Chapter 26 # Electricity and Magnetism Electric Field: Continuous Charge Distribution #### Find electric field at point P. # **Electric Field: Continuous Charge Distribution** $$\vec{E} = k_e \frac{q}{r^2} \hat{\vec{r}}$$ Electric field $$\vec{E} = \vec{E}_1 + \vec{E}_2$$ In this situation, the system of charges can be modeled as continuous The system of closely spaced charges is equivalent to a total charge that is continuously distributed along some line, over some surface, or throughout some volume # **Electric Field: Continuous Charge Distribution** The total electric charge is **Q**. What is the electric field at point **P**? # **Continuous Charge Distribution: Charge Density** The total electric charge is **Q**. Linear, length L Amount of charge in a small volume *dl:* $$dq = \frac{Q}{L}dl = \lambda \, dl$$ $$\lambda = \frac{Q}{L}$$ Linear charge density Amount of charge in a small volume *dV:* $$dq = \frac{Q}{V}dV = \rho dV \qquad \qquad \rho = \frac{Q}{V}$$ Volume charge density Surface, area *A* Q Amount of charge in a small volume *dA*: $$dq = \frac{Q}{A}dA = \sigma dA$$ $$\sigma = \frac{Q}{\Lambda}$$ Surface charge density # **Electric Field: Continuous Charge Distribution** #### **Procedure**: - Divide the charge distribution into small elements, each of which contains Δq - Calculate the electric field due to one of these elements at point *P* - Evaluate the total field by summing the contributions of all the charge elements **Symmetry:** take advantage of any symmetry to simplify calculations Because the charge distribution ©2004 Thomson - Brooks/Cole is continuous $$\mathbf{E} = k_{e} \lim_{\Delta q_{i} \to 0} \sum_{i} \frac{\Delta q_{i}}{r_{i}^{2}} \hat{\mathbf{r}}_{i} = k_{e} \int \frac{dq}{r^{2}} \hat{\mathbf{r}}$$ 6 # **Electric Field: Symmetry** # **Electric Field: Symmetry** # **Electric Field: Continuous Charge Distribution** #### What is the electric field at point *P*? λ - linear charge density 1. Symmetry determines the direction of the electric field. 2. Divide the charge distribution into small elements, each of which contains Δq 3. Evaluate the total field by summing the contributions of all the charge elements Δq #### 4. Evaluate the integral #### From symmetry $$E = \sum_{\text{all elements}} \Delta E$$ $$\Delta E = k_e \frac{\Delta q}{x^2}$$ $$\Delta q = \lambda \Delta x$$ $$E = \sum_{\text{all elements}} k_e \frac{\Delta q}{x^2} = \sum_{\text{all elements}} k_e \frac{\lambda \Delta x}{x^2}$$ #### Replace the Sum by Integral $$E = k_e \int_a^b dx \, \frac{\lambda}{x^2} = \lambda k_e \int_a^b \frac{dx}{x^2}$$ What is the electric field at point P? σ - surface charge density 1. Symmetry determines the direction of the electric field. #### What is the electric field at point P? σ - surface charge density 90° $\rho_{x,y}$ Δx - 2. Divide the charge distribution into small elements, each of which contains Δq - 3. Evaluate the total field by summing the contributions of all the charge elements Δq at point (x,y) $$E = \sum_{all\ elements} \Delta E_z$$ $$\Delta E_z = \Delta E \cos \varphi = k_e \frac{\Delta q}{r^2} \cos \varphi$$ $$E = \sum_{all\ elements} k_e \, \frac{\Delta q}{r^2} \cos \varphi$$ $$\Delta q = \sigma \Delta x \Delta y$$ $$\Delta q = \sigma \Delta x \Delta y$$ $r = \sqrt{h^2 + \rho_{x,y}^2}$ $$\cos \varphi = \frac{h}{r} = \frac{h}{\sqrt{h^2 + \rho_{x,y}^2}}$$ $$E = \sum_{\text{all elements}} k_e \sigma \Delta x \Delta y \frac{h}{\left(h^2 + \rho_{x,y}^2\right)^{3/2}}$$ What is the electric field at point *P*? $oldsymbol{\sigma}$ - surface charge density Replace the Sum by Integral $$E = \sum_{\text{all elements}} k_e \sigma \Delta x \Delta y \frac{h}{\left(h^2 + \rho_{x,y}^2\right)^{3/2}}$$ $$E = k_e \sigma \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dy \frac{h}{\left(h^2 + \rho_{x,y}^2\right)^{3/2}}$$ $$(x,y) \rightarrow (\rho,\psi)$$ $$dxdy = \rho d \rho d\psi$$ $$E = k_e \sigma \int_0^\infty d\rho \int_0^{2\pi} d\psi \frac{h\rho}{\left(h^2 + \rho^2\right)^{3/2}}$$ What is the electric field at point *P*? σ - surface charge density Evaluate the Integral $$2\pi k_{_{e}}\sigma$$ $E=2\pi k_{e}\sigma$ What is the electric field at point *P*? σ - surface charge density $$E = \sum_{all\ rings} \Delta E_{\rho}$$ $$\Delta E_{\rho} = 2\pi \lambda k_{e} \frac{h\rho}{\left(h^{2} + \rho^{2}\right)^{3/2}}$$ Charge of Linear density of the ring $\lambda = \frac{\Delta Q}{2\pi\rho} = \frac{\sigma\Delta A}{2\pi\rho} = \frac{\sigma 2\pi\rho\Delta\rho}{2\pi\rho} = \sigma\Delta\rho$ Ring of width $\Delta \rho$ Length of the ring $$E = \sum_{all\ rings} \Delta E_{ ho} = \sum_{all\ rings} 2\pi\sigma k_e \frac{h ho\Delta ho}{\left(h^2 + ho^2\right)^{3/2}}$$ $$E = 2\pi k_e \sigma \int_0^\infty d\rho \frac{h\rho}{\left(h^2 + \rho^2\right)^{3/2}} = 2\pi k_e \sigma$$ $$E_{plane} = 2\pi k_e \sigma = \frac{\sigma}{2\varepsilon_0}$$ $$\vec{F}_{plane}$$ $$\vec{E}_{plane}$$ $$Q > 0$$ $Q = \sigma S$ $$E_{plane} = 2\pi k_e \mid \sigma \mid = \frac{\mid \sigma \mid}{2\varepsilon_0}$$ $$\vec{E}_{plane}$$ $$\vec{\hat{E}}_{plane}$$ $$\sigma$$ < 0 $\sigma > 0$ $$Q<0 \quad \ Q=\sigma S$$ # **Electric Field: Symmetry** #### no symmetry, but we know \vec{E}_1 and \vec{E}_2 $$E_{1} = 2\pi\lambda_{1}k_{e} \frac{h_{1}R_{1}}{\left(h_{1}^{2} + R_{1}^{2}\right)^{3/2}}$$ $$E_{2} = 2\pi\lambda_{2}k_{e} \frac{h_{2}R_{2}}{\left(h_{2}^{2} + R_{2}^{2}\right)^{3/2}}$$ $$\vec{E} = \vec{E}_1 + \vec{E}_2$$ $$E = \sqrt{E_1^2 + E_2^2}$$ # \boldsymbol{x} 0 Δx #### no symmetry - We do not know the direction of electric field at point P - We need to find x and y component of electric field X $$ec{E} = \sum_{all\ elements} \Delta ec{E}$$ Then X $$E_x = \sum_{all\ elements} \Delta E_s$$ $$E_y = \sum_{all\ elements} \Delta E_y$$ $$E_{x} = \sum_{\text{all elements}} \Delta E_{x} \qquad \Delta E_{x} = k_{e} \frac{\Delta q}{r^{2}} \sin \alpha$$ $$E_{y} = \sum_{\text{all algorithm}} \Delta E_{y} \qquad \Delta E_{x} = k_{e} \frac{\Delta q}{r^{2}} \cos \alpha$$ $$\Delta