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Chapter 14 Oscillations

Chapter Goal: To understand systems that oscillate with
simple harmonic motion.
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Chapter 14 Preview
Looking Ahead: Motion that Repeats

* When the woman moves down, the springy ropes pull up.
This restoring force produces an oscillation: one bounce

after another. \\

* You’ll see many examples of systems with restoring forces
that lead to oscillatory motion.
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Chapter 14 Preview
Looking Ahead: Simple Harmonic Motion

* The sand records the motion of the oscillating pendulum.
The sinusoidal shape tells us that this is simple harmonic
motion.

* All oscillations show a similar form. You’ll learn to
describe and analyze oscillating systems.
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Chapter 14 Preview
Looking Ahead: Resonance

* When you make a system oscillate at its natural
frequency, you can get a large amplitude. We call this
resonance. :

* You’ll learn how resonance of a membrane in the inner ear
lets you determine the pitch of a musical note.

© 2015 Pearson Education, Inc. Slide 14-5

Chapter 14 Preview
Looking Ahead

Motion that Repeats Simple Harmonic Motion Resonance

‘When the woman moves down, the springy The sand records the motion of the oscillating ~ When you make a system oscillate at its
ropes pull up. This restoring force produces pendulum. The sinusoidal shape tells us that ~ natural frequency, you can get a large
an oscillation: one bounce after another. this is simple harmonic motion. amplitude. We call this resonance.

You'll see many examples of systems with Al oscillations show a similar form. You'll You'll learn how resonance of a membrane in
restoring forces that lead to oscillatory motion. learn to describe and analyze oscillating the inner ear lets you determine the pitch of
systems. a musical note.
Text: p. 438
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Chapter 14 Preview
Looking Back: Springs and Restoring Forces

* In Chapter 8, you learned that =N

a stretched spring exerts a ﬁbﬁ“}“{ VAVAVAV)
. . P |

restoring force proportional to |

the stretch: | —!

F,, =—kAx AVAVAVAV)

sp |
* In this chapter, you’ll see |
how this linear restoring force leads to an oscillation, with
a frequency determined by the spring constant k.
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Chapter 14 Preview
Stop to Think

A hanging spring has length 10 cm. A 100 g mass is hung
from the spring, stretching it to 12 cm. What will be the
length of the spring if this mass is replaced by a 200 g
mass?

A. 14 cm %
B. 16 cm 0 \
cm S
C. 20cm \
100 g
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Reading Question 14.1

The type of function that describes simple harmonic motion
is

Linear.
Exponential.
Quadratic.
Sinusoidal.

moawp>

Inverse.
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Reading Question 14.1

The type of function that describes simple harmonic motion
is

A. Linear.

B. Exponential.

C. Quadratic.
¢/ D. Sinusoidal.

E. Inverse.
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Reading Question 14.2

When you displace an object from its equilibrium position
and the force pushing it back toward equilibrium is

, the resulting motion is simple harmonic motion.

Sinusoidal
Exponential
Quadratic

Linear

oSowy
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Reading Question 14.2

When you displace an object from its equilibrium position
and the force pushing it back toward equilibrium is
, the resulting motion is simple harmonic motion.

>

Sinusoidal

w

Exponential
C. Quadratic
¢/ D. Linear
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Reading Question 14.3

A mass is bobbing up and down on a spring. If you increase
the amplitude of the motion, how does this affect the time
for one oscillation?

A. The time increases.
B. The time decreases.
C. The time does not change.
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Reading Question 14.3

A mass is bobbing up and down on a spring. If you increase
the amplitude of the motion, how does this affect the time
for one oscillation?

A. The time increases.
B. The time decreases.
¢/ C. The time does not change.
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Reading Question 14.4

A mass tied to the end of a 1.0-m-long string is swinging
back and forth. During each swing, it moves 4 cm from its
lowest point to the right, then 4 cm to the left. One complete
swing takes about 2 s. If the amplitude of motion is doubled,
so the mass swings 8 cm to one side and then the other, the
period of the motion will be

2s
4s
6s
8s

ocawy»
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Reading Question 14.4

A mass tied to the end of a 1.0-m-long string is swinging
back and forth. During each swing, it moves 4 cm from its
lowest point to the right, then 4 cm to the left. One complete
swing takes about 2 s. If the amplitude of motion is doubled,
so the mass swings 8 cm to one side and then the other, the
period of the motion will be

V A 25
B. 45
C. 65
D. 8s
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Reading Question 14.5

If you drive an oscillator, it will have the largest amplitude
if you drive it at its frequency.

Special
Positive
Resonant
Damped

moawp>

Pendulum
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Reading Question 14.5

If you drive an oscillator, it will have the largest amplitude

if you drive it at its

A. Special
B. Positive
¢/ C. Resonant
D. Damped
E. Pendulum
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frequency.
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Section 14.1 Equilibrium and Oscillation

Equilibrium and Oscillation

* A marble that is free to roll
inside a spherical bowl] has
an equilibrium position at
the bottom of the bowl
where it will rest with no
net force on it.

¢ If pushed away from
equilibrium, the marble’s
weight leads to a net force

When the ball is displaced
from equilibrium . . .

Equilibrium
position B
The farther awa

from equilibrium, the

greater the net force.

... afree-body
diagram shows a
net restoring force.

toward the equilibrium position. This force is the

restoring force.
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Equilibrium and Oscillation

¢ When the marble is released When the ball is released, a restoring
. . force pulls it back toward equilibrium.
from the side, it does not ;
stop at the bottom of the
bowl; it rolls up and down
each side of the bowl,

. Inertia causes the--=" ... where the restoring
moving through the ball to continue force is directed back
moving to the toward equilibrium.

equilibrium position. aiier &d.....

* This repetitive motion is called oscillation.

* Any oscillation is characterized by a period and frequency.
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Frequency and Period

Successive beats of the heart produce

° For an OSCIIIatlona the tlme to approximately the same signal.
complete one full cycle is dietiodil g
called the period (7) of the

oscillation. g
« The number of cycles per %
second is called the frequency =1
(f) of the oscillation. S j } 3
Time (s)

1 1
fwz, oF Tmf

* The units of frequency are hertz (Hz), or 1 s7!.
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QuickCheck 14.1

A mass oscillates on a horizontal spring with period
T =2.0 s. What is the frequency?

0.50 Hz
1.0 Hz
2.0 Hz

m
4.0 Hz

mo 0w >
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QuickCheck 14.1

A mass oscillates on a horizontal spring with period
T =2.0 s. What is the frequency?

v A 050Hz
B. 1.0Hz
2.0Hz

m
4.0 Hz

m o N
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QuickCheck 14.2

A mass oscillates on a horizontal spring with period

T =2.0s. If the mass is pulled to the right and then released,
how long will it take for the mass to reach the leftmost point
of its motion?

1.0s
145
2.8s
40s

monw»
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QuickCheck 14.2

A mass oscillates on a horizontal spring with period

T =2.0s. If the mass is pulled to the right and then released,
how long will it take for the mass to reach the leftmost point
of its motion?

vV A 10s

B. 14s

2.8s
4.0s

m oA
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QuickCheck 14.3

A typical earthquake produces vertical oscillations of the
earth. Suppose a particular quake oscillates the ground at a
frequency of 0.15 Hz. As the earth moves up and down,
what time elapses between the highest point of the motion
and the lowest point?

Is
33s
6.7s
13s

SOow

© 2015 Pearson Education, Inc. Slide 14-27

QuickCheck 14.3

A typical earthquake produces vertical oscillations of the
earth. Suppose a particular quake oscillates the ground at a
frequency of 0.15 Hz. As the earth moves up and down,
what time elapses between the highest point of the motion
and the lowest point?

