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Chapter 3 Vectors and Motion in Two 
Dimensions

Chapter Goal: To learn more about vectors and to use 

vectors as a tool to analyze motion in two dimensions.
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Chapter 3 Preview
Looking Ahead
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Reading Question 3.1

The ______ of a vector is always a positive quantity.

A. x-component

B. y-component

C. Magnitude

D. Direction

© 2015 Pearson Education, Inc.



Slide 3-5

Reading Question 3.1

The ______ of a vector is always a positive quantity.

A. x-component

B. y-component

C. Magnitude

D. Direction

© 2015 Pearson Education, Inc. Slide 3-6

Reading Question 3.2

Ax is positive if      is directed _______; Ay is positive if 

is directed _______.

A. Right, up

B. Left, up

C. Right, down

D. Left, down
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Reading Question 3.2

Ax is positive if      is directed _______; Ay is positive if 

is directed _______.

A. Right, up
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Reading Question 3.3

The acceleration of a cart rolling down a ramp depends on

A. The angle of the ramp.

B. The length of the ramp.

C. Both the angle of the ramp and the length of the ramp.

D. Neither the angle of the ramp or the length of the ramp.
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Reading Question 3.4

The acceleration vector of a particle in projectile motion

A. Points along the path of the particle.

B. Is directed horizontally.

C. Vanishes at the particle’s highest point.

D. Is directed down at all times.

E. Is zero.
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Reading Question 3.5

The acceleration vector of a particle in uniform circular 

motion

A. Points tangent to the circle, in the direction of motion.

B. Points tangent to the circle, opposite the direction of 

motion.

C. Is zero.

D. Points toward the center of the circle.

E. Points outward from the center of the circle.
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Reading Question 3.5
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Section 3.1 Using Vectors
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Using Vectors

• A vector is a quantity with both a size (magnitude) and 

a direction.

• Figure 3.1 shows how to represent a particle’s velocity 

as a vector    .

• The particle’s speed at this 

point is 5 m/s and it is moving 

in the direction indicated by

the arrow.
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Using Vectors

• The magnitude of a vector is represented by the letter 

without an arrow. 

• In this case, the particle’s speed—the magnitude of the 

velocity vector    —is v = 5 m/s.

• The magnitude of a vector, 

a scalar quantity, cannot be 

a negative number. 
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Using Vectors

• The displacement vector is a straight-line connection from 

the initial position to the final position, regardless of the 

actual path.

• Two vectors are equal if they have the same magnitude 

and direction. This is 

regardless of the individual 

starting points of the vectors.
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Vector Addition

• is the net displacement because it describes the net 

result of the hiker’s having first displacement   , then 

displacement   .

• The net displacement     is an initial displacement     plus

a second displacement    :

• The sum of the two vectors 

is called the resultant vector. 

Vector addition is 

commutative: 
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Vector Addition

• The figure shows the tip-to-tail rule of vector addition and 

the parallelogram rule of vector addition.
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Multiplication by a Scalar

• Multiplying a vector by a 

positive scalar gives 

another vector of different 

magnitude but pointing in 

the same direction.

• If we multiply a vector by 

zero the product is a vector 

having zero length. The 

vector is known as the zero 

vector.
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Multiplication by a Scalar

• A vector cannot have a negative magnitude.

• If we multiply a vector by a negative number we reverse 

its direction.

• Multiplying a vector by –1 reverses its direction without 

changing its length (magnitude).
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QuickCheck 3.2

Which of the vectors in the second row shows            ?
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Vector Subtraction
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QuickCheck 3.4

Which of the vectors in the second row shows 2   − ?  
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QuickCheck 3.4

Which of the vectors in the second row shows 2   − ?
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Section 3.2 Using Vectors 
on Motion Diagrams
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Using Vectors on Motion Diagrams

• In two dimensions, an object’s displacement is a vector:

• The velocity vector is simply the displacement vector 

multiplied by the scalar 1/∆t.

• Consequently the velocity vector points in the direction 

of the displacement.
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Example 3.1 Finding the velocity of an airplane

A small plane is 100 km due east of Denver. After 1 hour of 

flying at a constant speed in the same direction, it is 200 km 

due north of Denver. What is the plane’s velocity?

