Inertia

The tangential force F causes the
tangential acceleration d,. F' causes
the particle’s speed to change.

* We compare with torque:

7= pl

* We find the relationship
with angular acceleration: -

centripetal acceleration d,.
T causes the particle’s ===,
direction to change. &

T
&= "7 5
Pivot
point

Rod of length

Path of particle/
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Newton’s Second Law for Rotational Motion

Particle 1 is at radius r,
and has mass m;.

* For a rigid body
rotating about a S
fixed axis, we can
think of the object
as consisting of
multiple particles.

) \Rotation
axis

* We can calculate
the torque on each
particle.

These forces exert a net
torque about the rotation

. axis and cause the object
* Because the object rotates to have an angular

together, each particle has the acceleration.
same angular acceleration.
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Newton’s Second Law for Rotational Motion

* The torque for each Particle 1 is at radius r
and has mass m;.

“particle” is P .

= ??Eﬁ”}zﬁ

"= mg}”zgiﬁ 7> Rotation
axis
7o = i
3 Hinly & These forces exert a net

torque about the rotation
axis and cause the object
to have an angular
acceleration.

¢ The net torque is

T =T F B+ m e =myrle + mrda + marte <
= a(myr’ + el + mgr? oo ) =0 Y mrd
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Newton’s Second Law for Rotational Motion

Particle 1 is at radius r;
and has mass m;.

* The quantity Xmr? in
Equation 7.20, which >
is the proportionality
constant between angular
acceleration and net torque,
is called the object’s
moment of inertia I:

T \Rotation
axis

These forces exert a net
torque about the rotation
axis and cause the object
to have an angular
acceleration.

]=m]r12+m2r22+m3r32+'-' = Em,-r,-z

Moment of inertia of a collection of particles

* The units of moment of inertia are kg - m?.

* The moment of inertia depends on the axis of rotation.
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Newton’s Second Law for Rotational Motion

Newton’s second law for rotation An object that experiences a net torque
T,er about the axis of rotation undergoes an angular acceleration

Tnet
1
where [ is the moment of inertia of the object about the rotation axis.

A net torque is the cause of angular acceleration.
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Interpreting the Moment of Inertia

° The moment Of inertia (a) Mass concentrated (b) Mass concentrated

around the rim -, at the center

is the rotational
equivalent of mass.

* An object’s moment of
inertia depends not only
on the object’s mass but
also on how the mass is

K X Larger moment of Smaller moment of
distributed around the inertia, harder to inertia, easier to
. . get rotating get rotating
rotation axis.
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Interpreting the Moment of Inertia

° The moment Of inertia iS (a) Mass concentrated (b) Mass concentrated

around the rim -,

at the center

the rotational equivalent
of mass.

* It is more difficult to spin
the merry-go-round when
people sit far from the

center because it has a
higher inertia than when

Larger moment of
inertia, harder to

Smaller moment of
inertia, easier to

Interpreting the Moment of Inertia

SYNTHESIS 7.2 Linear and rotational dynamics

The variables for linear dynamics have analogs for rotational dynamics.
Newton’s second law for rotational dynamics is expressed in terms of these

. t rotati t rotati
people sit close to the selroning gelrone
center.
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variables.
Linear dynamics Rotational dynamics
- >
o Net force (N) *-.......ee* ’Fnet TSR Net torque (N * m)
= >
.é Mass (Kg) -...........x 1 ) L — Moment of inertia (kg * m*)
I : ) - 5 >
= Acceleration (m/s?) ... >d (954 b Angular acceleration (rad/s”)
7 5 Acceleration is *****-.,, ” e Angular acceleration is
== caused by forces. Ly % caused by torques.
S E 7 = Lt et
3 8 The larger the m I The larger the moment of
2 2 mass, the smaller «..........=" sil Fo..... inertia, the smaller the
the acceleration. angular acceleration.
Text: p. 208
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Example 7.15 Calculating the moment of inertia

ns
Your friend is creating an  m=10em /,/O
abstract sculpture that A
consists of three small, SAxis A = 14.1 cm///
heavy spheres attached 7
by very lightweight i0E n=o0em
10-cm-long rods as shown / r,=10cm L s=dbem
in FIGURE 7.36. The m i .
spheres have masses (out of paper)

m; = 1.0 kg, m, = 1.5 kg, and m; = 1.0 kg. What is the object’s
moment of inertia if it is rotated about axis A? About axis B?

