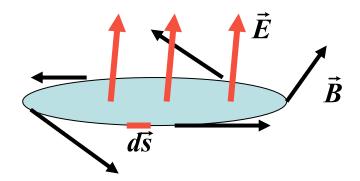
Chapter 31

Faraday's Law

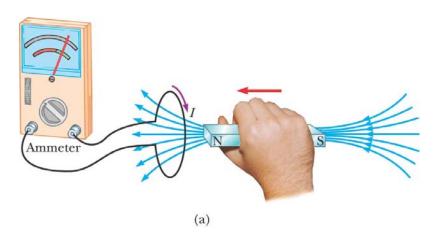
Ampere's law

Magnetic field is produced by time variation of electric field

$$\int \mathbf{B} \cdot d\mathbf{s} = \mu_o \left(I + I_d \right) = \mu_o I + \mu_o \varepsilon_o \frac{d\Phi_E}{dt}$$

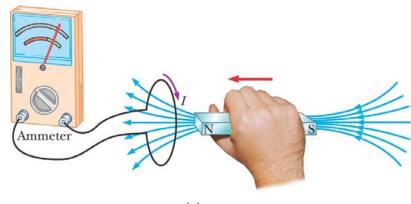


- A loop of wire is connected to a sensitive ammeter
- When a magnet is moved toward the loop, the ammeter deflects



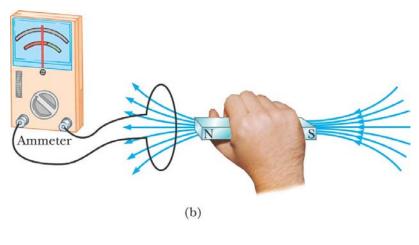
@2004 Thomson - Brooks/Cole

- An induced current is produced by a changing magnetic field
- There is an *induced emf* associated with the induced current
- A current can be produced without a battery present in the circuit
- Faraday's law of induction describes the induced emf



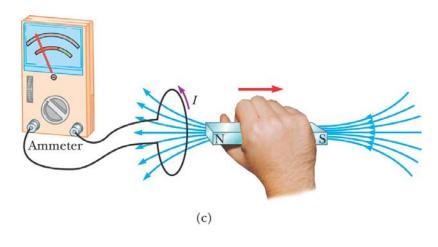
4

- When the magnet is held stationary, there is no deflection of the ammeter
- Therefore, there is no induced current
 - Even though the magnet is in the loop



@2004 Thomson - Brooks/Cole

- The magnet is moved away from the loop
- The ammeter deflects in the opposite direction

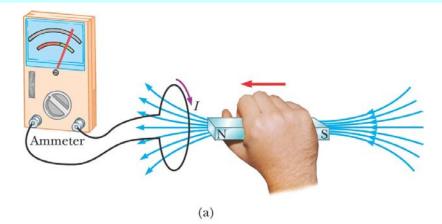


@2004 Thomson - Brooks/Cole

- The ammeter deflects when the magnet is moving toward or away from the loop
- The ammeter also deflects when the loop is moved toward or away from the magnet
- Therefore, the loop detects that the magnet is moving relative to it
 - We relate this detection to a change in the magnetic field
 - This is the induced current that is produced by an induced emf

Faraday's law

- Faraday's law of induction states that "the emf induced in a circuit is directly proportional to the time rate of change of the magnetic flux through the circuit"
- Mathematically, $\boldsymbol{\varepsilon} = -\frac{d\Phi_{B}}{2}$



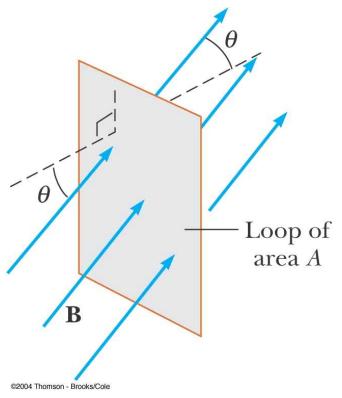
8

Faraday's law

- Assume a loop enclosing an area A lies in a uniform magnetic field B
- The magnetic flux through the loop is $\Phi_B = BA \cos \theta$
- The induced emf is

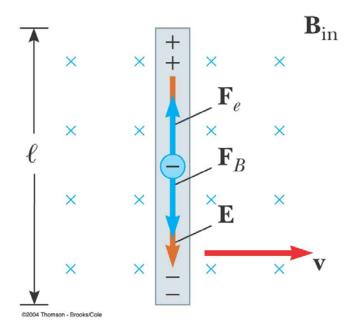
$$\varepsilon = -\frac{d(BA\cos\theta)}{dt}$$

- Ways of inducing emf:
- The magnitude of **B** can change with time
- The area A enclosed by the loop can change with time
- The angle θ can change with time
- Any combination of the above can occur



Motional emf

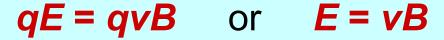
- A motional emf is one induced in a conductor moving through a constant magnetic field
- The electrons in the conductor experience a force,
 F_B = qv x B that is directed along \(\ell \)

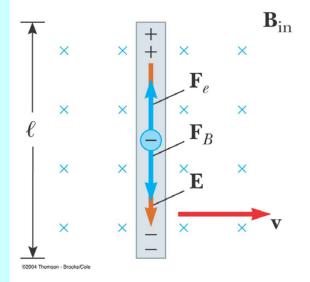


Motional emf

$$F_B = qv \times B$$

- Under the influence of the force, the electrons move to the lower end of the conductor and accumulate there
- As a result, an electric field E is produced inside the conductor
- The charges accumulate at both ends of the conductor until they are in equilibrium with regard to the electric and magnetic forces