PREPARE The initial and final 

positions of the plane are shown 

in FIGURE 3.8; the displacement 

is the vector that points from 

the initial to the final position.

© 2015 Pearson Education, Inc.



Slide 3-29

Example 3.1 Finding the velocity of an airplane 
(cont.)

SOLVE The length of the displacement vector is the 

hypotenuse of a right triangle:

The direction of the displacement vector is described by the 

angle θ in Figure 3.8. From trigonometry, this angle is
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Example 3.1 Finding the velocity of an airplane 
(cont.)

Thus the plane’s displacement vector is

Because the plane undergoes this displacement during 

1 hour, its velocity is

ASSESS The plane’s speed is the magnitude of the velocity, 

v = 224 km/h. This is approximately 140 mph, which is a 

reasonable speed for a small plane.

© 2015 Pearson Education, Inc.
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Using Vectors on Motion Diagrams

• The vector definition of acceleration is a straightforward 

extension of the one-dimensional version:

• There is an acceleration whenever there is a change in 

velocity. Velocity can change in either or both of two 

possible ways:

1. The magnitude can change, indicating a change in speed.

2. The direction of motion can change.
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Finding the Acceleration Vector
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QuickCheck 3.5

A particle undergoes acceleration     while moving from 
point 1 to point 2. Which of the choices shows the velocity 
vector      as the object moves away from point 2?

© 2015 Pearson Education, Inc. Slide 3-34

QuickCheck 3.5
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The diagram shows three points of 
a motion diagram. The particle 
changes direction with no change 
of speed. What is the acceleration 
at point 2?

QuickCheck 3.6
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The diagram shows three points of 
a motion diagram. The particle 
changes direction with no change 
of speed. What is the acceleration 
at point 2?

QuickCheck 3.6
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Vectors and Circular Motion

• Cars on a Ferris wheel move at a constant speed but in a 

continuously changing direction. They are in uniform 

circular motion.
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Section 3.3 Coordinate Systems and 
Vector Components
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Coordinate Systems

• A coordinate system is an 

artificially imposed grid that 

you place on a problem in 

order to make quantitative 

measurements.

• We will generally use 

Cartesian coordinates.

• Coordinate axes have a 

positive end and a negative 

end, separated by a zero at 

the origin where the two 

axes cross.
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Component Vectors

• For a vector A and an 

xy-coordinate system we can

define two new vectors 

parallel to the axes that we 

call the component vectors 

of    .

• You can see, using the 

parallelogram rule, that    

is the vector sum of the 

two component vectors:
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Components
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Components
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Components
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QuickCheck 3.7

What are the x- and y-components of this vector?

A. 3, 2

B. 2, 3

C. –3, 2

D. 2, –3

E. –3, –2
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QuickCheck 3.7

What are the x- and y-components of this vector?

A. 3, 2

B. 2, 3
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D. 2, –3

E. –3, –2
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QuickCheck 3.8

What are the x- and y-components of this vector?

A. 3, 4

B. 4, 3

C. –3, 4

D. 4, –3

E. 3, –4
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QuickCheck 3.8

What are the x- and y-components of this vector?

A. 3, 4

B. 4, 3

C. –3, 4

D. 4, –3

E. 3, –4
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QuickCheck 3.9

What are the x- and y-components of vector C?

A. 1, –3

B. –3, 1

C. 1, –1

D. –4, 2

E. 2, –4
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QuickCheck 3.9

What are the x- and y-components of vector C?

A. 1, –3

B. –3, 1

C. 1, –1

D. –4, 2

E. 2, –4
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QuickCheck 3.10

The angle Φ that specifies the direction of vector     is

A. tan–1(Cx/Cy)

B. tan–1 (Cy/Cx)

C. tan–1 (|Cx|/Cy)

D. tan–1 (|Cx|/|Cy|)

E. tan–1 (|Cy|/|Cx|)
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QuickCheck 3.11

The following vector has length 4.0 units. What are the 
x- and y-components?

