Nanoscopy of Phase Separation in In$_x$Ga$_{1-x}$N Alloys

Yohannes Abatea,†,‡, Daniel Seidlitz†,‡, Alireza Fali†,‡, Sampath Gamage‡,‡, Viktoriai Babicheva†,‡, Vladislav S. Yakovlev†,‡, Mark I. Stockman†,‡, Ramon Collazo§, Dorian Alden§, and Nikolaus Dietz†,‡

aDepartment of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
bCenter for Nano-Optics (CeNO), Georgia State University, Atlanta, Georgia 30303, United States
cMaterial Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States

ABSTRACT: Phase separations in ternary/multinary semiconductor alloys is a major challenge that limits optical and electronic internal device efficiency. We have found ubiquitous local phase separation in In$_x$Ga$_{1-x}$N alloys that persists to nanoscale spatial extent by employing high-resolution nanoscopy technique. We lithographically patterned InN/sapphire substrates with nanolayers of In$_x$Ga$_{1-x}$N down to few atomic layers thick that enabled us to calibrate the near-field infrared response of the semiconductor nanolayers as a function of composition and thickness. We also developed an advanced theoretical approach that considers the full geometry of the probe tip and all the sample and substrate layers. Combining experiment and theory, we identified and quantified phase separation in epitaxially grown individual nanoalloys. We found that the scale of the phase separation varies widely from particle to particle ranging from all Ga- to all In-rich regions and covering everything in between. We have found that between 20 and 25% of particles show some level of Ga-rich phase separation over the entire sample region, which is in qualitative agreement with the known phase diagram of In$_{1-x}$Ga$_x$N system.

KEYWORDS: indium gallium nitride alloys, phase separation semiconductors, composition profile, nanoscopy, near-field

INTRODUCTION

Ternary In$_{1-x}$Ga$_x$N alloys are at the heart of modern technological application, such as light emitting diodes (LEDs) and laser diodes (LDs). Although tremendous progress has been made in the capacity to tune the bandgap of these materials, fabrication of nanostructures that exhibit desired optoelectronic properties is still extremely challenging. This is partly due to a lack of effective methods to realize the formation of homogeneous multiquantum wells (MQWs) and/or quantum dots (QDs) with desirable composition profiles. Better understanding of phase purity/separation within QDs and better control of the nanoscale composition profiles and, hence, the materials properties will allow for the design of these alloys in complex structures for targeted device applications. Investigation of nanoscale phase profiles of semiconductors naturally requires probing techniques that combine high spatial resolution and chemical identification simultaneously.

Phase separation is a general phenomenon that exists in many compound semiconductor materials having vastly different partial pressures or large lattice mismatch. Because of the complex interplay of strain, miscibility and thermodynamic effects between the substrate and different materials, the atoms segregate to form nonuniform distributions of mixed alloys. Phase separation results in alloys with statistically distributed compositions and modifies bandgap properties that ultimately determine the optoelectronic performances of semiconductor devices. Although transmission electron microscopy (TEM) offers atomic spatial resolution, quantitative analysis of image contrast is challenging due to dynamic electron scattering variations for thin samples. Optical spectroscopy techniques such as photoluminescence (PL) and Fourier transform infrared spectroscopy (FTIR) are commonly used to analyze composition profiles in semiconductors and to correlate phase separation with various growth methods. However, these techniques cannot be applied to study phase separation on individual nanostructures and QDs (5–100 nm range) owing to the extremely small IR absorption cross sections and the diffraction-limited spatial resolution. By contrast, scattering-type scanning near-field infrared nanoscopy (s-SNIN) offers spatial resolution several orders of magnitude below the diffraction limit. Resolution is only determined by the apex radius of the probe tip and not by the wavelength of light. In s-SNIN the sharp metallic probe tip serves as an IR antenna channeling the incident radiation into a nanolocalized and enhanced near-field at its apex. The local near-field interaction between the probe tip and the sample modifies the tip-scattered radiation depending on the optical properties of the sample. The backscattered signal is detected in the far field via an interferometric detection scheme.

Received: June 6, 2016
Accepted: August 17, 2016
Published: August 17, 2016

DOI: 10.1021/acsami.6b06766
ACS Appl. Mater. Interfaces 2016, 8, 23160–23166
and provides nanoscale-resolved IR near-field images enabling local chemical composition profiling of the sample. Elucidation of the experimental IR near-field images depends on theoretical modeling which still is a challenging undertaking. A realistic simulation must take into account the near-field interaction between the whole conical geometry of the probe tip, the complex sample structure and the substrate layers for a reliable interpretation of experimental data.