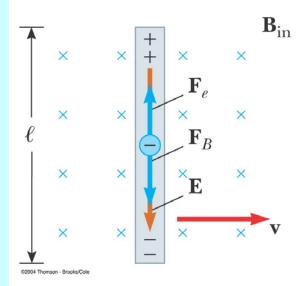




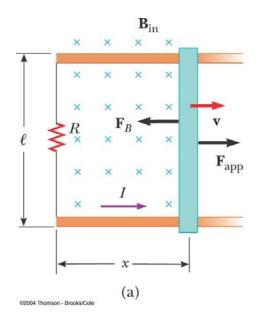
Motional emf

E = vB

- A potential difference is maintained between the ends of the conductor as long as the conductor continues to move through the uniform magnetic field
- If the direction of the motion is reversed, the polarity of the potential difference is also reversed

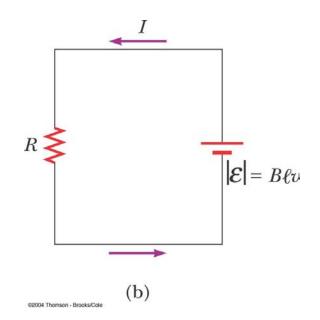


Example: Sliding Conducting Bar

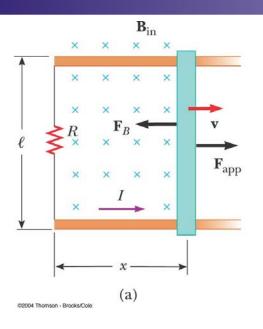


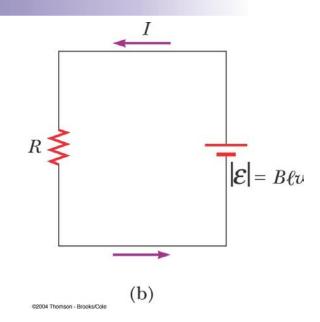
$$E = vB$$

$$\varepsilon = El = Blv$$



Example: Sliding Conducting Bar





· The induced emf is

$$\varepsilon = -\frac{d\Phi_B}{dt} = -B\ell \frac{dx}{dt} = -B\ell v$$

$$I = \frac{|\varepsilon|}{R} = \frac{B\ell v}{R}$$

Lenz's law

$$\varepsilon = -\frac{d\Phi_B}{dt}$$

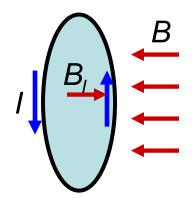
- Faraday's law indicates that the induced emf and the change in flux have opposite algebraic signs
- This has a physical interpretation that has come to be known as Lenz's law
- Lenz's law: the induced current in a loop is in the direction that creates a magnetic field that opposes the change in magnetic flux through the area enclosed by the loop
- The induced current tends to keep the original magnetic flux through the circuit from changing

Lenz's law

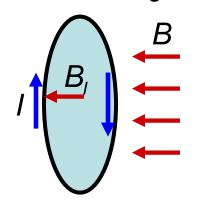
$$\varepsilon = -\frac{d\Phi_B}{dt}$$

- Lenz's law: the induced current in a loop is in the direction that creates a magnetic field that opposes the change in magnetic flux through the area enclosed by the loop
- The induced current tends to keep the original magnetic flux through the circuit from changing

B is increasing with time

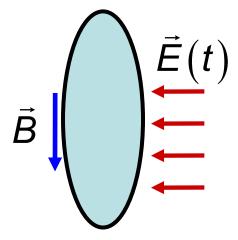


B is decreasing with time

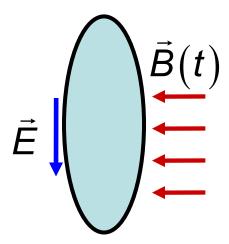


Electric and Magnetic Fields

Ampere-Maxwell law



Faraday's law



Example 1

A long solenoid has n turns per meter and carries a current $I = I_{\text{max}} (1 - e^{-\alpha t})$. Inside the solenoid and coaxial with it is a coil that has a radius R and consists of a total of N turns of fine wire.

What emf is induced in the coil by the changing current?

$$B(t) = \mu_o n I(t)$$

$$\Phi(t) = \pi R^2 N B(t) = \mu_o \pi R^2 N n I(t)$$
Nturns

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

Total Cult Publishing - 4 distant of Themsen Learning

**Total Cult Publishing - 4

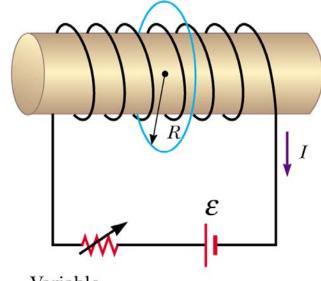
$$\varepsilon = -\frac{d\Phi(t)}{dt} = -\mu_o \pi R^2 Nn \frac{dI(t)}{dt} = \mu_o \pi R^2 Nn \alpha I_{max} e^{-\alpha t}$$