A. 1s

v/ B. 33s

C. 6.7s
D. 13s
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Frequency and Period

TABLE 14.1 Common units of frequency

Frequency Period
10° Hz = 1 kilohertz = 1 kHz 1 ms
10°Hz = 1 megahertz =1 MHz 1 us
10° Hz = 1 gigahertz =1 GHz 1 ns
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Example 14.1 Frequency and period of a radio
station

An FM radio station broadcasts an oscillating radio wave at
a frequency of 100 MHz. What is the period of the
oscillation?

SOLVE The frequency f of oscillations in the radio
transmitter is 100 MHz = 1.0 X 10 8 Hz. The period is the
inverse of the frequency; hence,

1 1 5
F="=-————= 10X 10 s = 10ns
F o lox1PHe
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Oscillatory Motion

* The graph of an oscillatory motion has the form of a
cosine function.

* A graph or a function that has the form of a sine or cosine
function is called sinusoidal.

* A sinusoidal oscillation is called simple harmonic motion
(SHM).

Position eereememsenenesse The period 7 is the time to
Te complete one oscillation

+

N N/ RS o/

Released at the right Passing through the At the left side, Going the other way One oscillation done,
side of the bowl equilibrium position reversing direction through equilibrium starting the next
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Oscillatory Motion

of simple h ic motion
Oscillating system Related real-world example B0
Mass on a spring Vibrations in the ear

Sound waves entering the ear
cause the oscillation of a
membrane in the cochlea. The
vibration can be modeled as a
mass on a spring. The period

of oscillation of a segment of the
membrane depends on

mass (the thickness of the
membrane) and stiffness (the
rigidity of the membrane).

The mass oscillates back
and forth due to the

k- i restoring force of the
w‘%y‘ﬂ l o spring. The period
/ / depends on the mass and

the stiffness of the spring.

Pendulum Motion of legs while walking
The mass oscillates back The motion of a walking
and forth due to the animal’s legs can be modeled
K restoring gravitational as pendulum motion. The
force. The period rate at which the legs swing
depends on the length of depends on the length of
the pendulum and the the legs and the free-fall

free-fall acceleration g. acceleration g.

Text: p. 440
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Linear Restoring Forces and SHM

« If we displace a glider attached At caullibrium there--.. -

is no net force.

to a spring from its equilibrium ""’-a:
position, the spring exerts a W\MN 2

. Air track ——
restoring force back toward T —1
oy . I
equlhbr am. A displacement causes the :
. - . spring to exert a force toward 1
Section 14.2 Linear Restoring Forces and SHM the equilibrium position. -, ' A,
|
VVVV\Afre
[ . |
(Fue)x = :kx
The negative sign tells us that this is a r?:storing force because the force is
in the direction opposite the displacement. If we pull the glider to the right
(x is positive), the force is to the left (negative)—back toward equilibrium.
© 2015 Pearson Education, Inc. Slide 14-34
Linear Restoring Forces and SHM Motion of a Mass on a Spring
ot : : . Atequilibrium there--.. : : Oscillation
* This is a linear restoring force; ' “u/brumiere.. } * The amplitude A is the »  The point on the

the net force is toward the i
equilibrium position and is W\MN 2
proportional to the distance Al racl S .

| H
oy . I
fl'()m equ1]lbl'lum. A displacement causes the :
spring to exert a force toward 1
the equilibrium position. -, | A
|
VVVV\Ad7s
l . l
(F net)x = :kx
The negative sign tells us that this is a festoring force because the force is
in the direction opposite the displacement. If we pull the glider to the right
(x is positive), the force is to the left (negative)—back toward equilibrium.
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----- object that is
’h" measured

object’s maximum
displacement from

Air track [
equilibrium. 0 1
. . 7 0 A
* Oscillation about an ; . —
equilibrium position with l e
. R R I b2 ®" 1 Thisis the
a linear restoring force is I ol e e
. . o 1 x 18 the displacement
always simple harmonic / Meee, ] ! from this position.
®e
motion. Turnin g A 'o,'l
point| oo
i o ¢ © ® "1, The graph of the
Lo® o " motion is sinusoidal.
A Maximum distance to the
t left and to the right is A.
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Vertical Mass on a Spring

* For a hanging weight, the equilibrium position of the
block is where it hangs motionless. The spring is stretched
by AL.

Vertical Mass on a Spring

* The value of AL is determined by solving the static-
equilibrium problem.

* Hooke’s Law says

(Fo)y =EAL
r :
) * Newton’s first law for the block in equilibrium is
/ ,'W"w'”‘*ﬁﬁf T / Ami’;’:”‘é
Unstretched AL (P AR gﬁ}y " Wy kAL—mg=0
spring . * Therefore the length of the spring at the equilibrium
F, .- .
P position 1s
The block hanging at rest m AF mg
has stretched the spring ) k
by AL. This is the block’s A w
equilibrium position, the -
point with no net force.
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Vertical Mass on a Spring Vertical Mass on a Spring
* When the block is above the * The role of gravity is to
equilibr ium pOSitions the Spring Spring determine where the ?t?cr:itgﬁe d sstrr)ér:itzﬁe q
spring is still stretched by an ;tyreﬁ‘ed e equilibrium position is, but by AL by AL -y
amount AL — y. P it doesn’t affect the £
. sp .
* The net force on the block is "y w restoring force for ___|%. P
- — - o = net net
- f k
Py = Fp, +wy=kAL-y —mg  [mo] b = o displacement from the "ol .- P
= (EAL — mg) — ky 3 s e - equilibrium position. S
Block’s block upward . . . : ° Because lt haS a linear Block’s block upward . . . :-
equilibrium ... results in a net . equilibrium ... results in a net
position force downward. restorlng fOI'CC, amass on a position force downward.

* But k AL — mg =0, from Equation 14.4, so the net force on

the block is
{F Mt}? = —ky
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vertical spring oscillates
with simple harmonic
motion.
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(a)

Example Problem The Pendulum padsae N pundsan
negative on posit'ive on
A car rides on four wheels that are connected to the body of « A pendulum is a mass suspended """ s
the car by springs that allow the car to move up and down as from a pivot point by a light string
the wheels go over bumps and dips in the road. Each spring or rod.
supports approximately 1/4 the mass of the vehicle. A + The mass moves along a circular S~ il
. . 0 rc len,
hghtwelght car has a mass of 2400 lb.s. When a 160 Ib . arc. The net force is the tangential
person sits on the left front fender, this corner of the car dips component of the weight: —_— e o e e
. enter ne tension 18 IICL-C
by about %2”. e I crcle. There s no
mpgcmial component.
(Fred; = 255 = w,= —mgsinf '
A. What is the spring constant of this spring? E '
L
B. When four people of this mass are in the car, what is the Tangential
oscillation frequency of the vehicle on the springs? :'s \h/ )
hu]: u“l:llnbgc}nliul ’
u)mponenl W/,
w, = —w sinf.
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()
The PendUIum 6 and s are 6 and s are
negative on positive on
. . . . the left. the right.
* The equation is simplified for small o o
angles because
sinfd = 0
m
* This is called the small-angle 0" DArclength
approximation. Therefore the restoring »
force is R Section 14.3 Describing Simple
P Center The lc:]:.mn is duuflcd H . M .
1 toward the center o
(Fasd: = —mgsing ~ —mgh = —mg ;= m@%@}g oferele (e e, There & no armonic Motion
L L mpgcmial component.
* The force on a pendulum is a linear
restoring force for small angles, so Tangenal "1 !
the pendulum will undergo simple axis ~_—"*
harmonic motion. The weight -+ 9\ weos6
has a tangential
component W

w; = —w sinf.
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Describing Simple Harmonic Motion

1. The mass starts at its maximum
positive displacement, y = A. The
velocity is zero, but the
acceleration is negative because
there is a net downward force.