A. 3.5, 2.0

B. –2.0, 3.5

C. –3.5, 2.0

D. 2.0, –3.5

E. –3.5, –2.0

© 2015 Pearson Education, Inc.



Slide 3-53

QuickCheck 3.11
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QuickCheck 3.12

The following vector has length 4.0 units. What are the 
x- and y-components?

A. 3.5, 2.0

B. 2.0, 3.5

C. –3.5, 2.0

D. 2.0, –3.5

E. –3.5, –2.0
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QuickCheck 3.12

The following vector has length 4.0 units. What are the 
x- and y-components?
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Example 3.3 Finding the components of an 
acceleration vector

Find the x- and y-components of the acceleration vector 

shown in FIGURE 3.17.

PREPARE It’s important to draw the vectors. Making a 

sketch is crucial to setting up this problem. FIGURE 3.18 

shows the original vector    decomposed into component 

vectors parallel to the axes.
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Example 3.3 Finding the components of an 
acceleration vector (cont.)

SOLVE The acceleration vector    = (6.0 m/s2, 30° below the 

negative x-axis) points to the left (negative x-direction) and 

down (negative y-direction), so the components ax and ay are 

both negative:

© 2015 Pearson Education, Inc.

ax = −a cos 30° = −(6.0 m/s2) cos 30° = −5.2 m/s2

ay = −a sin 30° = −(6.0 m/s2) sin 30° = −3.0 m/s2
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Example 3.3 Finding the components of an 
acceleration vector (cont.)

ASSESS The magnitude of the y-component is less than that 

of the x-component, as seems to be the case in Figure 3.18, 

a good check on our work. The units of ax and ay are the 

same as the units of vector   . Notice that we had to insert 

the minus signs manually by observing that the vector 

points down and to the left.

© 2015 Pearson Education, Inc.
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Working with Components

• We can add vectors using components.

• Let’s look at the vector sum                     for the vectors 

shown in FIGURE 3.19. You can see that the component 

vectors of are the sums of the component vectors of 

and    . The same is true of the components: Cx = Ax + Bx

and Cy = Ay + By.
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Working with Components

• Equation 3.18 is really just a shorthand way of writing the 

two simultaneous equations:

• In other words, a vector equation is interpreted as 

meaning: Equate the x-components on both sides of the 

equals sign, then equate the y-components. Vector notation 

allows us to write these two equations in a more compact 

form.
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QuickCheck 3.13

Ax is the __________ of the vector 

A. Magnitude

B. x-component

C. Direction

D. Size

E. Displacement

© 2015 Pearson Education, Inc.
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Tilted Axes

• For motion on a slope, it is often most convenient to put 

the x-axis along the slope.

• When we add the y-axis, this gives us a tilted coordinate 

system.

• Finding components with 

tilted axes is done the same 

way as with horizontal and 

vertical axes. The components 

are parallel to the tilted axes 

and the angles are 

measured from the tilted axes.

Section 3.4 Motion on a Ramp
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Accelerated Motion on a Ramp

• A crate slides down a 

frictionless (i.e., smooth) 

ramp tilted at angle θ.

• The crate is constrained to 

accelerate parallel to the 

surface.

• Both the acceleration and 

velocity vectors are parallel 

to the ramp.
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Accelerated Motion on a Ramp

• We choose the coordinate 

system to have the x-axis 

along the ramp and the y-axis 

perpendicular. All motion 

will be along the x-axis.

• The acceleration parallel to 

the ramp is a component of 

the free-fall acceleration the 

object would have if the 

ramp vanished:

© 2015 Pearson Education, Inc.
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QuickCheck 3.14

A ball rolls up the ramp, then 
back down. Which is the correct 
acceleration graph?

© 2015 Pearson Education, Inc.
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Example 3.6 Maximum possible speed for a 
skier

The Willamette Pass ski area in Oregon was the site of the 

1993 U.S. National Speed Skiing Competition. The skiers 

started from rest and then accelerated down a stretch of the 

mountain with a reasonably constant slope, aiming for the 

highest possible speed at the end of this run. During this 

acceleration phase, the skiers traveled 360 m while dropping 

a vertical distance of 170 m. What is the fastest speed a 

skier could achieve at the end of this run?
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Example 3.6 Maximum possible speed for a 
skier (cont.)