Example 2

A single-turn, circular loop of radius R is coaxial with a long solenoid of radius r and length ℓ and having N turns. The variable resistor is changed so that the solenoid current decreases linearly from I_1 to I_2 in an interval Δt . Find the induced emf in the loop.

$$B(t) = \mu_o \frac{N}{l} I(t)$$

$$\Phi(t) = \pi r^2 B(t) = \mu_o \pi r^2 \frac{N}{l} I(t)$$



Variable resistor

@2002 Brooks Cole Publishing - a division of Thomson Learnin

$$\varepsilon = -\frac{d\Phi(t)}{dt} = -\mu_o \pi r^2 \frac{N}{l} \frac{dI(t)}{dt} = -\mu_o \pi r^2 \frac{N}{l} \frac{I_2 - I_1}{\Delta t}$$

Example 3

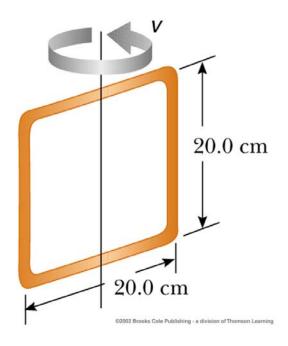
A square coil (20.0 cm \times 20.0 cm) that consists of 100 turns of wire rotates about a vertical axis at 1 500 rev/min. The horizontal component of the Earth's magnetic field at the location of the coil is 2.00 \times 10⁻⁵ T. Calculate the maximum emf induced in the coil by this field.

$$\Phi = BA\cos\theta$$

$$\varepsilon = -\frac{d(BA\cos\theta)}{dt} \qquad \theta = \omega t$$

$$\varepsilon = -BA \frac{d(\cos \omega t)}{dt} = BA\omega \sin \omega t$$

$$\varepsilon_{\rm max} = BA\omega = 12.6 mV$$

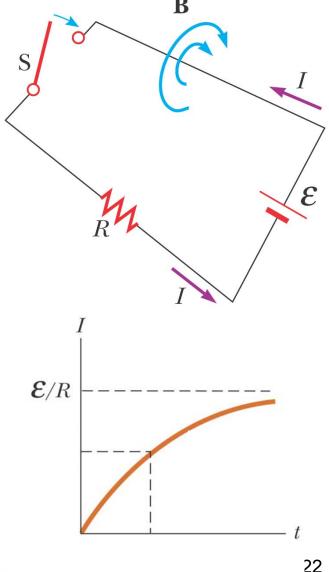


Chapter 32

Induction

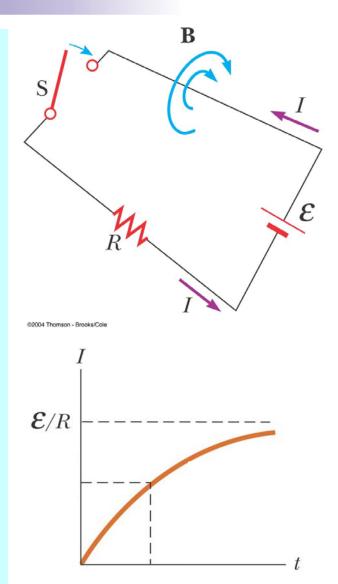
Self-Inductance

- When the switch is closed, the current does not immediately reach its maximum value
- Faraday's law can be used to describe the effect
- As the current increases with time, the magnetic flux through the circuit loop due to this current also increases with time
- This corresponding flux due to this current also increases
- This increasing flux creates an induced emf in the circuit

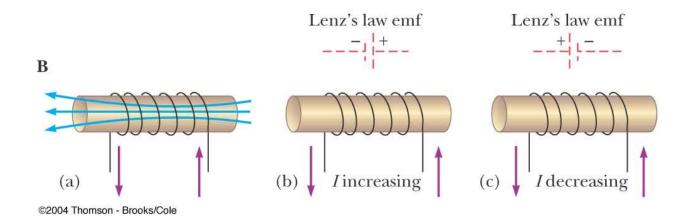


Self-Inductance

- Lenz Law: The direction of the induced emf is such that it would cause an induced current in the loop which would establish a magnetic field opposing the change in the original magnetic field
- The direction of the induced emf is opposite the direction of the emf of the battery
- This results in a *gradual* increase in the current to its final equilibrium value
- This effect is called self-inductance
- The emf ε_L is called a **self-induced emf**



Self-Inductance: Coil Example

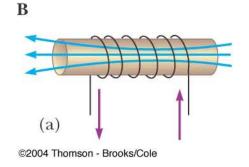


- A current in the coil produces a magnetic field directed toward the left
- If the current increases, the increasing flux creates an induced emf of the polarity shown in (b)
- The polarity of the induced emf reverses if the current decreases

Solenoid

- Assume a uniformly wound solenoid having
 N turns and length ?
- The interior magnetic field is

$$B = \mu_o n I = \mu_o \frac{N}{\ell} I$$



The magnetic flux through each turn is

$$\Phi_{B} = BA = \mu_{o} \frac{NA}{\ell} I$$

The magnetic flux through all N turns

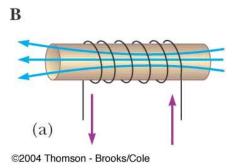
$$\Phi_t = N\Phi_B = \mu_o \frac{N^2 A}{\ell} I$$

• If I depends on time then self-induced emf can found from the Faraday's law $\varepsilon_{si} = -\frac{d\Phi_t}{dt} = -\mu_o \frac{N^2 A}{\ell} \frac{dI}{dt}$