2. The mass is now moving
downward, so the velocity is
negative. As the mass nears
equilibrium, the restoring force—
and thus the magnitude of the
acceleration—decreases.

3. At this time the mass is moving
downward with its maximum
speed. It’s at the equilibrium
position, so the net force—and
thus the acceleration—is zero.

© 2015 Pearson Education, Inc.

006060 60 0060

B -4 & ~
I [ I I I

Y Position
Al
] <
0 \/
—rul
5
v Velocity
Vinax
0 Y i
] 7
~Vnax -
ay Acceleration
Amax
0 ‘ T T i
it
x|

This figure represents one
period of the motion. This
cycle repeats, over and over

The mass moves a
distance A above

equilibrium

. and the same
distance below

The position graph is a
sinusoidal function. The

-+ velocity and acceleration graphs

have the same g

Position and velocity are not in
phase. When the displacement is
maximum, the velocity is zero;

when the velocity is maximum,
the displacement is zero.

Velocity and acceleration are

not in phase. When velocity is
a maximum,
zero; when acceleration is a

eleration is

maximum, velocity is zero.

Text: p. 443
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Describing Simple Harmonic Motion

4. The velocity is still negative but
its magnitude is decreasing, so

the acceleration is positive.

5. The mass has reached the
lowest point of its motion, a

turning point. The spring is at

its maximum extension, so

there is a net upward force and

the acceleration is positive.

6. The mass has begun moving
upward; the velocity and
acceleration are positive.

© 2015 Pearson Education, Inc.

006060 60 0060

£ - B ~

This figure represents one
period of the motion. This
cycle repeats, over and over

~ ~

Il Il
The mass moves a

) distance A above

equilibrium

... and the same
distance below

y Position  The position graph is a
Al sinusoidal function. The
| <" velocity and acceleration graphs
0 have the same general shape.
—AA osition and velocity are not in
= phase. When the displacement is
Y maximum, the velocity is zero;
Vinax | when the velocity is maximum,
il the displacement is zero.
0
Viax elocity and acceleration are
“ Accelerions ML in phase. When velocity is
a maximum, a eration is
Amax| zero; when acceleration is a
q maximum, velocity is zero.
0 T . Tt
J i
—linax

Text: p. 443
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Describing Simple Harmonic Motion

7. The mass is passing through the
equilibrium position again, in the
opposite direction, so it has a
positive velocity. There is no net
force, so the acceleration is zero.

8. The mass continues moving
upward. The velocity is positive
but its magnitude is decreasing, so
the acceleration is negative.

9. The mass is now back at its
starting position. This is another
turning point. The mass is at rest
but will soon begin moving
downward, and the cycle will
repeat.

© 2015 Pearson Education, Inc.

006060 60 0060

Y Position
Al
] <
0 \/
—rul
5
v Velocity
Vinax
0
~Vnax -
ay Acceleration
Amax
0 ‘ T T i
it
“may

- velocity and

This figure represents one
period of the motion. This
cycle repeats, over and over

The mass moves a
distance A above
equilibrium

... and the same
distance below

The position graph is a
sinusoidal function. Th

celeration graphs
al shape.

have the sa

Position and velocity are not in

maximum, the velocity is zero;
when the velocity is maximum,
the displacement is zero.

Velocity and acceleration are

not in phase. When velocity is
a maximum,
zero; when acceleration is a

eleration is

maximum, velocity is zero.

Text: p. 443
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phase. When the displacement is

Describing Simple Harmonic Motion

* The position-versus-time graph for oscillatory motion is a

coSIne curve:

x5 = Acos |

e

T

* x(#) indicates that the position is a function of time.

* The cosine function can be written in terms of frequency:

x(8) = Acos(Zmft)

© 2015 Pearson Education, Inc.

Slide 14-48




Describing Simple Harmonic Motion

* The velocity graph is an upside-down sine function with
the same period 7:

{2t . ,
V() = — vy Sﬂi{? = — Vi SN2 TS

* The restoring force causes an acceleration:

* The acceleration-versus-time graph is inverted from the
position-versus-time graph and can also be written

)= 0 22| = o)
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Describing Simple Harmonic Motion
Pv Sinusoidal relationships @

A quantity that oscillates in time and
can be written

,<2‘n'f)
x=Asin| —
"
A 0(217/)
= Acos| —=
cos\ =

is called a sinusoidal function
with period 7. The argument of the
functions, 277#/T, is in radians.

or

The graphs of both functions have the
same shape, but they have different
initial values at 1 = 0's.

umits If x is a sinusoidal function, then x is:

¥ Bounded—it can take only values between A and —A.
B Periodic—it repeats the same sequence of values over and over again.
Whatever value x has at time ¢, it has the same value at 7 + 7.

speciAL VALUES The function x has special values at certain times:

t=0 | =417 | +=3T |t=3T | t=T

x = AsinQ2mt/T) 0 A 0 —A 0
x=AcosQ2mt/T) A 0 =A 0 A
Exercise 6
©2015 Pearson Education, Inc. Text: p. 445 Slide 14-50

Example 14.2 Motion of a glider on a spring

An air-track ghder o (CT‘)..--The starting point of the motion

oscillates horizontally on 127~

a spring at a frequency of .

0.50 Hz. Suppose the 0 ; — 1(5)

. . 0.5 1.0 15 20
glider is pulled to the right - |
. oq . . ., . ! .

of its equilibrium position _,, | ' At 1.0, the glider
F... has completed half

byl2cmandthen ' T e of one cycle.

released. Where will the
glider be 1.0 s after its
release? What is its
velocity at this point?
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Example 14.2 Motion of a glider on a spring
(cont.)

----- The starting point of the motion

PREPARE The glider 121
undergoes simple harmonic -
motion with amplitude 12 o : — 1(s)
cm. The frequency is 0.50 . 0> ho 20
Hz,so the periodis ., i
T=1/f=2.0s. The glider " e of one cycle.

1s released at maximum

extension from the

equilibrium position,

meaning that we can take

this point to be t = 0.
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Example 14.2 Motion of a glider on a spring
(cont.)

* (an‘)---'The starting point of the motion

SOLVE 1.0 s is exactly half 127
the period. As the graph \ /
of the motion in FIGURE o ; — 1(s)
14.10 shows, halfacycle | >\ ' /' 2¢
brings the glider to its left _,, ! At1.0s, the glider

. . F... has completed half
turning point, 12cmtothe ' " e SPoiE gydls

left of the equilibrium
position. The velocity at this point is zero.

ASSESS Drawing a graph was an important step that helped
us make sense of the motion.
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Example Problem

A 500 g block is attached to a spring on a frictionless
horizontal surface. The block is pulled to stretch the spring
by 10 cm, then gently released. A short time later, as the
block passes through the equilibrium position, its speed is
1.0 m/s.

A. What is the block’s period of oscillation?

B. What is the block’s speed at the point where the spring is
compressed by 5.0 cm?
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Connection to Uniform Circular Motion

¢ Circular motion and simple

harmonic motion are motions @ R
that repeat. l \ l l l l J
¢ Uniform circular motion el N
projected onto one dimension of all
is simple harmonic motion. -
= Shai‘”{. | e
Oscillation of ball’s shadow
(b) Simple harmor{ic motion of block
\AVAVAVAVAVAYAVAVAYI
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Connection to Uniform Circular Motion

* The x-component of the circular motion when the particle
is at angle ¢ is x = Acosg.

* The angle at a later time is ¢ = wt.

* o is the particle’s angular velocity: w = 2xf.

(© A &

a= Quf)’A

__Particle in uniform
circular motion

"
A cosd
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Connection to Uniform Circular Motion

* Therefore the particle’s x-component is expressed
x(t) = A cos(2xft)

* This is the same equation for the position of a mass on a
spring.