PREPARE We’ll use Equation 7.21 for the moment of inertia:

_ 2 2 2
I=mri= + myry* + msry

In this expression, ry, r,, and r; are the distances of each particle from
the axis of rotation, so they depend on the axis chosen.
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Example 7.15 Calculating the moment of inertia
(cont.)

Particle 1 lies on both _____r;_=_l_0_c;n____én)3 el
axes, sor; =0 cm in ‘
both cases. Particle 2 A ry=14.1cm //
lies 10 cm (0.10 m) from
both axes. Particle 3 is r=0cm n=0cm
10 cm from axis A but i L = oem
farther from axis B. We | " Axis B
(out of paper)
can find r; for axis B by using the
Pythagorean theorem, which gives r; = 14.1 cm.
These distances are indicated in the figure.
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Example 7.15 Calculating the moment of inertia

Example 7.15 Calculating the moment of inertia

(cont.) e (cont.) e
. = TN ¢ /O T h=10em //O
SOLVE For each axis, )
we can prepare a table Axis A m=14d em ./ “SAxis A r=141cm
of the values of r, m,
and mrz for each ri=0cm r=0cm /// ri=0cm r=0cm ///
. =10 S =10 =10 7 =10
particle, then add the O =0 = i
my my
2 2 ‘Axis B : 2 ‘Axis B
Va!ues Of mr=. For (out of paper) For axis B we have (out of paper)
axis A we have
Particle r m mr?
Particl 2
article r m mr ) 0m 10kg Okg- 2
1 0m 1.0 kg 0kg-m? ) 0.10m 1.5ke 0.015 kg - m
2 0.10 m 1.5kg 0.015 kg - m? 3 0.141m 1.0kg 0.020 kg * m?
3 0.10 m 1.0kg 0.010 kg » m? =
_ Iy = 0.035 kg - m?
I, = 0.025 kg - m?
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Example 7.15 Calculating the moment of inertia The Moments of Inertia of Common Shapes
(CO nt-) ms TABLE 7.1 Moments of inertia of objects with uniform density and total mass M
" ;3___ l_O_c?n_ --@ r ,(_) Object and axis Picture 1 Object and axis Picture 1
ASSESS We’ve already g
e Thin rod (of By Cylinder or disk,
noted that the moment of | “axisa =i 7 ey, Pt
. . . . P about center
inertia of an object is v
higher when its mass is /’1 e Ao 7 >
. . =10 P =10 Thin rod (of an; Lam2 Cylindrical hoop, 2
distributed farther from (( O =0 cross section), /E e e ‘\Q M
. . my m . about end L ‘
the axis of rotation. ’ Axis B -
. (out of paper)
HeI'C, m3 1S farther fI'OIl’I Pll)ane or slab, ﬁMaz Sslid ;ghere, 2 MR?
. . . . about center about diameter
axis B than from axis A, leading to a higher moment of /
inertia about that axis.
Plane or slab, /g Ima? Spherical shell, MR
about edge / : about diameter :
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Using Newton’s Second Law for Rotation

PROBLEM-SOLVING - .
STRATEGY 7.1 Rotational dynamics problems (mpj

We can use a problem-solving strategy for rotational dynamics that is very
similar to the strategy for linear dynamics in Chapter 5.

PREPARE Model the object as a simple shape. Draw a pictorial representation to
clarify the situation, define coordinates and symbols, and list known information.

B Identify the axis about which the object rotates.
m [dentify the forces and determine their distance from the axis.

Sectio N 7_6 US i ng Newto n ’s Seco nd Law ® Calculate the torques caused by the forces, and find the signs of the torques.

soLve The mathematical representation is based on Newton’s second law for
rotational motion:

for Rotation

Thet

I

B Find the moment of inertia either by direct calculation using Equation 7.21
or from Table 7.1 for common shapes of objects.
® Use rotational kinematics to find angular positions and velocities.