Solenoid

The magnetic flux through all N turns

$$\Phi_t = \mu_o \frac{N^2 A}{\ell} I = L I$$



Self-induced emf:

$$\varepsilon_{si} = -\frac{d\Phi_t}{dt} = -\mu_o \frac{N^2 A}{\ell} \frac{dI}{dt} = -L \frac{dI}{dt}$$

Inductance

$$\varepsilon_{L} = -L \frac{dI}{dt} \qquad \Phi = LI$$

- L is a constant of proportionality called the **inductance** of the coil and it depends on the geometry of the coil and other physical characteristics
- > The SI unit of inductance is the **henry** (H)

$$1H = 1 \frac{V \cdot s}{A}$$

Named for Joseph Henry

Inductor

$$\varepsilon_L = -L \frac{dI}{dt}$$

$$\Phi = LI$$

- A circuit element that has a large self-inductance is called an inductor
- The circuit symbol is

- We assume the self-inductance of the rest of the circuit is negligible compared to the inductor
 - However, even without a coil, a circuit will have some self-inductance

$$\Phi_1 = L_1 I$$
 Flux through solenoid

$$L_1 >> L_2$$

$$\Phi_2 = L_2 I$$
 Flux through the loop

The effect of Inductor

$$\varepsilon_{L} = -L \frac{dI}{dt} \qquad \Phi = LI$$

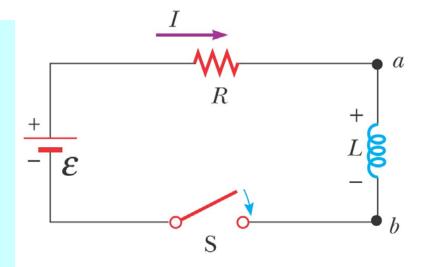
- The inductance results in a back emf
- Therefore, the inductor in a circuit opposes changes in current in that circuit

RL circuit

$$\varepsilon_{L} = -L \frac{dI}{dt}$$

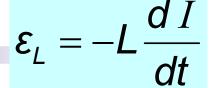
$$\Phi = LI$$

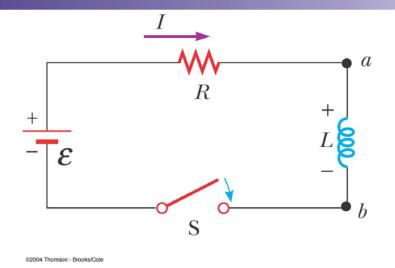
- An RL circuit contains an inductor and a resistor
- When the switch is closed (at time t = 0), the current begins to increase
- At the same time, a back emf is induced in the inductor that opposes the original increasing current



©2004 Thomson - Brooks/Cole

RL circuit





• Kirchhoff's loop rule:

$$\varepsilon - IR - L\frac{dI}{dt} = 0$$

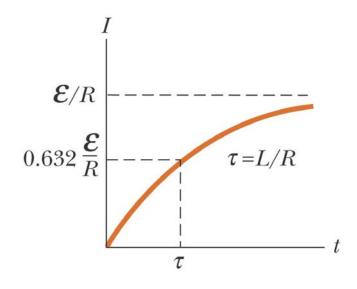
Solution of this equation:

$$I = \frac{\varepsilon}{R} \Big(1 - e^{-Rt/L} \Big)$$

$$I = \frac{\varepsilon}{R} \left(1 - e^{-t/\tau} \right)$$

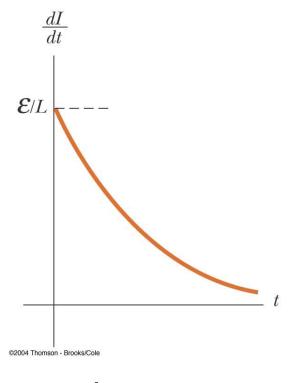
where $\tau = L/R$ - time constant

RL circuit



©2004 Thomson - Brooks/Cole

$$I = \frac{\varepsilon}{R} \left(1 - e^{-t/\tau} \right)$$



$$\frac{dI}{dt} = \frac{\varepsilon}{L} e^{-t/\tau}$$

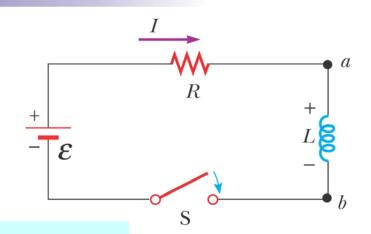
Chapter 32

Energy Density of Magnetic Field

Energy of Magnetic Field

$$\varepsilon_{L} = -L \frac{dI}{dt} \qquad \varepsilon = IR + L \frac{dI}{dt}$$

$$I\varepsilon = I^{2}R + LI \frac{dI}{dt}$$



- Let *U* denote the energy stored in the inductor at any time
- The rate at which the energy is stored is

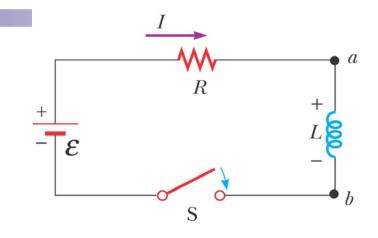
$$\frac{dU}{dt} = L I \frac{dI}{dt}$$

To find the total energy, integrate and

$$U = L \int_0^I I \ dI = L \frac{I^2}{2}$$

Energy of a Magnetic Field

- Given $U = \frac{1}{2} L I^2$
- For Solenoid: $L = \mu_o n^2 A \ell$ $I = \frac{B}{\mu_o n}$



$$U = \frac{1}{2}\mu_o n^2 A \ell \left(\frac{B}{\mu_o n}\right)^2 = \frac{B^2}{2\mu_o} A \ell$$