* The x-component of a particle in uniform circular motion
is simple harmonic motion.

Connection to Uniform Circular Motion

* The x-component of the velocity vector is

v, =—vsin ¢ =—27af )A sin(27ft)
* This corresponds to simple harmonic motion if we define
the maximum speed to be

Vimax = 27A

(a) (b) (C] A (a) (b) (C] A
3 \%" 3 \%"
y y 4 y i y y 4 3 i
] * * 2 P | N i 2 i
Particle in uniform . i = Particle in uniform . i =
circular motion The magnitude of ) The magnitude of circular motion The magnitude of ) e mnagitidiiol
| the \;u»’m[mm‘m thesecorponsnt L the ‘j“"‘“l“‘““‘“ the x-component
is vsin ¢ . is vsin ¢ A
is acos ¢. is acos .
T X T X % T X T X %
! The x-component : ! The x-component The x-component ! The x-component : ! The x-component The x-component
' of the particle’s ! I of the velocity is of the acceleration ' of the particle’s ! I of the velocity is of the acceleration
! position describes P the velocity of the ! position describes P the velocity of the is the .
.the position of the ' . related simple .the position of the ' . related simple of the
! ball’s shadow il harmonic motion ! ball’s shadow il harmonic motion 2 simpl
| o [ s i < motion.
& —  lee— &« — e — e
Acosd Acosd
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Connection to Uniform Circular Motion Connection to Uniform Circular Motion
* The x-component of the acceleration vector is
— — 2 . . . 5
= = 14.1 5 vy a0y
a, = —acos -2 A cos(2aft SYNTHESIS Describing simple harmonic motion .
. v . . . n B P45
. . . The position, velocity, and acceleration of objects undergoing simple harmonic i
5 5 2 ~ = L
° The maximum aCCClerathﬂ 1S thus motion are related sinusoidal functions.
Position Velocity Acceleration
a_. =Qa)A y :
max

* For simple harmonic motion, if you know the amplitude and
frequency, the motion is completely specified.

(a) (b) ©

/Rarllclc in ufnlorm
circular motion

a= Q2uf)’A *

0
Acosd

© 2015 Pearson Education, Inc. Slide 14-59

© 2015 Pearson Education, Inc.

At time 1, the displacement, velocity and acceleration are given by:

x(1) = A cos(2mft) Vi(t) = ~Vinax SINQ7ft) (1) = ~amax COS27ft)
The maximum values of the displacement, velocity, and acceleration are determined by the amplitude A and the frequency f:

Xmax = A Vinax = 277 fA s = Q7f A

Text: p. 447
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QuickCheck 14.9

A mass oscillates on a horizontal spring. It’s velocity is v,
and the spring exerts force F,. At the time indicated by the
arrow,

v.is+and F is +
v.is+and F s —

Position x
v.is—and F, is 0

AN YA
0 .
v.isOand F is + i

v.is0and F, is — .

Moo= p
|
T

5]

&
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QuickCheck 14.9

A mass oscillates on a horizontal spring. It’s velocity is v,
and the spring exerts force F,. At the time indicated by the
arrow,

Position x
A. v is+and F is +
B. v.is+and F is—
C. viis—and F,is 0

ANNA
0 A
¢/ D. v isOand F is+ |

E. v.isOand F, is— .
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QuickCheck 14.10

A mass oscillates on a horizontal spring. It’s velocity is v,
and the spring exerts force F,. At the time indicated by the
arrow,

Position x
. . A~ 1
v.is +and F is + !
I
v is+and Fis — :
0 t

v.is—and F,is 0
v,is O and F, is +
v.is0and F, is —

MmoNw»
3
-l
:_
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QuickCheck 14.10

A mass oscillates on a horizontal spring. It’s velocity is v,
and the spring exerts force F . At the time indicated by the
arrow,

Position x
A. v is+and F is+ . E
B. v is+and F is— _\ /\: /\
¢/ C. vis—andF,is0 0 '
D. v, isOand Fis +
E. v.isOand F, is—

© 2015 Pearson Education, Inc. Slide 14-64




QuickCheck 14.11

A block oscillates on a vertical spring. When the block is at
the lowest point of the oscillation, it’s acceleration a, 18

A. Negative.
B. Zero.
C. Positive.
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QuickCheck 14.11

A block oscillates on a vertical spring. When the block is at
the lowest point of the oscillation, it’s acceleration a, 1S

A. Negative.
B. Zero.
¢/ C. Positive.
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Try It Yourself: SHM in Your Microwave

The next time you are warming
a cup of water in a microwave
oven, try this: As the turntable
rotates, moving the cup in a
circle, stand in front of the
oven with your eyes level with
the cup and watch it, paying
attention to the side-to-side
motion. You’ll see something like the turntable
demonstration. The cup’s apparent motion is the horizontal
component of the turntable’s circular motion—simple
harmonic motion!
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Example 14.3 Measuring the sway of a tall
building

The John Hancock Center in Chicago is 100 stories high.
Strong winds can cause the building to sway, as is the case
with all tall buildings. On particularly windy days, the top of
the building oscillates with an amplitude of 40 cm (=16 in)
and a period of 7.7 s. What are the maximum speed and
acceleration of the top of the building?
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Example 14.3 Measuring the sway of a tall
building

PREPARE We will assume that the oscillation of the building
1s simple harmonic motion with amplitude A = 0.40 m. The
frequency can be computed from the period:
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Example 14.3 Measuring the sway of a tall
building (cont.)

SOLVE We can use the equations for maximum velocity and
acceleration in Synthesis 14.1 to compute:
Viax = 27A = 27(0.13 Hz)(0.40 m) = 0.33 m/s
a,..=Q2a)?A=[2x(0.13 Hz)]*(0.40 m) = 0.27 m/s?

In terms of the free-fall acceleration, the maximum
acceleration is a,,,, = 0.027g.
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Example 14.3 Measuring the sway of a tall
building (cont.)

ASSESS The acceleration is quite small, as you would
expect; if it were large, building occupants would certainly
complain! Even if they don’t notice the motion directly,
office workers on high floors of tall buildings may
experience a bit of nausea when the oscillations are large
because the acceleration affects the equilibrium organ in the
inner ear.
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Example Problem

A 5.0 kg mass is suspended from a spring. Pulling the mass
down by an additional 10 cm takes a force of 20 N. If the
mass is then released, it will rise up and then come back
down. How long will it take for the mass to return to its
starting point 10 cm below its equilibrium position?
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Section 14.4 Energy in Simple

Harmonic Motion

Energy in Simple Harmonic Motion

* The interplay between kinetic and potential energy is very
important for understanding simple harmonic motion.