Toer — 1O or a=

assess Check that your result has the correct units, is reasonable, and answers
the question.
Exercise 31

Text: p. 211
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Example 7.18 Starting an airplane engine Example 7.18 Starting an airplane engine
(cont.)

The engine in a small air-plane is

specified to have a torque of e
500 N - m. This engine drives a the propeller.
2.0-m-long, 40 kg single-blade
propeller. On start-up, how long
does it take the propeller to reach
2000 rpm? i

The torque from

| M=40kg PREPARE The propeller can be fhe ensine-rofaltes
modeled as a rod that rotates e
about its center. The engine
L=20m exerts a torque on the propeller.
FIGURE 7.38 shows the propeller
and the rotation axis.

|| M=40kg

L=20m

Axis
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Example 7.18 Starting an airplane engine
(cont.)

The torque from

SOLVE The moment of inertia e et cokifes
of a rod rotating about its the propeller.
center is found in Table 7.1:

I=HME =540 kg)(2.0 m)? = 133 kg - m?

The 500 N - m torque of the e
engine causes an angular
acceleration of

500 N -
= 7mz = 37.5 rad/s®
I 133kg-m
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Example 7.18 Starting an airplane engine
(cont.)

The time needed to reach LI SRR M= 40k
the engine rotates L ]
w;=2000 rpm = 33.3 rev/s = the propeller.
209 rad/s is
-
& L=20m
Byl
Ag= =
44 & Axis
_ 209 radfs — U radfs —56s
37.5 radfe®
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Example 7.18 Starting an airplane engine
(cont.)

ASSESS We’ve assumed a constant Eﬁiﬁﬁfﬁfﬁ&
angular acceleration, which is the propeller.
reasonable for the first few seconds
while the propeller is still turning
slowly. Eventually, air resistance
and friction will cause opposing Axis
torques and the angular acceleration
will decrease. At full speed, the
negative torque due to air resistance
and friction cancels the torque of the engine. Then 5, = {}
and the propeller turns at constant angular velocity with no

angular acceleration.
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/M=40kg

| —

L=20m

Constraints Due to Ropes and Pulleys

* If the pulley turns without I5:m speed =k
the rope slipping on it then "
the rope’s speed must
exactly match the speed of
the rim of the pulley.

* The attached object must T
have the same speed and :
acceleration as the rope.

|
The motion of the
object must match-»
the motion of the rim.
Vobj = @R

aobj = aR

Motion constraints for an object connected to a
pulley of radius R by a nonslipping rope
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Section 7.7 Rolling Motion

Rolling Motion

* Rolling is a combination motion in which an object rotates
about an axis that is moving along a straight-line
trajectory.

Path of wheel rim

Path of center of wheel
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Rolling Motion

Path followed by Object rolls one revolution
a point on the rim without slipping.

Rolling Motion

Path followed by Object rolls one revolution
a point on the rim without slipping.

Ax =vAt=2wR

* The figure above shows exactly one revolution for a wheel
or sphere that rolls forward without slipping.

* The overall position is measured at the object’s center.
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Ax =vAt=2wR

* In one revolution, the center moves forward by exactly
one circumference (Ax = 2zR).
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Rolling Motion

Path followed by Object rolls one revolution
a point on the rim without slipping.

Ax=vAt=2mR
* Since 27/T is the angular velocity, we find

= il

* This is the rolling constraint, the basic link between
translation and rotation for objects that roll without

slipping.
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Rolling Motion

Translation + Rotation = Rolling

wR 2v =2wR

+ ®0
v v=wR

v —wR w=0

-
«

»
>

* The point at the bottom of the wheel has a translational
velocity and a rotational velocity in opposite directions,
which cancel each other.

* The point on the bottom of a rolling object is
instantaneously at rest.