q = \lambda \Delta x$$ $$r = \sqrt{t^2 + x^2}$$ $$\cos\alpha = \frac{t}{r} = \frac{t}{\sqrt{t^2 + x^2}}$$ $$\sin\alpha = \frac{x}{r} = \frac{x}{\sqrt{t^2 + x^2}}$$ $$E_{x} = \sum_{\text{all elements}} k_{e} \frac{\Delta q}{r^{2}} \sin \alpha = \sum_{\text{all elements}} k_{e} \frac{\lambda \Delta x}{x^{2} + t^{2}} \frac{x}{\sqrt{x^{2} + t^{2}}}$$ **Then** $$E_{y} = \sum_{\text{all elements}} k_{e} \frac{\Delta q}{r^{2}} \cos \alpha = \sum_{\text{all elements}} k_{e} \frac{\lambda \Delta x}{x^{2} + t^{2}} \frac{t}{\sqrt{x^{2} + t^{2}}}$$ 27 #### no symmetry - > We do not know the direction of electric field at point P - > We need to find x and y component of electric field X $$E_{x} = \sum_{\text{all elements}} k_{e} \frac{\lambda \Delta x}{x^{2} + t^{2}} \frac{x}{\sqrt{x^{2} + t^{2}}} = \int_{a}^{b} k_{e} \frac{\lambda dx}{x^{2} + t^{2}} \frac{x}{\sqrt{x^{2} + t^{2}}} = \lambda k_{e} \int_{a}^{b} \frac{x dx}{(x^{2} + t^{2})^{3/2}}$$ $$E_{y} = \sum_{all \ elements} k_{e} \frac{\lambda \Delta x}{x^{2} + t^{2}} \frac{t}{\sqrt{x^{2} + h^{2}}} = \int_{a}^{b} k_{e} \frac{\lambda dx}{x^{2} + t^{2}} \frac{t}{\sqrt{x^{2} + t^{2}}} = \lambda k_{e} t \int_{a}^{b} \frac{dx}{(x^{2} + t^{2})^{3/2}}$$ $$E_{y} = 0 \qquad \frac{P}{\vec{E}} \qquad 0 \qquad a \qquad b$$ the symmetry tells us that one of the component is 0, so we do not need to calculate it. # **Important Example** #### Find electric field $$\vec{E}_{+} \uparrow \qquad \qquad \sigma > 0$$ $$\vec{E}_{+} \downarrow \qquad \qquad E_{+} = \frac{\sigma}{2\varepsilon_{0}}$$ $$\vec{E}_{-}$$ $$-\sigma < 0$$ $$\vec{E}_{-}$$ $$E_{-} = \frac{\sigma}{2\varepsilon_{0}}$$ ### **Important Example** Find electric field $$E_{+} = \frac{\sigma}{2\varepsilon_0}$$ $$E_{-} = \frac{\sigma}{2\varepsilon_{0}}$$ $$\vec{E} = \vec{E}_{+} + \vec{E}_{-}$$ # **Important Example** $$E = 0$$ $$\sigma > 0$$ $$E = \frac{\sigma}{\varepsilon_0} \qquad \vec{E} \downarrow$$ $$-\sigma < 0$$ $$E = 0$$ # **Motion of Charged Particle** # **Motion of Charged Particle** - When a charged particle is placed in an electric field, it experiences an electrical force - If this is the only force on the particle, it must be the net force - The net force will cause the particle to accelerate according to Newton's second law $$\vec{F} = q\vec{E}$$ - Coulomb's law $$\vec{F} = m\vec{a}$$ - Newton's second law $$\vec{a} = \frac{q}{m}\vec{E}$$ ©2004 Thomson - Brooks/Cole # **Motion of Charged Particle** What is the final velocity? $$\vec{F} = q\vec{E}$$ $ec{F} = q ec{E}$ - Coulomb's law $$\vec{F} = m\vec{a}$$ $ec{F}=mec{a}$ - Newton's second law $$a_{y} = -\frac{|q|}{m}E$$ Motion in \mathbf{x} – with constant velocity \mathbf{v}_0 Motion in **x** – with constant acceleration $$a_y = -\frac{|q|}{m}E$$ $$t = \frac{l}{v_0}$$ - travel time After time **t** the velocity in **y** direction becomes $$v_y = a_y t = -\frac{|q|}{m} Et$$ then $v_f = \sqrt{v_0^2 + \left(\frac{q}{m} Et\right)^2}$ $$v_f = \sqrt{v_0^2 + \left(\frac{q}{m}Et\right)^2}$$