In this work, we have found local phase separation in In$_{1-x}$Ga$_x$N alloys at nanometer spatial scale using high-resolution s-SNIN technique in the mid-IR spectral region. Via a combination of CVD and photolithography we patterned nanolayers with thickness down to a few atomic layers. These controlled samples allowed us to quantify the near-field infrared response of In$_{1-x}$Ga$_x$N nanostructures. We first calibrated the near-field IR amplitude contrast as a function of composition and thickness of the semiconductor nanolayers. We then used this quantitative lead to identify phase separation in individual QDs. A novel theoretical model based on the finite-elements method (FEM) was developed to guide the experiments. Unlike previous models that consider the probe conical tip as approximate point dipoles or spheroids, our model considers the full geometry of the tip, as well as all the sample and substrate layers.

RESULTS AND DISCUSSION

Figure 1 shows schematic of the s-SNIN experimental setup. An AFM tip coated with PtIr, oscillating at a resonance frequency of $f \approx 280$ kHz is irradiated with a focused quantum cascade laser (QCLs) at 45° with respect to the sample surface (Figure 1a). The scattered signal from the tip—sample interface region is demodulated at harmonics of the tip resonance frequency (nf, $n > 1$) and detected by phase-modulation (pseudoheterodyne) interferometry, producing simultaneous topography and optical images. Figure 1b and c show the topography and second-harmonic near-field amplitude (A_2) images of a lithographically patterned In$_{1-x}$Ga$_x$N nanolayer on an InN substrate. A novel theoretical model based on the finite-elements method (FEM) was developed to guide the experiments. Unlike previous models that consider the probe conical tip as approximate point dipoles or spheroids, our model considers the full geometry of the tip, as well as all the sample and substrate layers.

Figure 1. s-SNIN experimental setup and imaging. (a) Schematics of the s-SNIN setup. An oscillating probe tip, illuminated by a focused IR laser images InGaN nanostructures. (b) The topography and (c) the second-harmonic near-field amplitude (A_2) of a lithographically patterned In$_{1-x}$Ga$_x$N nanolayer on an InN substrate. (d) Topographic and (e) A_2 line profiles showing higher islands having a lower A_2 contrast.

Figure 2. s-SNIN images of patterned nanolayers. (a) Topography and IR amplitude images of 20 nm-thick In$_{0.8}$Ga$_{0.2}$N. (b) Topography and IR amplitude images of 9 nm-thick In$_{0.5}$Ga$_{0.5}$N. (c) Topography and IR amplitude images of 1.5 nm-thick GaN. (d) Topography and IR amplitude images of 2.4 nm-thick Ga.

23161
underlying substrate pattern is InN. A comparison of the topography and s-SNIN IR images suggests that Re(ε) is larger for InN than for InGaN (Figure 1c and e) at the laser wavelength, λ = 10.5 μm, used for these experiments. In this way, it is possible to quantify the permittivity of In1−xGa0.5N nanolayers, with respect to the InN substrate, depending on their chemical composition and thickness. For this purpose, we prepared several patterned samples with various In1−xGa0.5N compositions and thickness ranging from subteons of nanometers down to few-monolayer 2D structures on the InN/sapphire substrate. Figure 2 shows topography and IR amplitude images for four different compositions and thicknesses: In0.8Ga0.2N, thickness 2.4 nm (Figure 2d), In0.5Ga0.5N, thickness 9 nm (Figure 2b), GaN, thickness 1.5 nm (Figure 2c), and Ga, thickness 2.4 nm (Figure 2d). Although AFM topographic mapping indicates the height differences between the two types of materials, it is incapable of chemically specific identification. In contrast, s-SNIN IR mapping clearly identifies the two types of materials by their permittivities and allows further quantification of the role of thickness, composition and substrate on the IR image formation. The impressive capability of our IR s-SNIN imaging is highlighted as the thickness of the film reduces down to few atomic layers (Figure 2c and d), where the IR amplitude (A) contrast between the sample and the substrate is clearly superior to that of the accompanying topographic images. More importantly, these controlled samples allow us to calibrate the experimental near-field contrast and determine its correlation with the dielectric function of complex nanolayers, which depends on their chemical composition and thickness. This calibration further serves as a benchmark for the theoretical models as elaborated below.