• Since Al is the volume of the solenoid, the magnetic energy density, u_R is

$$u_{B} = \frac{U}{A\ell} = \frac{B^{2}}{2\mu_{o}}$$

 This applies to any region in which a magnetic field exists (not just the solenoid)

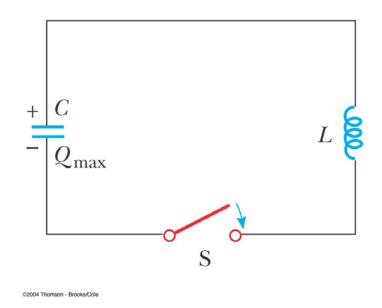
Energy of Magnetic and Electric Fields

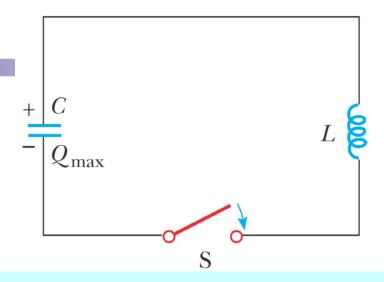
$$U_{\rm C} = C \frac{Q^2}{2} \qquad \frac{Q^2}{Q}$$

$$L = L \frac{I^2}{2}$$

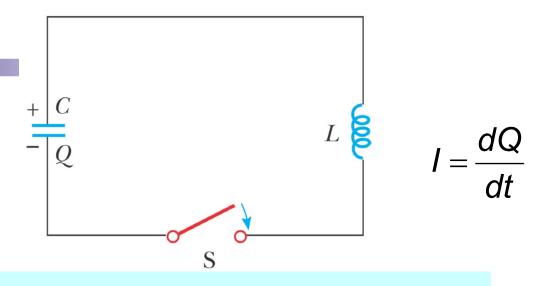
Chapter 32

- A capacitor is connected to an inductor in an LC circuit
- Assume the capacitor is initially charged and then the switch is closed
- Assume no resistance and no energy losses to radiation

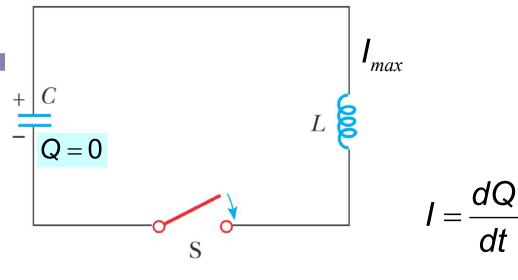




- With zero resistance, no energy is transformed into internal energy
- The capacitor is fully charged
 - The energy *U* in the circuit is stored in the electric field of the capacitor
 - The energy is equal to $Q^2_{\text{max}} / 2C$
 - The current in the circuit is zero
 - No energy is stored in the inductor
- The switch is closed

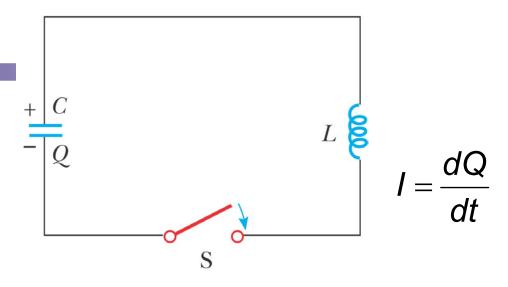


- The current is equal to the rate at which the charge changes on the capacitor
 - As the capacitor discharges, the energy stored in the electric field decreases
 - Since there is now a current, some energy is stored in the magnetic field of the inductor
 - Energy is transferred from the electric field to the magnetic field



2004 Thomson - Brooks/Cole

- The capacitor becomes fully discharged
 - It stores no energy
 - All of the energy is stored in the magnetic field of the inductor
 - The current reaches its maximum value
- The current now decreases in magnitude, recharging the capacitor with its plates having opposite their initial polarity



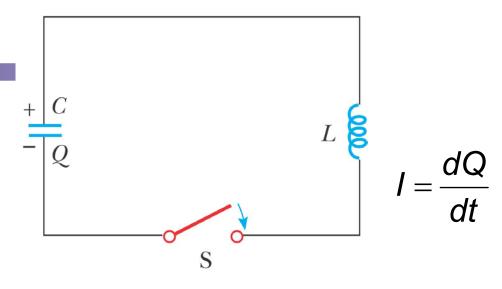
2004 Thomson - Brooks/Cole

- Eventually the capacitor becomes fully charged and the cycle repeats
- The energy continues to oscillate between the inductor and the capacitor
- The total energy stored in the LC circuit remains constant in time and equals