PREPARE We begin with the visual overview in FIGURE 

3.24. The motion diagram shows the acceleration of the 

skier and the pictorial representation gives an overview of 

the problem including 

the dimensions of the 

slope. As before, we 

put the x-axis along 

the slope.
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Example 3.6 Maximum possible speed for a 
skier (cont.)

SOLVE The fastest possible run would be one without any 

friction or air resistance, meaning the acceleration down the 

slope is given by Equation 3.20. The acceleration is in the 

positive x-direction, so we use the positive sign. What is the 

angle in Equation 3.20? Figure 3.24 shows that the 360-m-long 

slope is the hypotenuse of a triangle of height 170 m, so we use 

trigonometry to find

which gives θ = sin−1(170/360) = 28°. Equation 3.20 then gives

ax = + g sin θ = (9.8 m/s2)(sin 28°) = 4.6 m/s2

© 2015 Pearson Education, Inc.
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Example 3.6 Maximum possible speed for a 
skier (cont.)

For linear motion with constant acceleration, we can use the 

third of the kinematic equations in Synthesis 2.1: 

(vx)f
2 = (vx)i

2 + 2ax ∆x. The initial velocity (vx)i is zero; thus

This is the fastest that any skier could hope to be moving at 

the end of the run. Any friction or air resistance would 

decrease this speed.
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Example 3.6 Maximum possible speed for a 
skier (cont.)

ASSESS The final speed we calculated is 58 m/s, which is 

about 130 mph, reasonable because we expect a high speed 

for this sport. In the competition noted, the actual winning 

speed was 111 mph, not much slower than the result we 

calculated. Obviously, efforts to minimize friction and air 

resistance are working!
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Example Problem

A new ski area has opened that emphasizes the extreme 

nature of the skiing possible on its slopes. Suppose an ad 

intones “Free-fall skydiving is the greatest rush you can 

experience . . . but we’ll take you as close as you can get on 

land. When you tip your skis down the slope of our steepest 

runs, you can accelerate at up to 75% of the acceleration 

you’d experience in free fall.” What angle slope could give 

such an acceleration?

© 2015 Pearson Education, Inc.

Section 3.5 Relative Motion
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Relative Motion

• Amy, Bill, and Carlos are watching a runner. 

• The runner moves at a different velocity relative to each of 

them. 
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Relative Velocity

• The runner’s velocity relative to Amy is 

(vx)RA = 5 m/s 

• The subscript “RA” means “Runner relative to Amy.”

• The velocity of Carlos relative to Amy is 

(vx)CA=15 m/s

• The subscript “CA” means “Carlos relative to Amy.”
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QuickCheck 3.15

A factory conveyor belt rolls at 3 m/s. A 
mouse sees a piece of cheese directly 
across the belt and heads straight for the 
cheese at 4 m/s. What is the mouse’s 
speed relative to the factory floor?

A. 1 m/s

B. 2 m/s

C. 3 m/s

D. 4 m/s

E. 5 m/s
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Example 3.8 Speed of a seabird

Researchers doing satellite tracking of albatrosses in the 

Southern Ocean observed a bird maintaining sustained flight 

speeds of 35 m/s—nearly 80 mph! This seems surprisingly fast 

until you realize that this particular bird was flying with the 

wind, which was moving at 23 m/s. What was the bird’s 

airspeed—its speed relative to the air? This is a truer measure of 

its flight speed.

© 2015 Pearson Education, Inc.
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Example 3.8 Speed of a seabird (cont.)

PREPARE FIGURE 3.27 shows the wind and the albatross 

moving to the right, so all velocities will be positive. We’ve 

shown the velocity (vx)bw of the bird with respect to the water, 

which is the measured flight speed, and the velocity (vx)aw of the 

air with respect to the water, which is the known wind speed. We 

want to find the bird’s airspeed—the speed of the bird with 

respect to the air.
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Example 3.8 Speed of a seabird (cont.)