(a) Energy is purely Energy is
potential. purely kinetic.

i ]
I I
¥ 13
Pk m
NMANANNNL (b) Energy is purely Energy is
potential. ==...., _.--purely kinetic.
T x S e,
| ] ' e e e
1 | | | 4 ' ' . }
I ] I I 1 1
| | 1 |
=
| | 1 1 1 | ! ' I I
1 Ener
ey | By
| 1 I 1 1
! i E=K+U,|
1 I 1 I 1 il
| & | 1 1 1 ! {
T AW \/ Potential
! ! ! ! energy U
Turnin, 1 T
, i ; : ) point & : i ,Kinetic
|__L| : : : : ! : 1 energy K
%
T T
—A 0 A
© 2015 Pearson Education, Inc. Slide 14-74

Energy in Simple Harmonic Motion

* For a mass on a spring, when the

object is at rest the potential energy NWM

is a maximum and the kinetic ener tp ot | °

: gy b |

is 0. R —
T

* At the equilibrium position, the
kinetic energy is a maximum and the ]
potential energy is O. ‘
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'
'
] :
' I i ' '
' | l i |
N
' '
' 1+ Energy
o
i E=K+U,|
' |
T
:\Po(emial
i | energy U
Turning [
= ' 1 Kinetic
Pty | '/energy K
i T x
—A 0 A

Slide 14-75

Energy in Simple Harmonic Motion

(a) Energy i

. pote
* The potential energy for the mass on
U= —kx* T n Qe |
2 hoin el |
* The conservation of energy can be Ll
written: 1 1 f s !
E=E+U=—m’+_k’ = constant ) |
2 2
(b) E( : : : }i
: 3 Enelrgy E i
L ek ol
: :\Po(emial
Turning : E eetgy
N ey 7
S o A
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Energy in Simple Harmonic Motion

(a) Energy is purely Energy is
potential

* At maximum displacement, the

energy is purely potential: e
ot f 1 ——

* At x = 0, the equilibrium position, the o
energy is purely kinetic: i |

(]

_ 1 o
P — [t [
Hatx=0=K, = —{Vpuns
b, 3
2 L
1+ Energy
| | I
| 1 1
E=K+U,
. \
I~ Potential
— | energy U
urning [
= H 1 Kinetic
point \' : : '/energyAK
—A 0 A
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Finding the Frequency for Simple Harmonic
Motion

* Because of conservation of energy, the maximum potential
energy must be equal to the maximum kinetic energy:

1 1.
gmgj@ﬁm&x}z = EMz

* Solving for the maximum velocity we find

&
Ve = ;ﬁ:ﬁ
1 |k |m
f—g m and T=2mw n

Frequency and period of SHM
for mass m on a spring with spring constant k

e Earlier we found that

Vg = 20fA
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QuickCheck 14.6

A set of springs all have initial length 10 cm. Each spring now
has a mass suspended from its end, and the different springs
stretch as shown below.

QuickCheck 14.6

A set of springs all have initial length 10 cm. Each spring now
has a mass suspended from its end, and the different springs
stretch as shown below. v

Now, each mass is pulled down by an additional 1 cm and
released, so that it oscillates up and down. Which of the
oscillating systems has the highest frequency?
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Now, each mass is pulled down by an additional 1 cm and
released, so that it oscillates up and down. Which of the
oscillating systems has the highest frequency?

© 2015 Pearson Education, Inc. Slide 14-80




QuickCheck 14.7

Two identical blocks oscillate on different horizontal
springs. Which spring has the larger spring constant?

X

A. The red spring
B. The blue spring

C. There’s not enough
information to tell.
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QuickCheck 14.7

Two identical blocks oscillate on different horizontal
springs. Which spring has the larger spring constant?

* foVk
v/ A. Thered spring

B. The blue spring

C. There’s not enough
information to tell.
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QuickCheck 14.8

A block of mass m oscillates on a horizontal spring with
period 7T=2.0 s. If a second identical block is glued to the
top of the first block, the new period will be

1.0s
14s

m
2.8s

40s

moawp>
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QuickCheck 14.8

A block of mass m oscillates on a horizontal spring with
period 7T=2.0 s. If a second identical block is glued to the
top of the first block, the new period will be

A. 10s
B. 14s

V' D. 28s TxVm

E. 40s
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Finding the Frequency for Simple Harmonic
Motion

Increasing the stiffness
of the spring will
increase the restoring

* The frequency and period
of simple harmonic motion

High freg!lencz force. This increases
are determined by the Stiff spring, the frequency.

. . low mass
physical properties of the L
oscillator. f=51 /;&x

* The frequency and period Low frequency Increasing th“é mass
of simple harmonic motion e will increase the
high mass inertia of the system.
do not depend on the This decreases the
. frequency.
amplitude A.
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QuickCheck 14.4

A block oscillates on a very long horizontal spring. The
graph shows the block’s kinetic energy as a function of
position. What is the spring constant?

KQJ)
A. 1 N/m
B. 2N/m
C. 4 N/m
D. 8 N/m
. . . . x (m)
-2 -1 0 1 2
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QuickCheck 14.4

A block oscillates on a very long horizontal spring. The
graph shows the block’s kinetic energy as a function of
position. What is the spring constant?

K()
1
A. 1 N/m E=K, =8]= EkA2

B. 2N/1’Il 16]
¢V C. 4Nm = Qmp 4Nm
D. 8 N/m
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QuickCheck 14.5

A mass oscillates on a horizontal spring with period
T =2.0 s. If the amplitude of the oscillation is doubled,
the new period will be

1.0s
14s

m
2.8s

40s

moawp
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QuickCheck 14.5

A mass oscillates on a horizontal spring with period
T =2.0 s. If the amplitude of the oscillation is doubled,
the new period will be

A. 10s
B. 14s

vV C. 205

m

Finding the Frequency for Simple Harmonic
Motion

ggiqfﬁ Identifying and analyzing simple harmonic motion m;‘,'

© If the net force acting on a particle is a linear restoring force, the motion is
simple harmonic motion around the equilibrium position.

® The position, velocity, and acceleration as a function of time are given in
Synthesis 14.1. The equations are given in terms of x, but they can be writ-
ten in terms of y or some other variable if the situation calls for it.

© The amplitude A is the maximum value of the displacement from equilib-
rium. The maximum speed and the maximum magnitude of the acceleration
are given in Synthesis 14.1.

©® The frequency f (and hence the period 7 = 1/f) depends on the physical
properties of the particular oscillator, but f does not depend on A.

1 [k
For a mass on a spring, the frequency is given by f= Tl
T

© The sum of potential energy plus kinetic energy is constant. As the oscilla-
tion proceeds, energy is transformed from kinetic into potential energy and

E. 40s then back again.
Exercise 11
Text: p. 451
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QuickCheck 14.12 Time QuickCheck 14.12 Time
B D E B E
I ] 10 | — ] I ] 10

A mass oscillates up and
down on a spring; the motion -
is illustrated at right.

Equilibrium
position

<& |~
O

@mum o

«é}mmu

Lowest point Highest point
of motion of motion

1. At which time or times shown is the acceleration
zero?

2. At which time or times shown is the kinetic energy
a maximum?

3. At which time or times shown is the potential energy
a maximum?
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mnm[ .

—_—
—
—

= =
— =
Equilibrium
- ——_ - --1-- i3
Q position

Lowest point Highest point
of motion of motion

A mass oscillates up and
down on a spring; the motion -
is illustrated at right.

<& |~
I

1. At which time or times shown is the acceleration
zero? A,C,E

2. At which time or times shown is the kinetic energy
amaximum? A, C,E

3. At which time or times shown is the potential energy
amaximum? B, D
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QuickCheck 14.13

Four different masses are hung from four springs with an
unstretched length of 10 cm, causing the springs to stretch as
noted in the following diagram:

]

I
%mﬂ%

Now, each mass is pulled down by an additional 1 cm and
released, so that it oscillates up and down. Which of the
oscillating systems has the highest frequency?
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QuickCheck 14.13

Four different masses are hung from four springs with an
unstretched length of 10 cm, causing the springs to stretch as
noted in the following diagram: v

S

]

I
%mﬂ%

Now, each mass is pulled down by an additional 1 cm and
released, so that it oscillates up and down. Which of the
oscillating systems has the highest frequency?
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QuickCheck 14.14

Four 100-g masses are hung from four springs, each with an
unstretched length of 10 cm. The four springs stretch as noted in the
following diagram:

Now, each of the masses is lifted a small distance, released, and
allowed to oscillate. Which mass oscillates with the highest frequency?
A. Mass A D. Mass D
B. Mass B E. All masses oscillate with the

C. MassC same frequency.
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QuickCheck 14.14

Four 100-g masses are hung from four springs, each with an
unstretched length of 10 cm. The four springs stretch as noted in the
following diagram:

Now, each of the masses is lifted a small distance, released, and
allowed to oscillate. Which mass oscillates with the highest frequency?