$$U = U_C + U_L = \frac{Q^2}{2C} + \frac{1}{2}LI^2$$

$$\frac{Q}{C} = -L \frac{dI}{dt}$$

$$\frac{Q}{C} = -L \frac{d^2Q}{dt^2}$$



©2004 Thomson - Brooks/Cole

Solution:
$$Q = Q_{max} cos(\omega t + \varphi)$$

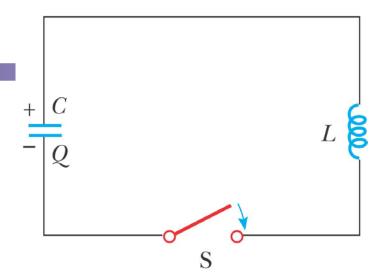
$$\frac{Q_{max}}{C}\cos(\omega t + \varphi) = LQ_{max}\omega^2\cos(\omega t + \varphi)$$

$$\omega^2 = \frac{1}{LC}$$

It is the natural frequency of oscillation of the circuit

$$Q = Q_{max} \cos(\omega t + \varphi)$$

$$\omega^2 = \frac{1}{LC}$$



2004 Thomson - Brooks/Cole

The current can be expressed as a function of time

$$I = \frac{dQ}{dt} = -\omega Q_{max} \sin(\omega t + \varphi)$$

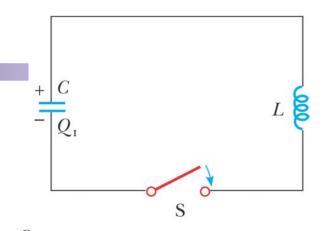
The total energy can be expressed as a function of time

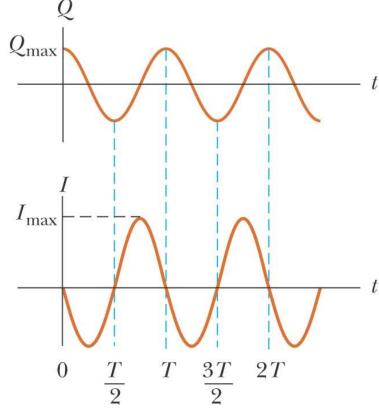
$$U = U_C + U_L = \frac{Q_{max}^2}{2c} \cos^2 \omega t + \frac{1}{2} L I_{max}^2 \sin^2 \omega t = \frac{Q_{max}^2}{2c}$$

$$\frac{Q_{max}^2}{2c} = \frac{1}{2}LI_{max}^2$$

$$Q = Q_{max} \cos(\omega t + \varphi)$$
$$I = -\omega Q_{max} \sin(\omega t + \varphi)$$

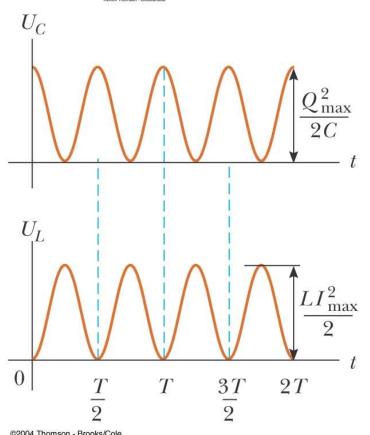
- The charge on the capacitor oscillates between Q_{max} and $-Q_{\text{max}}$
- The current in the inductor oscillates between $I_{\rm max}$ and - $I_{\rm max}$
- Q and I are 90° out of phase with each other
 - So when Q is a maximum, I is zero, etc.





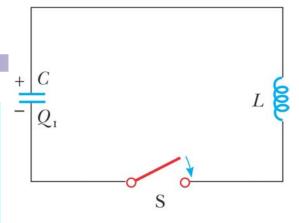
©2004 Thomson - Brooks/Cole

- The energy continually oscillates between the energy stored in the electric and magnetic fields
- When the total energy is stored in one field, the energy stored in the other field is zero

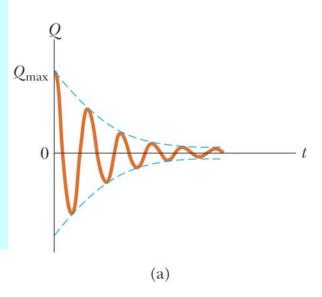


©2004 Thomson - Brooks/Cole

- In actual circuits, there is always some resistance
- Therefore, there is some energy transformed to internal energy
- Radiation is also inevitable in this type of circuit
- The total energy in the circuit continuously decreases as a result of these processes



©2004 Thomson - Brooks/Cole



©2004 Thomson - Brooks/Cole

Problem 2

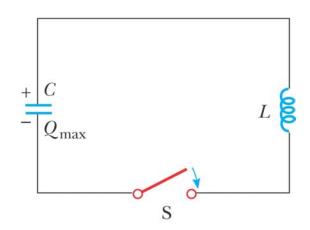
A capacitor in a series LC circuit has an initial charge Q_{max} and is being discharged. Find, in terms of *L* and *C*, the flux through each of the N turns in the coil, when the charge on the capacitor is $Q_{max}/2$.