SOLVE We’ve noted three different velocities that are 

important in the problem: (vx)bw, (vx)aw, and (vx)ba. We can 

combine these in the usual way:

(vx)bw = (vx)ba + (vx)aw

Then, to solve for (vx)ba, we can rearrange the terms:

(vx)ba = (vx)bw − (vx)aw = 35 m/s − 23 m/s = 12 m/s

ASSESS 12 m/s—about 25 mph—is a reasonable airspeed for 

a bird. And it’s slower than the observed flight speed, which 

makes sense because the bird is flying with the wind.
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Example 3.9 Finding the ground speed of an 
airplane

Cleveland is approximately 300 miles east of Chicago. A 

plane leaves Chicago flying due east at 500 mph. The pilot 

forgot to check the weather and doesn’t know that the wind 

is blowing to the south at 100 mph. What is the plane’s 

velocity relative to the ground?
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Example 3.9 Finding the ground speed of an 
airplane (cont.)

PREPARE FIGURE 3.28 is 

a visual overview of the 

situation. We are given the 

speed of the plane relative 

to the air (						) and the 

speed of the air relative to 

the ground (     ); the speed of the plane relative to the ground 

will be the vector sum of these velocities:

This vector sum is shown in Figure 3.28.

© 2015 Pearson Education, Inc.
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Example 3.9 Finding the ground speed of an 
airplane (cont.)

SOLVE The plane’s speed relative to the ground is the hypotenuse of 

the right triangle in Figure 3.28; thus:

The plane’s direction can be specified by the angle θ measured from 

due east:

The velocity of the plane relative to the ground is thus

ASSESS The good news is that the wind is making the plane move a 

bit faster relative to the ground. The bad news is that the wind is 

making the plane move in the wrong direction!
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Example Problem

A skydiver jumps out of an airplane 1000 m directly above 

his desired landing spot. He quickly reaches a steady speed, 

falling through the air at 35 m/s. There is a breeze blowing 

at 7 m/s to the west.

A. At what angle with respect to vertical does he fall?

B. When he lands, what will be his displacement from his 

desired landing spot?

© 2015 Pearson Education, Inc.



Section 3.6 Motion in Two Dimensions: 
Projectile Motion
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Motion in Two Dimensions: Projectile Motion

• Projectile motion is an extension to two dimensions of 

free-fall motion.

• A projectile is an object that moves in two dimensions 

under the influence of gravity and nothing else.

• As long as we can neglect air resistance, any projectile 

will follow the same type of path.
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Motion in Two Dimensions: Projectile Motion

• The vertical motions of the two balls are identical.

• The vertical motion of the yellow ball is not affected by 

the fact that the ball is moving horizontally.

• The horizontal and vertical components of an object 

undergoing projectile 

motion are independent of 

each other.
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QuickCheck 3.16

A heavy red ball is released 
from rest 2.0 m above a flat, 
horizontal surface. At exactly 
the same instant, a yellow ball 
with the same mass is fired 
horizontally at 3.0 m/s. Which 
ball hits the ground first?

A. The red ball hits first.

B. The yellow ball hits first.

C. They hit at the same time.
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QuickCheck 3.16
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with the same mass is fired 
horizontally at 3.0 m/s. Which 
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Motion in Two Dimensions: Projectile Motion

• The vertical component of 

acceleration ay for all 

projectile motion is just 

the familiar –g of free fall, 

while the horizontal 

component ax is zero.

© 2015 Pearson Education, Inc.
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QuickCheck 3.17

A 100-g ball rolls off a table and lands 2.0 m from the base 
of the table. A 200-g ball rolls off the same table with the 
same speed. It lands at distance

A. 1.0 m

B. Between 1 m and 2 m

C. 2.0 m

D. Between 2 m and 4 m

E. 4.0 m
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QuickCheck 3.17
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same speed. It lands at distance
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Analyzing Projectile Motion

• The angle of the initial velocity above the horizontal (i.e., 

above the x-axis) is the launch angle.
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Analyzing Projectile Motion

• The ball finishes its motion 

moving downward at the 

same speed as it started 

moving upward.