“ A. Mass A D. Mass D
B. Mass B E. All masses oscillate with the
C. Mass C same frequency.
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Example 14.7 Finding the frequency of an
oscillator

A spring has an unstretched
length of 10.0cm. A25 g T ——

Example 14.7 Finding the frequency of an
oscillator (cont.)

PREPARE The spring provides a
linear restoring force, so the

10.0 cm 15.0cm

mass is hung from the spring, motion will be simple
stretching it to a length of 15.0 N harmonic, as noted in Tactics N
cm. If the mass is pulled down e By Box 14.1. The oscillation e By
and released so that it PP d— 25¢g frequency depends on the PER . a— 25¢g
oscillates, what will be the g i spring constant, which we can g i
frequency of the oscillation? determine from the stretch of

the spring. FIGURE 14.17

gives a visual overview of the

situation.
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Example 14.7 Finding the frequency of an Example 14.7 Finding the frequency of an
oscillator (cont.) oscillator (cont.)
SOLVE When the mass hangs at Now that we know the spring
rest, after stretching the spring |, .. —— constant, we can compute the |, ——
to 15 cm, the net force on it oscillation frequency:
must be zero. Thus the
. AL=5.0cm R AL=5.0cm R
magnitude of the upward P Fy P Fy
Spring force equals the Adding t.i;e mass 2S¢ Adding t.i;e mass 2S¢
downward weight, giving Sping £ i Sping £ i
k AL = mg. The spring constant
is thus
0.025 kg)(9.8 mvs” f_,m_:l‘;, koL AR on
= mg = (0.025 kg)(3. ) 4.9 Wim 2aym 2wy 0.005
AL 0.050 m
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Example 14.7 Finding the frequency of an

oscillator (cont.)

ASSESS 2.2 Hz is 2.2
oscillations per second. This
seems like a reasonable
frequency for a mass on a
spring. A frequency in the kHz
range (thousands of
oscillations per second) would
have been suspect!

© 2015 Pearson Education, Inc.

10.0 cm 15.0cm

AL=5.0cm
o Fy

Adding the mass 25¢
stretches the S
spring 5.0 cm.
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Section 14.5 Pendulum Motion

Pendulum Motion

* The tangential restoring
force for a pendulum of
length L displaced by arc
length s is

mg
Foe))=——
( net)t L s

* This is the same linear
restoring force as the spring
but with the constants mg/L
instead of k.

© 2015 Pearson Education, Inc.

The restoring force
is proportional to s,
the displacement
from equilibrium.

0 % (Fnet)t
Arc length
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Pendulum Motion

* The oscillation of a pendulum
1s simple harmonic motion;
the equations of motion can
be written for the arc length
or the angle:

s(t) = A cos(2xft)
or

o(t) = 0,,,,, cos(2xft)
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High frequency
Short pendulum,

strong gravity

f_

Low frequency
Long pendulum,

weak gravity

Stronger gravity will
increase the restoring
force. This increases
the frequency.

L [sv

21 L .,
Increasing the length
of the pendulum

decreases the
frequency.
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Pendulum Motion

Stronger gravity will

* The frequency can be increase the restoring
. . High frequency force. This increases
obtained from the equatlon Short pendulum, the frequency.
for the frequency of the strong gravity
. 1 g ho"
mass .01'1 .a Spring by f= g /Zr
substituting mg/L in place
of k: Low frequency Increasing the length

Long pendulum, of the pendulum

Pendulum Motion

. Stronger gravity will
* As for a mass on a spring, the increase the restoring
High frequency force. This increases
frequency does not depend Oon  short pendulum, the frequency.
the amplitude. Note also that ~ *"o"8 g™
the frequency, and hence f= 18-
e 1 osl s 27\ L
the period, is independent TN S
Low frequency Increasing lh;: length
of the mass. It depends only  [ong pendutum, 27 e

weak gravity decreases the on the length of the weak gravity decreases the
frequency. frequency.
1 L
f==—J% ad T=2x \F pendulum.
2w N L 8
Frequency and period of a pendulum
of length L with free-fall acceleration g
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QuickCheck 14.15 - QuickCheck 14.15 -

A pendulum is pulled to
the side and released.
The mass swings to the T

rlght as Shown The this instant
diagram shows positions for half of a complete oscillation.

1. At which point or points is the speed the highest?

2. At which point or points is the acceleration the
greatest?

3. At which point or points is the restoring force the
greatest?
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A pendulum is pulled to
the side and released.
The mass swings to the T

rlght as Shown The this instant
diagram shows positions for half of a complete oscillation.

1. At which point or points is the speed the highest? C

2. At which point or points is the acceleration the
greatest? A, E

3. At which point or points is the restoring force the
greatest? A, E
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QuickCheck 14.16

Time

A
[ L

B C D
A mass on the end -
of a string is pulled
to the side and released.

1. At which time or times shown is the acceleration
zero?

2. At which time or times shown is the kinetic energy
a maximum?

3. At which time or times shown is the potential energy
a maximum?
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QuickCheck 14.16

Time

A
[ L

B C D
A mass on the end -
of a string is pulled
to the side and released.

1. At which time or times shown is the acceleration
zero? B, D

2. At which time or times shown is the kinetic energy
a maximum? B, D

3. At which time or times shown is the potential energy
amaximum? A, C, E
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QuickCheck 14.17

A ball on a massless, rigid rod oscillates as a simple
pendulum with a period of 2.0 s. If the ball is replaced with
another ball having twice the mass, the period will be

1.0s
14s
20s
2.8s
40s

mo 0w
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QuickCheck 14.17

A ball on a massless, rigid rod oscillates as a simple
pendulum with a period of 2.0 s. If the ball is replaced with
another ball having twice the mass, the period will be

A. 10s
B. 14s

‘/ C. 20s

D. 28s
E. 40s
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QuickCheck 14.18

On Planet X, a ball on a massless, rigid rod oscillates as a
simple pendulum with a period of 2.0 s. If the pendulum is
taken to the moon of Planet X, where the free-fall
acceleration g is half as

big, the period will be

1.0s
14s
2.0s
2.8s
40s

ooy

e
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QuickCheck 14.18

On Planet X, a ball on a massless, rigid rod oscillates as a
simple pendulum with a period of 2.0 s. If the pendulum is
taken to the moon of Planet X, where the free-fall
acceleration g is half as

big, the period will be
A. 10s
B. 14s
C. 20s

' D 28s T« L
E. 40s \/(g:
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QuickCheck 14.19

A series of pendulums with different length strings and different
masses 1s shown below. Each pendulum is pulled to the side by
the same (small) angle, the pendulums are released, and they
begin to swing from side to side.

A B C D
[ ]
10 cm 15 cm 15 cm 15 cm
100 g
200 g @
100 g

Which of the pendulums oscillates with the highest frequency?
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QuickCheck 14.19

A series of pendulums with different length strings and different
masses 1s shown below. Each pendulum is pulled to the side by
the same (small) angle, the pendulums are released, and they
begin to swing from side to side.

v . B c D
[ ]
10 cm 15 cm 15 cm 15 cm
100 g
200 g @
100 g

Which of the pendulums oscillates with the highest frequency?
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Example 14.10 Designing a pendulum for a
clock

A grandfather clock is designed so that one swing of the
pendulum in either direction takes 1.00 s. What is the length
of the pendulum?

PREPARE One period of the pendulum is two swings, so the
period is 7= 2.00 s.
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Example 14.10 Designing a pendulum for a
clock (cont.)