The total energy is conserved:

$$\frac{Q_{max}^{2}}{2C} = \frac{Q^{2}}{2C} + \frac{1}{2}LI^{2} \qquad Q = \frac{Q_{max}}{2}$$

$$Q = \frac{Q_{max}}{2}$$

$$\frac{1}{2}LI^{2} = \frac{Q_{max}^{2}}{2C} - \frac{Q^{2}}{2C} = \frac{Q_{max}^{2}}{2C} - \frac{1}{4}\frac{Q_{max}^{2}}{2C} = \frac{3Q_{max}^{2}}{8C}$$



$$I = \frac{\sqrt{3}}{2\sqrt{CL}}Q_{max} \qquad \Phi = LI = \sqrt{\frac{3L}{C}}\frac{Q_{max}}{2} \qquad \Phi_1 = \frac{\Phi}{N} = \sqrt{\frac{3L}{C}}\frac{Q_{max}}{2N}$$

$$\Phi_1 = \frac{\Phi}{N} = \sqrt{\frac{3L}{C}} \frac{Q_{max}}{2N}$$

Chapter 31

Maxwell's Equations

Maxwell's Equations

$$\oint_{S} \mathbf{E} \cdot d\mathbf{A} = \frac{q}{\varepsilon_{o}} \quad \text{Gauss's law (electric)}$$

$$\oint_{S} \mathbf{B} \cdot d\mathbf{A} = 0$$
 Gauss's law in magnetism

$$\oint \mathbf{E} \cdot d\mathbf{s} = -\frac{d\Phi_B}{dt}$$
 Faraday's law

$$\oint \mathbf{B} \cdot d\mathbf{s} = \mu_o I + \varepsilon_o \mu_o \frac{d\Phi_E}{dt} \quad \text{Ampere-Maxwell law}$$

Chapter 34

Electromagnetic Waves

Maxwell Equations – Electromagnetic Waves

$$\oint \mathbf{E} \cdot d\mathbf{A} = \frac{q}{\varepsilon_o} \qquad \oint \mathbf{B} \cdot d\mathbf{A} = 0$$

$$\oint \mathbf{E} \cdot d\mathbf{s} = -\frac{d\Phi_B}{dt} \qquad \oint \mathbf{B} \cdot d\mathbf{s} = \mu_o I + \mu_o \varepsilon_o \frac{d\Phi_E}{dt}$$

- Electromagnetic waves solutions of Maxwell equations
- Empty space: q = 0, l = 0

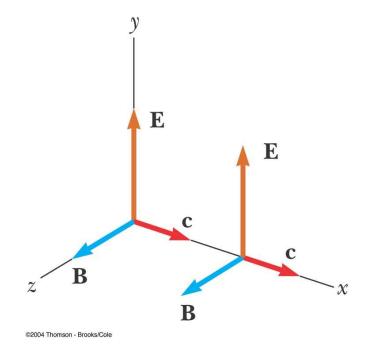
$$\oint \mathbf{E} \cdot d\mathbf{A} = 0 \qquad \oint \mathbf{B} \cdot d\mathbf{A} = 0$$

$$\oint \mathbf{E} \cdot d\mathbf{s} = -\frac{d\Phi_B}{dt} \qquad \oint \mathbf{B} \cdot d\mathbf{s} = \mu_o \varepsilon_o \frac{d\Phi_E}{dt}$$

Solution – Electromagnetic Wave

- Assume EM wave that travel in x-direction
- Then Electric and Magnetic Fields are orthogonal to x
- This follows from the first two Maxwell equations

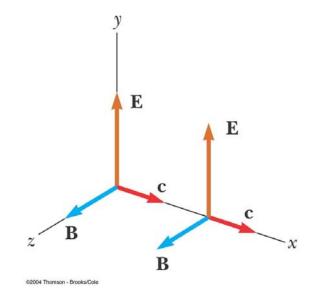
$$\oint \mathbf{E} \cdot d\mathbf{A} = 0 \qquad \oint \mathbf{B} \cdot d\mathbf{A} = 0$$



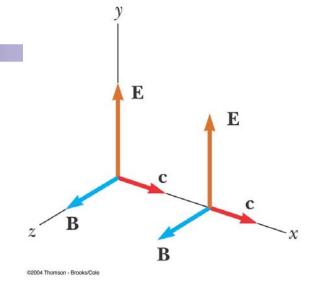
If Electric Field and Magnetic Field depend only on *x* and *t* then the third and the forth Maxwell equations can be rewritten as

$$\oint \mathbf{E} \cdot d\mathbf{s} = -\frac{d\Phi_B}{dt} \qquad \oint \mathbf{B} \cdot d\mathbf{s} = \mu_o \varepsilon_o \frac{d\Phi_E}{dt}$$

$$\frac{\partial^2 E}{\partial x^2} = \mu_o \varepsilon_o \frac{\partial^2 E}{\partial t^2} \quad and \quad \frac{\partial^2 B}{\partial x^2} = \mu_o \varepsilon_o \frac{\partial^2 B}{\partial t^2}$$



$$\frac{\partial^2 E}{\partial x^2} = \mu_o \varepsilon_o \frac{\partial^2 E}{\partial t^2} \quad and \quad \frac{\partial^2 B}{\partial x^2} = \mu_o \varepsilon_o \frac{\partial^2 B}{\partial t^2}$$



Solution:

$$E = E_{max} \cos(kx - \omega t)$$

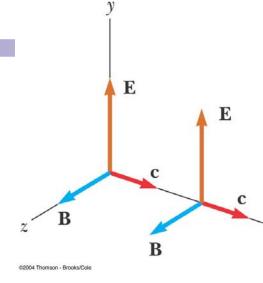
$$\frac{\partial^2 E}{\partial x^2} = -E_{max} k^2 \cos(kx - \omega t) \qquad \qquad \frac{\partial^2 E}{\partial t^2} = -E_{max} \omega^2 \cos(kx - \omega t)$$

$$E_{max}k^2\cos(kx-\omega t)=\mu_0\varepsilon_0E_{max}\omega^2\cos(kx-\omega t)$$

$$k = \omega \sqrt{\mu_0 \varepsilon_0}$$

$$E = E_{max} cos(kx - \omega t)$$

$$k = \omega \sqrt{\mu_0 \varepsilon_0}$$



The angular wave number is $k = 2\pi/\lambda$

- \(\lambda\) is the wavelength

The angular frequency is $\omega = 2\pi f$

- f is the wave frequency

$$\frac{2\pi}{\lambda} = 2\pi f \sqrt{\mu_0 \varepsilon_0} \qquad \lambda = \frac{1}{f \sqrt{\mu_0 \varepsilon_0}} = \frac{c}{f}$$