• Projectile motion is made 

up of two independent 

motions: uniform motion at 

constant velocity in the 

horizontal direction and 

free-fall motion in the 

vertical direction.
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Synthesis 3.1 Projectile Motion
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Synthesis 3.1 Projectile Motion
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Synthesis 3.1 Projectile Motion
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Section 3.7 Projectile Motion:
Solving Problems

© 2015 Pearson Education, Inc. Slide 3-100

Projectile Motion Problems
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Projectile Motion Problems
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The Range of a Projectile

• The range of a projectile is 

the horizontal distance 

traveled.

• For smaller objects air 

resistance is critical, and the 

maximum range comes at 

an angle less than 45°. 
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QuickCheck 3.18

Projectiles 1 and 2 are launched over level ground with the 
same speed but at different angles. Which hits the ground 
first? Ignore air resistance.

A. Projectile 1 hits first.

B. Projectile 2 hits first.

C. They hit at the same time.

D. There’s not enough information to tell.
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Example Problem

A grasshopper can jump a distance of 30 in (0.76 m) from a 

standing start.

A. If the grasshopper takes off at the optimal angle for 

maximum distance of the jump, what is the initial speed 

of the jump?

B. Most animals jump at a lower angle than 45°. Suppose 

the grasshopper takes off at 30° from the horizontal. 

What jump speed is necessary to reach the noted 

distance?
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Section 3.8 Motion in Two Dimensions:
Circular Motion
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Motion in Two Dimensions: Circular Motion

• For circular motion at a 

constant speed, the 

acceleration vector a points 

toward the center of the circle.

• An acceleration that always 

points directly toward the 

center of a circle is called a 

centripetal acceleration.

• Centripetal acceleration is just 

the name for a particular type 

of motion. It is not a new type 

of acceleration.
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QuickCheck 3.19

A car is traveling around a curve at a 
steady 45 mph. Is the car accelerating?

A. Yes

B. No
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QuickCheck 3.19

A car is traveling around a curve at a 
steady 45 mph. Is the car accelerating?

A. Yes

B. No
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QuickCheck 3.20

A car is traveling around a 
curve at a steady 45 mph. 
Which vector shows the 
direction of the car’s 
acceleration?

© 2015 Pearson Education, Inc.

E. The acceleration is zero.
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QuickCheck 3.20

A car is traveling around a 
curve at a steady 45 mph. 
Which vector shows the 
direction of the car’s 
acceleration?
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E. The acceleration is zero.

B.
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Motion in Two Dimensions: Circular Motion
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Motion in Two Dimensions: Circular Motion
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Motion in Two Dimensions: Circular Motion

© 2015 Pearson Education, Inc.

Slide 3-115

QuickCheck 3.21

A toy car moves around a circular track at constant speed. It 
suddenly doubles its speed — a change of a factor of 2. As a 
result, the centripetal acceleration changes by a factor of

A. 1/4

B. 1/2

C. No change since the radius doesn’t change.

D. 2

E. 4
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Example 3.14 Acceleration in the turn

World-class female short-track speed skaters can cover the 

500 m of a race in 45 s. The most challenging elements of 

the race are the turns, which are very tight, with a radius of 

approximately 11 m. Estimate the magnitude of the skater’s 

centripetal acceleration in a turn.
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Example 3.14 Acceleration in the turn (cont.)

PREPARE The centripetal acceleration depends on two quantities: 

the radius of the turn (given as approximately 11 m) and the 

speed. The speed varies during the race, but we can make a good 

estimate of the speed by using the total distance and time:

SOLVE We can use these values to estimate the magnitude of the 

acceleration:

ASSESS This is a large acceleration—a bit more than g—but the 

photo shows the skaters leaning quite hard into the turn, so such 

a large acceleration seems quite reasonable.
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Example Problem

Turning a corner at a typical large intersection in a city 

means driving your car through a circular arc with a radius 

of about 25 m. If the maximum advisable acceleration of 

your vehicle through a turn on wet pavement is 0.40 times 

the free-fall acceleration, what is the maximum speed at 

which you should drive through this turn?
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Summary: General Principles
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Summary: General Principles
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Summary: Important Concepts
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Summary: Important Concepts
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Summary: Applications
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Summary: Applications
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