A Macroscopic Description of Matter

Readings: Chapter 16

Solid, Liquid, Gas

-Solid has well-defined shape and well-defined surface. Solid is (nearly) incompressible.

-Liquid has well-defined surface (not shape), It is (nearly) incompressible.

- Gases are compressible. They occupy all volume.

Solid, Liquid, Gas: Density

-Density is defined as a ratio of the mass of the object and occupied volume

 $\rho = \frac{m}{V}$

The mass of unit volume (1m x 1m x 1m)

$$\rho_{gas} << \rho_{liquid} \sim \rho_{solid}$$

$$\rho_{ice} < \rho_{water}$$

The density of the ice is slightly less than water, causing them to float. Roughly 9/10 of the iceberg is below water.

Solid, Liquid, Gas: Density

Material	Density (gm/cm^3)								
Liquids									
Water at 4 C	1.0000								
Water at 20 C	0.998								
Gasoline	0.70								
Mercury	13.6								
Milk	1.03								
Material	Density (gm/cm^3)								

Solids									
Magnesium	1.7								
Aluminum	2.7								
Copper	8.3-9.0								
Gold	19.3								
Iron	7.8								
Lead	11.3								
Platinum	21.4								
Uranium	18.7								
Osmium	22.5								
Ice at 0 C	0.92								

Gases at STP								
Air	0.001293							
Carbon dioxide	.001977							
Carbon monoxide	0.00125							
Hydrogen	0.00009							
Helium	0.000178							
Nitrogen	0.001251							

At 4°C water expands on <u>heating or cooling</u>. This density maximum together with the low ice density results in (i) the necessity that all of a body of fresh water (not just its surface) is close to 4°C before any freezing can occur, (ii) the freezing of rivers, lakes and oceans is from the top down, so permitting survival of the bottom ecology.

Solid, Liquid, Gas: Mole

1 mole (1 mol) of substance is an amount which contains 6.02×10^{23} basic particles (atoms or molecules)

Avogadro's number is the number of basic particles in 1 mole:

 $N_A = 6.02 \times 10^{23} mol^{-1}$

If we know the number *n* of protons and neutrons in basic particles then we can find the mass of 1 mole:

$$m_{mole} = nm_{proton}N_{A} = n \cdot 1.661 \times 10^{-27} \cdot 6.02 \times 10^{23} \frac{kg}{mol} = 0.001n \frac{kg}{mol} = n \frac{g}{mol}$$

So, *n* is the molar mass (the mass of 1 mole in grams)

		The number of protons and neutrons in atom														m		
	1/IA								18/VIПА									
1	1 H 1.008	2/11A	-	R	eľ	0		Ga	13	b	e		13/IIIA	14/JVA	15/VA	16/VIA 1		2 He 4.003
2	3 Li 6.941	4 Be 9.012	1998 Dr. Michael Blaher											6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
3	11 Na 22.99	12 Mg 24.30	3/1113	4/IVB	5/VB	6/VIB	7/VIB	8	VП . 9	10	11/IB	12/IIB	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95
4	19 K 39.10	20 Ca 40.08	21 SC 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
5	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 TC 98.91	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	54 Xe 131.3
6	55 Cs 123.9	56 Ba 137.3	La- Lu	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 П 204.4	82 Pb 207.2	83 Bi 209.0	84 Po 210.0	85 At 210.0	86 Rn 222.0
7	87 Fr 223.0	88 Ra 226.0	Ac- Lr	104 Db	105 JI	¹⁰⁶ Rf	107 Bh	108 Hn	109 Mt	110 Uun	111 Uuu							
	↓ s		•	d							<i>p</i>							
Lanthanides				57 La 138.9	58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm 146.9	62 Sm 150.4	63 Eu 152.0	64 Gd 157.2	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0
Actinides			89 Ac 227.0	90 Th 232.0	91 Pa 231.0	92 U 238.0	93 Np 237.0	94 Pu 239.1	95 Am 241.1	96 Cm 244.1	97 Bk 249.1	98 Cf 252.1	99 Es 252.1	100 Fm 257.1	101 Md 258.1	102 No 259.1	103 Lr 262.1	
×									- f							7		

Temperature

Temperature is the measure of internal thermal energy Different scale:

- Fahrenheit, F
- Celsius, C
- Kelvin, *K* SI scale of temperature

$$T_F = \frac{9}{5}T_C + 32^0$$

 $T_K = T_C + 273$ Example: $0^0C = 273K$

Absolute zero:

$$0K = -273^{\circ}C$$

The temperature (in K) can be only positive

Solid, Liquid, Gas: Phase Changes

9

Heat: Specific Heat

Specific heat of a substance is related to its thermal energy. Specific heat is defined as:

The amount of energy that raises the temperature of 1 kg of a substance by 1 K is called specific heat, c.

$$Q = Mc\Delta T$$

Phase Change: Solid, Liquid, and Gas

Phase change: change of thermal energy without a change in temperature

Cumulative heat added

Phase Change: Solid, Liquid, and Gas

Phase change: change of thermal energy without a change in temperature

Phase Change: Solid, Liquid, and Gas

Phase change: change of thermal energy without a change in temperature

Heat of transformation (L) : the amount of heat energy that causes 1 kg of a substance to undergo a phase change.

Ideal Gas

Ideal Gas:

Ideal gas:

-no interactions between the atoms, (without interactions no phase transition to liquid phase)

-atom as a hard-sphere

-temperature will determine the average speed of atoms.

15

Ideal-Gas Law

$$pV = nRT$$

p – gas pressure

V – gas volume (container volume)

- T gas temperature (in Kelvin!!)
- *n* the number of moles this can be found as $n = \frac{M}{M_{mol}}$ where M is the mass of the gas and M_{mol} is the mole mass R=8.31 J/mol K - universal gas constant

Ideal-Gas Processes

pV = nRT

The state of the gas is determined by two parameters:

- **P** and **V** or
- P and T or
- V and T

If we know **P** and **V** then we can find **T** :

<u>Ideal-Gas Processes: Constant Volume Process</u> pV = nRT

V = constant

$$p = \frac{nR}{V}T$$

<u>Ideal-Gas Processes: Constant Pressure Process</u> pV = nRT

p = constant

$$V = \frac{nR}{p}T$$

Ideal-Gas Processes: Constant Temperature Process

Example: Find p_2 , V_1 and V_3 if n = 3 mol

Example: Find p_2 , V_1 and V_3 if n = 3 mol