To quantify the dielectric constants of various In1−xGa0.5N compositions and thicknesses based on the near-field contrast formation, we developed a theoretical approach that allows calculations of s-SNIN response on tip—sample near-field interactions. In contrast to previous models, where the effective polarization of the tip in the presence of a sample was evaluated in semianalytical point-dipole or finite-dipole approximations, our novel model relies on evaluation of the tip—sample polarizability numerically using frequency-domain solver of CST Microwave Studio. Thus, we fully consider the tip—sample near-field interaction, and our model is applicable to any sample (not just thin films) without any fitting parameters. In this model, the whole conical shape of the tip illuminated by a plane electromagnetic wave is considered and the full structure of the sample including the various layers of the substrate is fully accounted for to simulate the experiment. Figure 3a shows an image example of an actual simulation of the probe tip—sample interaction. It depicts an image of the full simulation of the field strength calculated for a 10 nm-thick In0.8Ga0.2N nanolayer on the InN substrate using frequency-domain solver of CST Microwave Studio. We then use the height-dependent reflectivity r(CST) (h) calculated by the CST solver to evaluate the effective tip—sample polarizability αeff(h) = |ΔA|/|Δh| (r(CST)) h) δ E0 sin(θ)(zmax−zpos))/(2πκ0 tan θ) Here, α1 and α2 are the dimensions of the simulation box along the x- and y-axes, respectively (periodic boundary conditions are imposed), k0 is the wave vector of the incident beam, and θ is the angle of incidence, zmax is the upper boundary of the simulation box, and zpos is the coordinate of the substrate surface. The effective polarizability is then used to calculate the field of the oscillating mirror, implementing a pseudoheterodyne interferometer scheme). The main simu-
This is expected since pure GaN (the trend of decreasing amplitude signal with increasing thickness. The theoretical plots reproduce the experimentally observed decreases (constant compared to InN. Furthermore, as the Ga content $\rightarrow 0$, the dielectric constant of In$_{1-x}$Ga$_x$N approaches that of the InN substrate, which decreases the amplitude contrast.

Using literature reports for the permittivity of Pt tip, In$_{1-x}$Ga$_x$N and InN in the mid-IR spectral range, we calculated the normalized amplitude signal as a function of the nanolayer thickness. Figure 3c displays the outcome of these simulations. The theoretical plots reproduce the experimentally observed trend of decreasing amplitude signal with increasing thickness. This is expected since pure GaN ($x = 1$) has a smaller dielectric constant compared to InN. Furthermore, as the Ga content decreases ($x \rightarrow 0$), the dielectric constant of In$_{1-x}$Ga$_x$N approaches that of the InN substrate, which decreases the amplitude contrast.

Using the complementary results of our novel theoretical model and the high-resolution experimental results described above on controlled patterned samples, we now address the outstanding issues regarding phase separation and composition profiles on single group III–N semiconductor QDs and complex nanoalloys. In Figure 4, we show the topography and near-field amplitude (A_2) images as well as line profiles of In$_{0.7}$Ga$_{0.3}$N QDs grown on InN/sapphire templates. The topography image (Figure 4b) shows dome-shaped QDs with height ranging 5–14 nm and lateral diameter in the range 60–90 nm. The corresponding amplitude image displayed in Figure 4c shows that some of the QDS exhibit mixed optical contrast. As an example of such a mixed contrast, we selected a single particle highlighted by a yellow circle on the topography and by a black circle on the amplitude image (Figure 4b and Figure 4c, respectively) with the corresponding line profiles shown in Figure 4d and e. The selected particle is \sim7 nm in height and \sim70 nm in width (fwhm). In the amplitude image of this chosen particle we observe dark and bright mixed contrast, which is also experienced by some (but not all) other particles as can be seen in this image. Comparison of the smooth topographic line profile (Figure 4d) and the amplitude line profile (Figure 4e) displaying varying intensity show that the observed contrast in the amplitude image does not have a corresponding topographic origin.