¢ This is the idea behind “rolling without slipping.”
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Example 7.20 Rotating your tires

The diameter of your tires is 0.60 m. You take a 60 mile trip
at a speed of 45 mph.
a. During this trip, what was your tires’ angular speed?

b. How many times did they revolve?
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Example 7.20 Rotating your tires (cont.)

PREPARE The angular speed is related to the speed of a
wheel’s center by Equation 7.25: v = w R. Because the
center of the wheel turns on an axle fixed to the car, the
speed v of the wheel’s center is the same as that of the car.
We prepare by converting the car’s speed to SI units:

4 mis .
y= (45 hx(\&wm\%z@m
{45 mph) X | mph /

Once we know the angular speed, we can find the number
of times the tires turned from the rotational-kinematic
equation A@ = w At. We’ll need to find the time traveled
At from v = Ax/At.
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Example 7.20 Rotating your tires (cont.)

SOLVE a. From Equation 7.25 we have

@%im 20 mis
0.30m

== &7 rudfs

b. The time of the trip is

M&&%“‘ 60 mi

_ 3600 5
v 45 mifh

= ﬁ.ﬁi%h?s{wl hm—zﬁﬁﬁi&&
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Example 7.20 Rotating your tires (cont.)

Thus the total angle through which the tires turn is
Af = e Az = (67 rad/s}{ 8} = 3.2 X 10° rad

Because each turn of the wheel is 27 rad, the number of
turns is

1.2 % 10F pad
2ar radd

= 51000 turns
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Summary

GENERAL PRINCIPLES |
Newton’s Second Law for Rotational Motion

If a net torque 7., acts on an object, the object will experience an This law is analogous to Newton’s second law for linear motion,
angular acceleration given by a = 7,./I, where / is the object’s = F/m.
moment of inertia about the rotation axis.

Text: p. 217
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Summary

IMPORTANT CONCEPTS

Describing circular motion Torque
‘We define new variables for circular motion. By convention, A force causes an object to undergo a linear acceleration, a torque
counterclockwise is positive. causes an object to undergo an angular acceleration.

y

Angular displacement: A6 = 6; — 6; There are two interpretations of torque:

. Ag Interpretation 1: 7 = rF* Interpretation 2: 7 = r, I
Angular velocity: o= - i - s Tp) L
A The component of 7 7
L _Ae that is perpendicular F
Angular acceleration: =" o R oo
- e s iR s B
Angles are measured in radians: ’ 2 to the
1 rev = 360° = 27 rad [ FL=Fsind
The angular velocity depends _2m _ 5
on the frequency and period: =
o = o - = i

Relating linear and circular motion quantities ri=rsing
Linear and angular Both interpretations give the same r=rFsingd
speeds are related by: v=owr expression for the magnitude of the torque: :
If the particle’s speed is increasing,
it will also have a tangential Center of gravity
acceleration @, directed tangent to . c Gravity acts on cach The object responds as

t & The center of gravity of an that makes  fits entire weight acts

the circle and an angular

i object is the point at which
acceleration a.

gravity can be considered
to be acting.

at the center o

Angular and tangential
accelerations are related by: a, = ar

The moment of inertia is the rotational equivalent of mass. For  The position of the center of gravity depends on the

an object made up of particles of masses m,, my, ... atdistances  distance x, xy,. .. of each particle of mass my, m,. .. from
7y, Fy, ... from the axis, the moment of inertia is the origin:
5 xymy + Xgmy + xymy e
I=myri+ myrd+ myrs+ - =mr S DR TR T R

= my+ omy+ omy

Text: p. 217
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Summary

APPLICATIONS

Moments of inertia of common shapes

MR® @ MR

N

imr?

e
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=

L

——

L

Rotation about a fixed axis

When a net torque is applied to an object that rotates
about a fixed axis, the object will undergo an angular
acceleration given by

Tnet

i

a=

If a rope unwinds from a pulley of radius R, the linear
motion of an object tied to the rope is related to the
angular motion of the pulley by

agpi = aR Vobj = wR

Rolling motion

For an object that rolls
without slipping,
v=wR
The velocity of a point
at the top of the object is
twice that of the center.

Text: p. 217
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