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 2.99792 \times 10^8 m/s$$
 - speed of light

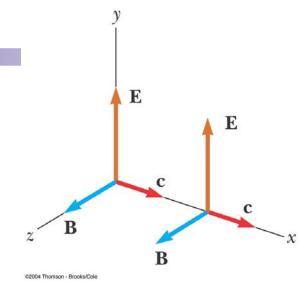
$$E = E_{max} cos(kx - \omega t)$$

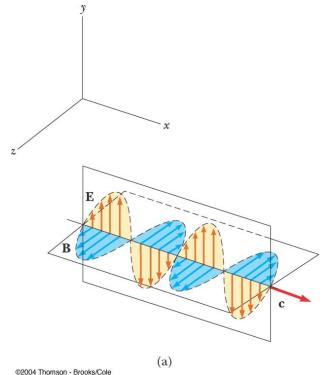
$$H = H_{max} \cos(kx - \omega t)$$

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \qquad \omega = ck \qquad \lambda = \frac{c}{f}$$

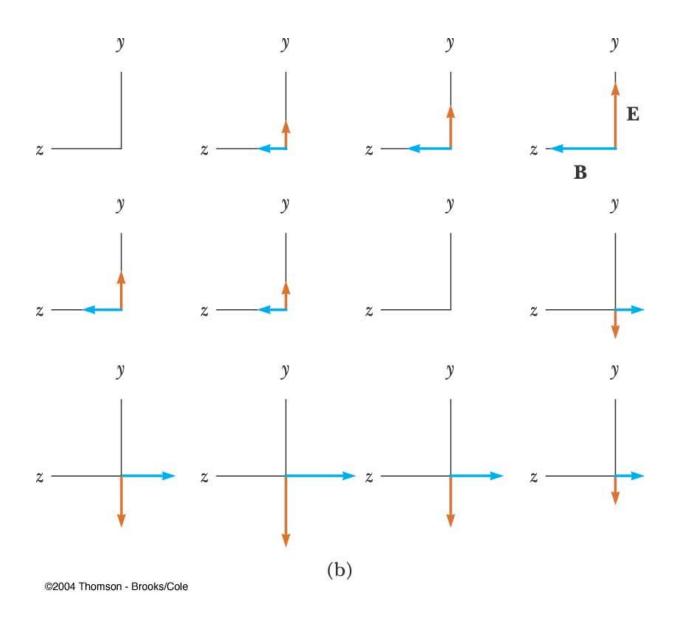
$$\frac{E_{\text{max}}}{B_{\text{max}}} = \frac{\omega}{k} = \frac{E}{B} = c$$

E and **B** vary sinusoidally with **x**





Time Sequence of Electromagnetic Wave



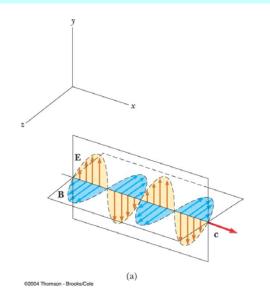
Poynting Vector

- Electromagnetic waves carry energy
- As they propagate through space, they can transfer that energy to objects in their path
- The rate of flow of energy in an em wave is described by a vector, S, called the Poynting vector
- The Poynting vector is defined as

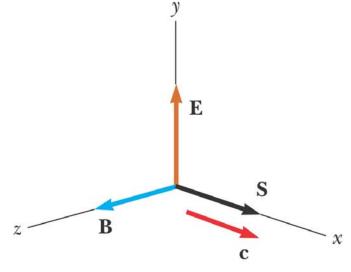
$$\mathbf{S} \equiv \frac{1}{\mu_o} \mathbf{E} \times \mathbf{B}$$

Poynting Vector

- The direction of Poynting vector is the direction of propagation
- Its magnitude varies in time
- Its magnitude reaches a maximum at the same instant as
 E and B



$$\mathbf{S} \equiv \frac{1}{\mu_o} \mathbf{E} \times \mathbf{B}$$

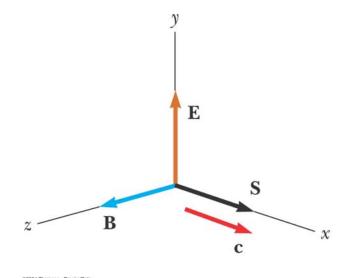


30

Poynting Vector

- The magnitude S represents the rate at which energy flows through a unit surface area perpendicular to the direction of the wave propagation
 - This is the power per unit area
- The SI units of the Poynting vector are J/s·m² = W/m²

$$\mathbf{S} \equiv \frac{1}{\mu_o} \mathbf{E} \times \mathbf{B}$$



The EM spectrum

- Note the overlap between different types of waves
- Visible light is a small portion of the spectrum
- Types are distinguished by frequency or wavelength