SOLVE The period is independent of the mass and depends
only on the length. From Equation 14.27,

lef
= — = 29T .| —
f g

Solving for L, we find

T \? 2.00s\?
L=g - = (9.80 m/s?) - =0.993 m
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Example 14.10 Designing a pendulum for a
clock (cont.)

ASSESS A pendulum clock with a “tick” or “tock™ each
second requires a long pendulum of about 1 m—which is
why these clocks were original known as “tall case clocks.”

© 2015 Pearson Education, Inc. Slide 14-119

Physical Pendulums and Locomotives

* A physical pendulum is a
pendulum whose mass is
distributed along its length.

Center of
gravity

* The position of the center of
gravity of the physical
pendulum is at a distance d
from the pivot.

The simp.le The physical peﬁdulum

pendulum is a is an extended object
small mass m at with mass m, length L,
the end of a light and moment of inertia /.

rod of length L.
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Physical Pendulums and Locomotives

* The moment of inertia / is a measure of an object’s resistance to
rotation. Increasing the moment of inertia while keeping other
variables equal should cause the frequency to decrease. In an
expression for the frequency of the physical pendulum, we would
expect [ to appear in the denominator.

* When the pendulum is pushed to the side, a gravitational torque
pulls it back. The greater the distance d of the center of gravity from
the pivot point, the greater the torque. Increasing this distance while
keeping the other variables constant should cause the frequency to
increase. In an expression for the frequency of the physical
pendulum, we would expect d to appear in the numerator.

1 mgd

“2a\ 1

Frequency of a physical pendulum of mass m,
moment of inertia /, with center of gravity distance d from the pivot
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Example 14.11 Finding the frequency of a
swinging leg

A student in a biomechanics lab measures the length of his
leg, from hip to heel, to be 0.90 m. What is the frequency of
the pendulum motion of the student’s leg? What is the
period?

PREPARE We can model a human leg reasonably well as a
rod of uniform cross section, pivoted at one end (the hip).
Recall from Chapter 7 that the moment of inertia of a rod
pivoted about its end is 1/3mL?. The center of gravity of a
uniform leg is at the midpoint, so d = L/2.
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Example 14.11 Finding the frequency of a
swinging leg (cont.)

SOLVE The frequency of a physical pendulum is given by
Equation 14.28. Before we put in numbers, we will use
symbolic relationships and simplify:

po L fmed_ 1 jmeLi2) 1 38
2a\ I 2 %mLZ 2o\ 2 L
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Example 14.11 Finding the frequency of a
swinging leg (cont.)

The expression for the frequency is similar to that for the
simple pendulum, but with an additional numerical factor of
3/2 inside the square root. The numerical value of the
frequency is

1 3\/ 9.8 m/s?
—_— — — —_— = “ 4H
I= oy (2)( O.90m> U llz

The period is

1
T=—=1.6s
f
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Example 14.11 Finding the frequency of a
swinging leg (cont.)

ASSESS Notice that we didn’t need to know the mass of the
leg to find the period. The period of a physical pendulum
does not depend on the mass, just as it doesn’t for the simple
pendulum. The period depends only on the distribution of
mass. When you walk, swinging your free leg forward to
take another stride corresponds to half a period of this
pendulum motion. For a period of 1.6 s, this is 0.80 s. For a
normal walking pace, one stride in just under one second
sounds about right.
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Try It Yourself: How Do You Hold Your Arms?

You maintain your balance when
walking or running by moving
your arms back and forth
opposite the motion of your legs.
You hold your arms so that the
natural period of their motion
matches that of your legs. At a
normal walking pace, your arms are extended and naturally
swing at the same period as your legs. When you run, your gait
is more rapid. To decrease the period of the pendulum motion of
your arms to match, you bend them at the elbows, shortening
their effective length and increasing the natural frequency of
oscillation. To test this for yourself, try running fast with your
arms fully extended. It’s quite awkward!
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Section 14.6 Damped Oscillations

Damped Oscillation
* An oscillation that runs down and stops is called a
damped oscillation.

¢ For a pendulum, the main energy loss is air resistance, or
the drag force.

* As an oscillation decays, the rate of decay decreases; the
difference between successive peaks is less.
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Damped Oscillation
* Damped oscillation causes x,,,, to
decrease with time as
X)) = A

where e = 2.718 is the base of the
natural logarithm and A is the initial
amplitude.

¢ The steady decrease in x,,,, 1s the
exponential decay.

* The constant 7 is the time constant.

© 2015 Pearson Education, Inc.

(b) x
A_\

Ale H

Initially, there is a large difference
in the heights of successive peaks

A

At later times, this
difference is much smaller.

o

A graph of x,,, as a function of
time is an exponential decay.

N g

A=A
g

The time constant 7 is the time for
the maximum displacement to
decay to 1/e of its initial value
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Damped Oscillation
B Exponential decay @

Exponential decay occurs when a quan- Y ystarts with
tity y is proportional to the number e A e initial value A,
taken to the power —#/7. The quantity 7 is
known as the time constant. We write
this mathematically as

_y=A S
y has decreased
10 37% of its

=

y= Aeil/" Alg === " initial value.
y is proportional to e Ly Ao RSP,
o 0 t
scaLING Whenever ¢ increases by one 0 iy 27
time constant, y decreases by a factor of Because ¢ ll];pt:ill\ as the ratio
1/e. For instance: t/, the important time intervals
are 7, 27, and so on.

B Attimet=0,y=A.
B Increasing time to t = 7 reduces y to Ale.
m A further increase to r = 27 reduces y by another factor of 1/e to A/e.

Generally, we can say:
At t = nt, y has the value A/e".

LiMiTs As f becomes large, y becomes very small and approaches zero.
Exercises 14-17

Text: p. 456
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Example Problem

A 500 g mass on a string oscillates as a pendulum. The
pendulum’s energy decays to 50% of its initial value in 30 s.
What is the value of the damping constant?
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Different Amounts of Damping

* Mathematically, the oscillation never ceases, however the

amplitude will be so small that it is undetectable.

¢ For practical purposes, the time constant 7 is the lifetime of
the oscillation—the measure of how long it takes to decay.

* If 7 << T, the oscillation persists over many periods and

the amplitude decrease is small.

 If £ >> T, the oscillation will damp quickly.

© 2015 Pearson Education, Inc.
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Section 14.7 Driven Oscillations and

Resonance

Driven Oscillations and Resonance
* Driven oscillation is the motion of an oscillator that is
subjected to a periodic external force.

* The natural frequency f, of an oscillator is the frequency
of the system if it is displaced from equilibrium and
released.

* The driving frequency f.,, is a periodic external force of
frequency. It is independent of the natural frequency.
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Driven Oscillations and Resonance

The oscillation has

* An oscillator’s response  Amplitude
curve is the graph of maximum amplitude
. .. when fox, = fo. This
amplitude versus driving is resonance.
frequency. fi=2Hz |

The oscillation has
only a small amplitude

* A resonance is the large- Y whenf, differs
amplitude response to a %,  substantially from
driving force whose
frequency matches the
natural frequency of the
system.

= f.,\ (Ho)
3

* The natural frequency is often called the resonance
frequency.
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Driven Oscillations and Resonance

* The amplitude can become exceedingly large when the
frequencies match, especially when there is very little

damping.
Amplitude

fo=2Hz A lightly damped system
has a very tall and very
Narrow response curve.

e A system with
T =507 significant
damping has a
much smaller
--------- response.

T — fexe (HZ)
3
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QuickCheck 14.20

A series of pendulums with different length strings and different
masses is shown below. Each pendulum is pulled to the side by
the same (small) angle, the pendulums are released, and they
begin to swing from side to side.