As discussed above, the near-field amplitude image is sensitive to permittivity of the sample; therefore, the existence of mixed contrast on a single particle indicates the presence of two materials that phase segregated on the same QD. To identify the relative permittivity of the two materials on the QD, we performed spectroscopic imaging at several laser wavelengths and compared the spectroscopic responses with that of lithographically patterned samples discussed above with similar composition and height. These experimental spectra are displayed in Figure 4e where the red points are experimental normalized amplitude values, which were obtained by taking the ratio of the signal on In$_{0.7}$Ga$_{0.3}$N film to that on InN substrate (point B on the red film in the inset of Figure 4e to point A on the yellow film). The normalized amplitude values for the QD were found by dividing the signal on the dark contrast to that of the brighter contrast (point B in the nanoparticle inset in Figure 4e to that of point A). The two spectra are flat and nearly overlap in the entire wavelength region considered. From the theoretical–experimental calibration of the IR s-SNIN amplitude contrast, which we presented above on controlled patterned samples, we infer that the brighter part of the QD is an In rich region and the darker part is a Ga rich region. The normalized s-SNIN amplitude values are slightly smaller than those of the film throughout the considered spectral region. This small variation indicates that regions A and B, considered for normalization of the signal, are slightly smaller than those of the In$_{0.7}$Ga$_{0.3}$N and InN regions. Since s-SNIN can only provide a normalized (comparative) measurement, it is not possible to estimate the absolute values of dielectric functions. To assess general statistical distribution of the phase separation, we took several near-field amplitude images at various locations of the sample. A few of these images are shown in Figure 5. These results indicate that the scale of the phase separation on a single particle varies over a wide compositional range from particle to particle ranging from...
statistically Ga-rich to all In-rich QDs. An estimation of the percentage of particles that show some level of Ga-rich phase separation over the entire sample region scanned within the resolution and sensitivity of s-SNIN is between $\sim 20-25\%$. For our In$_{0.7}$Ga$_{0.3}$N samples that were grown at 775 °C, this estimation is in qualitative agreement with predication based on the theoretical phase diagram of In$_{1-x}$Ga$_x$N system calculated assuming a constant average value for the solid phase interaction parameter. In a model used by Stringfellow et al., In$_{0.7}$Ga$_{0.3}$N at a growth temperature of 775 °C is thermodynamically not stable and may segregate into stable In-rich and Ga-rich InGaN alloy regions. The probability that it could stabilize to a Ga-rich region depends on the kinetic stabilization of the growth surface, growth temperature, group V/III precursor ratio, simultaneous or sequential precursor supply, and various other processing conditions, which are presently explored by MEPA-MOCVD and verified by s-SNIN.

As described above, our theoretical model allows us to simulate the near-field coupling between the full tip and any size and shape nanoparticle as well as layers of substrate. Since our growth technique covers a wide size distribution, we investigate the dependence of the near-field tip–sample coupling on the geometry and size of the nanoparticles using our theoretical model. The simulated field distribution for two different particle sizes that are both larger than the tip apex are displayed in Figure 6a and b. The lateral size of our particles is comparable or larger than the tip apex (>60 nm diameter), so we do not expect contrast reversal to play a role. Spectroscopic simulation using literature data for the permittivity of InGaN on InN substrate in the mid-IR wavelength region is shown in Figure 6c for large (red) and small (black) particles. Similar to experimental results, the simulation shows a flat response across the spectral window considered. The near-field contrast (normalized amplitude signal) is larger for small particles than it is for larger particles (approximating a flat film). This is because of the competing tip–sample and tip–substrate coupling, which is a well-known size effect in s-SNIN.
the near-field coupling with the substrate is larger compared to the near-field coupling to the particle which will render the signal on the particle weaker. Increasing the particle size (Figure 6a) strengthens the tip near-field coupling to the particle, which results in a stronger signal on the particle as clearly seen in Figure 6c. Such important size effects must be considered when analyzing the near-field response of QDs both experimentally and theoretically.

CONCLUSION

We have directly imaged phase segregation at a nanometer spatial scale in epitaxial In$_{1-x}$Ga$_x$N alloys using high-resolution s-SNIN. Using a combination of plasma-assisted CVD and lithographically structured InN/sapphire templates with subsequent deposition of In$_{1-x}$Ga$_x$N nanolayers, we calibrated the s-SNIN near-field contrast of In$_{1-x}$Ga$_x$N between GaN and InN. In s-SNIN the amplitude signal contrast depends on the local dielectric constant of the sample below the probe tip. The normalized signal contrast is determined by taking the ratio of the signal on the sample to that on the substrate. To guide the experiments in quantifying the near-field contrast and, subsequently, the dielectric constants of In$_{1-x}$Ga$_x$N alloys, we have developed an advanced s-SNIN model that fully describes segregation of indium and gallium in the In$_{1-x}$Ga$_x$N quantum well laser diodes emitting at 470 nm.

REFERENCES