A B C D
[ ]
10 cm 15 cm 15 cm 15cm
100 g
200 g @
100 g

Which of the pendulums oscillates with the lowest frequency?
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QuickCheck 14.20

A series of pendulums with different length strings and different
masses 1s shown below. Each pendulum is pulled to the side by
the same (small) angle, the pendulums are released, and they
begin to swing from side to side.

B

A vV c D
[ ]
10 cm 15 cm 15 cm 15cm
100 g
200 g @
100 g

Which of the pendulums oscillates with the lowest frequency?
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Resonance and Hearing

* Resonance in a system means that certain frequencies
produce a large response and others do not. Resonances
enable frequency discrimination in the ear.

4. ...where vibrations in
the fluid drive vibrations
.- in the basilar membrane.

1. Sound waves
enter the ear and
cause the eardrum..,
to vibrate. %

Basilar
membrane

— Cochlea
2. Vibrations in
the eardrum pass
through a series
of small bones . . .

--3. ...to the cochlea,
r the sensing area of
....................... the inner ear, . . .
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Resonance and Hearing

‘We imagine the spiral structure unrolled,
with the basilar membrane separating two

* In a simplified model of the h ih
fluid-filled chambers.
COChlea, Sound waves prOduce The stapes, the last of the small

bones, transfers vibrations into

large-amplitude vibrations of the  fuidin e cochica

basilar membrane at resonances.
Lower-frequency sound causes a rsremaenn e 7 ¢ | |
response farther from the stapes. increase, the membrane
« Hair cells sense the vibration and e g -.,300 200 100 50

’ I 1 \

send signals to the brain. Oscillation R
amplitude of Sy K
basilar membrane Yok 8
f T T T T T
0 5 15 25 35
< Distance from stapes (mm)
Sounds of different frequencies
cause different responses.
© 2015 Pearson Education, Inc. Slide 14-140




Resonance and Hearing

* The fact that different

We imagine the spiral structure unrolled,
with the basilar membrane separating two
fluid-filled chambers. k

frequel’lCICS pI‘Oduce maleal The stapes, the last of the small
. .. bones, transfers vibrations into
response at dlfferent pOSltlonS []uid:in the cochlea.

3y

Summary: General Principles

Frequency and Period ot A
SHM occurs when a linear restoring force acts to return a system to an
equilibrium position. Frequency and the period depend on the force and on
masses or lengths. Frequency and period do not depend on amplitude.

allows your brain to very Mass on spring Pendulum
accurately determine frequency Ry k
. . As the distance from the stapes ¢ I’ : ‘n
because a small shift in increases, the membrane P WMWVW m e -
hgggmcs wider and less £ i ( net)x v (Fnet)t — _<_g>s
frequency causes a detectable Sl o the rSOmce, 30t 260 160 50 — L
: L : Hz Hz Hz Hz
change in the position of the Osciltion g
maximal response. e Wh il The frequency and period of a mass The frequency and period of a
N/ on a spring depend on the mass and pendulum depend on the length
‘‘‘‘‘‘‘‘‘‘‘‘ m\ the spring constant: They are the same and the free-fall acceleration.
I = Rl for horizontal and vertical systems. They do not depend on the mass.
,-"'bistance from stapes (mm) 1 k m 1 & /L,
NP s =—. /= T=2m |~ =—.[2 T=2m|%
é,oun\d:-(l?l!f.h\l:f‘im luq‘ugnuu f 27\ m w k f 22\ L w g
cause airrerer lL.\l‘)UI].\t.\.
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Summary: General Principles Summary: Important Concepts
Energy Oscillation
If there is no friction or dissipation, kinetic and An OSCIHath‘n’ 15 a repetitive motion
potential energies are alternately transformed into about. an equilibrium position. The
each other in SHM, with the sum of the two amplltude A is the LT
conserved. displacement from equilibrium. The
period 7 is the time for one cycle. We
o may also characterize an oscillation
| | LI by its frequency f.
e 2 i) < >
E= zmvx + ka J = . - 1
0 Ty Al r
= 5 MVmax :
% . NS
—A 0 A
— 2
All potential Al
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Summary: Important Concepts

Simple Harmonic Motion (SHM)
SHM is an oscillation that is described by a sinusoidal function. All systems that undergo
SHM can be described by the same functional forms.

Acceleration-versus-time is
an inverted cosine function.

Velocity-versus-time is an
inverted sine function.

Position-versus-time is a
cosine function.

Ve (2%

N AL AN

Summary: Applications

Damping

Simple harmonic motion with damping
(due to drag) decreases in amplitude over
time. The time constant 7 determines
how quickly the amplitude decays.

© 2015 Pearson Education, Inc.

T i Al e
2T i ol i 2T Ale
NAVAAVARR VAL VAL ; Aﬁ]\i\m\m\ t
U
x(f) = Acos(2mft) V() = —[Qmf)AlsinQurft)  ayr) = —[Q2mf)?A]cos 2mft)
!
Text: p. 462 @
_A =
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Summary: Applications Summary: Applications
Resonance Physical pendulum
A system that oscillates has a A physical pendulum
natural frequency of oscillation is a pendulum with
Jo- Resonance occurs if the mass distributed along
system is driven with a frequency its length. The frequency
Jext that matches this natural depends on the position
frequency. This may produce a of the center of gravity
large amplitude of oscillation. and the moment of mg\ Moment of
o inertia =
Oscillation ’
amplitide The motion of legs
during walking can
be described using a
physical pendulum
model. L mg &
T T fext 27T
Jo
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Summary

GENERAL PRINCIPLES |
Frequency and Period

SHM occurs when a linear restoring force acts to return a system to an
equilibrium position. Frequency and the period depend on the force and on
masses or lengths. Frequency and period do not depend on amplitude.

Mass on spring Pendulum

hig -]
m
A T - s
1 Fuei = *( L )S

0 x
The frequency and period of a
pendulum depend on the length

0

The frequency and period of a mass
on a spring depend on the mass and
the spring constant: They are the same and the free-fall acceleration.

for horizontal and vertical systems. They do not depend on the mass.

,L\/T sz\/E _1fg T,z\[g
7= Vm A =L =%

Energy

If there is no friction or dissipation, kinetic and
potential energies are alternately transformed into
cach other in SHM, with the sum of the two

conserved.

1 1
E= Emv} + Ekx2

1
= 5 MVt
o
=k
2

All kinetic

All potential
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Summary

IMPORTANT CONCEPTS

Oscillation

An oscillation is a repetitive motion
about an equilibrium position. The
amplitude A is the maximum
displacement from equilibrium. The
period T is the time for one cycle. We
may also characterize an oscillation
by its frequency f.

i 1
i =
A f i

Simple Harmonic Motion (SHM)
SHM is an oscillation that is described by a sinusoidal function. All systems that undergo
SHM can be described by the same functional forms.

Position-versus-timeisa  Velocity-versus-time is an Acceleration-versus-time is
cosine function. inverted sine function. an inverted cosine function.

e a

S AL T A

vi(H) = —[Qaf)Alsin@mft)  a(n) = ~[(2nf Y’A] cos (2mf)

7

x(t) = A cos(2mft)

Text: p. 462
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APPLICATIONS
Damping Resonance Physical pendulum
Simple harmonic motion with damping A system that oscillates has a A physical pendulum
(due to drag) decreases in amplitude over natural frequency of oscillation is a pendulum with
time. The time constant 7 determines fo. Resonance occurs if the mass distributed along
how quickly the amplitude decays. system is driven with a frequency its length. The frequency
Jfex that matches this natural depends on the position
frequency. This may produce a of the center of gravity
large amplitude of oscillation. and the moment of Moment of
inertia. inertia =
Ogcil}allon B
i The motion of legs
during walking can
be described using a
physical pendulum
model. = 1 [med
27 1

Jex

fo
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